4. Reminder of general background: Given a subset A of \mathbb{R}^n, we have previously defined the derivative of a function $F : A \rightarrow \mathbb{R}^m$ at a point x as a linear function from \mathbb{R}^n to \mathbb{R}^m (with certain properties, if it exists).

If f is a real-valued function on a subset of \mathbb{R}^n and A is the set on which the gradient ∇f of f exists, we have a function $\nabla f : A \rightarrow \mathbb{R}^n$; at each x at which the gradient exists, $\nabla f(x)$ is an element of \mathbb{R}^n. Since the gradient ∇f is a function from a subset of \mathbb{R}^n into \mathbb{R}^n, we can ask about its derivative. This (where it exists) will be a linear function (linear transformation) from \mathbb{R}^n to \mathbb{R}^n, which we think of as a kind of second derivative of the original f at the points for which it exists.

(a) Read the preceding paragraph again to make sure you know what is going on.

(b) The derivative of the vector-valued function ∇f can be denoted, naturally but somewhat unusually, by $(\nabla f)'(x)$ at any point x where it exists. This is then a linear function from \mathbb{R}^n to \mathbb{R}^n. Can you guess what the matrix of this linear transformation is? (No proof necessary at this point; refer to page 381 of the textbook for more background.) Don’t just answer “yes” or “no” – if you have a guess, give it.

5. The following observation may be useful in Problem 6 below. Show that a symmetric bilinear function is completely determined by its quadratic function:

Let β be a symmetric bilinear function and define its quadratic function Q as suggested in Problem 2 above. By expanding $\beta(u + v, u + v)$, show that if you know the function Q, then you can “reconstruct” the function β.

to be continued on page 3