Problems on dimensional analysis and scalings MCB / MATH 303

1. Consider the following differential equation,

$$
\frac{d x}{d t}=\lambda x-\gamma x^{3}
$$

where λ and γ are both non-zero and have the same sign.

1. What is the dimension of λ ?
2. What is the dimension of γ ? Your answer should be in terms of the dimension of x, denoted by $[x]$.
3. Let t_{0} be a characteristic time scale for this problem. Define a dimensionless time variable $\tau=t / t_{0}$, and show that you can make a change of variable from t to τ, to "get rid" of the parameter λ.
4. Can you find a change of variable that would allow you to "get rid" of γ as well?
5. Consider the following model

$$
\frac{\partial u}{\partial t}=\mu u+\alpha \frac{\partial^{2} u}{\partial x^{2}}-\beta u^{3}, \quad u \in \mathbb{R}, \quad \mu, \alpha, \beta>0
$$

1. What are the dimensions of the parameters α, β and μ ? Write $[u]$ for the dimension of u.
2. How many relevant parameters does this model have? Explain.
3. Write the model below in dimensionless form by defining $\tau=\lambda k b t / \delta^{2}$ and appropriate variables x, y and v.

$$
\begin{aligned}
\frac{d X}{d t} & =\lambda-\delta X-b V X \\
\frac{d Y}{d t} & =b V X-a Y \\
\frac{d V}{d t} & =k Y-\kappa V
\end{aligned}
$$

