Problem 1. Use slicing to find the volume of a torus (i.e. a tube wrapped around into itself, like a doughnut; see figure below). Use (i) horizontal slices and (ii) vertical shells. From the answer, can you come up with a simple formulation for the volume of a torus?

Figure 1: A torus, which is made by revolving a circle of radius r around in a circle of radius R.

Problem 2. Decide whether the following integral converges or diverges. If it converges, give its value.

$$
\int_{2}^{\infty} \frac{1}{(6-\theta)^{2}} d \theta
$$

Problem 3. Calculate the length of the curve described by

$$
x=r \cos (\theta), \quad y=r \sin (\theta), \quad r=e^{\sin (\theta)}-2 \cos (4 \theta)+\sin ^{5}\left(\frac{2 \theta-\pi}{24}\right)
$$

for $0 \leq \theta \leq \pi$, correct to 2 decimal places. This curve, called the butterfly curve, is shown in the figure below.

Figure 2: The butterfly curve, for $0 \leq \theta \leq 2 \pi$.

