Second Order ODEs - Review Problems

April 13, 2009

1. Find a particular solution to

$$
x^{5} y^{\prime \prime}+3 x y^{\prime}+7 y=14 .
$$

2. Consider the following equation

$$
\frac{d^{2} x}{d t^{2}}+25 x=16 \cos (3 t)
$$

(a) Find the general solution of this equation.
(b) Show that the particular solution satisfying $x(0)=0$ and $\dot{x}(0)=0$ is $x_{p}(t)=$ $\cos (3 t)-\cos (5 t)$.
(c) Using the identity $\cos (3 t)-\cos (5 t)=2 \sin (4 t) \sin (t)$, sketch the graph of the particular solution found in (b) for $0 \leq t \leq 2 \pi$.
3. Solve the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{1}{x} e^{-3 x}
$$

4. Answer the following questions about the solution $x(t)$ to the damped equation

$$
m \ddot{x}+k \dot{x}+h x=0,
$$

where m, k and h are positive constants.
(a) If $m=2$, how should h and k be related so that the non-zero solutions are oscillatory?
(b) If $h=k=1$, how should the mass m be chosen so that all non-zero solutions will oscillate?
(c) If $m=h=1$, how should k be chosen so that $x(t)$ is oscillatory?
5. Solve the differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=-\frac{e^{2 x}}{e^{x}+1}
$$

Hint: $1 /\left(e^{t}+1\right)$ can be integrated by noticing that it is equal to $e^{-t} /\left(1+e^{-t}\right)$.
6. (a) Find a particular solution to the equation

$$
\frac{d^{2} x}{d t^{2}}+22 x=\cos (\gamma t)
$$

where $\gamma>0$. Note that your answer should depend on γ. For what value of γ is there resonance?
(b) Find a particular solution $x_{p}(t)$ to

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+22 x=\cos (\gamma t)
$$

What is the value of x_{p} at $t=\pi /(2 \gamma)$? Sketch the behavior of this value as a function of γ. What happens when $\gamma=\sqrt{22}$?
7. Solve the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=\frac{2}{x^{2}} e^{-x}
$$

