Partial Differential Equations

Introduction

1. The derivative of a function of one variable: Review

- If f is a function of the variable $x \in \mathbb{R}$, the derivative of f at $x, f^{\prime}(x)$, is defined as

$$
f^{\prime}(x)=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon)-f(x)}{\epsilon} .
$$

If this limit exists, one says that f has a derivative or is differentiable at x.

- If you need to review the concept of derivative of a function of one variable, you may for instance want to consult the corresponding Wikipedia article.

The derivative of a function of one variable (continued)

- Since the derivative is the limit, as ϵ goes to zero, of the slope of the secant to $y=f(x)$ at $(x, f(x))$ and $(x+\epsilon, f(x+\epsilon))$, $f^{\prime}(x)$ measures the slope of the graph of f at the point x.
- The MIT derivative and tangent line applet illustrates this concept. Experiment with this applet until you feel comfortable with both the geometric and analytic descriptions of the derivative.

Check your understanding

(1) Using the definition of $f^{\prime}(x)$ as a limit, show that if $f(x)=3 x^{2}$, then $f^{\prime}(x)=6 x$, for every $x \in \mathbb{R}$.
(2) What does the sign of the derivative tell you about the function? Why?
(3) What does it mean for the function f if its derivative is equal to zero at every point? Explain.
(9) What does it mean for the graph of the function f near the point $(x, f(x))$, if $f^{\prime}(x)=0$? What if $f^{\prime \prime}(x)=0$ as well? Why?

2. Partial derivatives: Introduction

- Consider now a function of two variables, $f(x, y)$, where x and y are in \mathbb{R}. If we fix the variable y to say $y=y_{0}$, we are left with a function of one variable, $g(x)=f\left(x, y_{0}\right)$.
- The partial derivative of f with respect to x at $\left(x, y_{0}\right)$ is the derivative of the function g with respect to x. In other words,

$$
\frac{\partial f}{\partial x}\left(x, y_{0}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(x+\epsilon, y_{0}\right)-f\left(x, y_{0}\right)}{\epsilon} .
$$

Partial derivatives (continued)

- The partial derivative of f with respect to y is defined in a similar fashion.
- Since the partial derivative can be understood as the derivative of a function of one variable, all of the rules of differentiation that you learned in Calculus I apply.
- Partial derivatives of higher order are defined in a way similar to higher order derivatives of a function of one variable.

Check your understanding

(1) Use the definition (in terms of a limit) of the partial derivative to find $\frac{\partial f}{\partial x}$ as a function of x and y, for $f(x, y)=3 x^{2}+x y$.
(2) Repeat the above calculation using standard rules of differentiation.
(3) Use the rules of differentiation to calculate the following partial derivatives
(a) $\frac{\partial f}{\partial y}(x, y)$, where $f(x, y)=\cos (x y)$.
(b) $\frac{\partial f}{\partial x}(3,5)$, where $f(x, y)=x^{2} y^{4} \exp (3 x+y)$.
(c) $\frac{\partial f}{\partial y}(x, y)$, where $f(x, y)=g(z)$ and $z=x y$.
(d) $\frac{\partial^{2} f}{\partial y^{2}}(x, y)$, where $f(x, y)=\cos (x y)$.

3. Partial differential equations: Introduction

- A partial differential equation (PDE) is an equation which relates the partial derivatives of a function f to one another, or to f itself.
- Examples of partial differential equations
(1) $f=3 \frac{\partial f}{\partial y}$.
(2) The wave equation, $\frac{\partial^{2} f}{\partial t^{2}}-c^{2} \frac{\partial^{2} f}{\partial x^{2}}=0, \quad c \in \mathbb{R}$.
(3) The heat equation, $\frac{\partial f}{\partial t}=D \frac{\partial^{2} f}{\partial x^{2}}, \quad D>0$.
- A solution to a partial differential equation is a function f that satisfies the partial differential equation.

Check your understanding

(1) Show that the functions $f(x, t)=g(x-c t)$ and $f(x, t)=h(x+c t)$, where g and h are twice differentiable functions of one variable, solve the wave equation. Such solutions are called traveling wave solutions.
(2) Show that the function $f(x, y)=g(x) \exp (y / 3)$, where g is an arbitrary function of x, solves the PDE

$$
f=3 \frac{\partial f}{\partial y}
$$

Check your understanding (continued)

In this problem, we look for a solution to the heat equation

$$
\frac{\partial f}{\partial t}=D \frac{\partial^{2} f}{\partial x^{2}}, \quad D>0
$$

Consider the function

$$
f(x, t)=\frac{1}{2 \sqrt{\pi D t}} \int_{-\infty}^{\infty} \exp \left[-\frac{\left(x-x_{0}\right)^{2}}{4 D t}\right] H\left(x_{0}\right) d x_{0}
$$

where H is a smooth function of x_{0}.
(1) Calculate $\partial f / \partial t$.
(2) Calculate $\partial^{2} f / \partial x^{2}$.
(3) Show that f formally solves the heat equation given above.

