1. Complex numbers

Chapter 13: Complex Numbers
Sections 13.1 \& 13.2

Complex numbers and complex plane
 Complex conjugate

Complex conjugate

- The complex conjugate of $z=x+i y$ is defined as

$$
\bar{z}=x-i y .
$$

- As a consequence of the above definition, we have

$$
\Re e(z)=\frac{z+\bar{z}}{2}, \quad \Im m(z)=\frac{z-\bar{z}}{2 i}, \quad z \bar{z}=x^{2}+y^{2}
$$

- If z_{1} and z_{2} are two complex numbers, then

$$
\begin{equation*}
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}, \quad \overline{\overline{z_{1} z_{2}}}=\overline{z_{1}} \overline{z_{2}} . \tag{2}
\end{equation*}
$$

- The complex conjugate of $z=x+i y$ is defined as
- Complex numbers are of the form

$$
z=x+i y, \quad x, y \in \mathbb{R}, \quad i^{2}=-1
$$

- In the above definition, x is the real part of z and y is the imaginary part of z.
- The complex number $z=x+i y$ may be represented in the complex plane as the point with cartesian coordinates (x, y).
- The absolute value or modulus of $z=x+i y$ is

$$
|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}} .
$$

It is a positive number.

- Examples: Evaluate the following
- |i|
- $|2-3 i|$

2. Algebra of complex numbers

- You should use the same rules of algebra as for real numbers, but remember that $i^{2}=-1$.

Examples:

- \# 13.1.1: Find powers of i and $1 / i$.
- Assume $z_{1}=2+3 i$ and $z_{2}=-1-7 i$. Calculate $z_{1} z_{2}$ and $\left(z_{1}+z_{2}\right)^{2}$.
- Get used to writing a complex number in the form

$$
z=(\text { real part })+i(\text { imaginary part })
$$

no matter how complicated this expression might be.

- Because $\arg (z)$ is multi-valued, it is convenient to agree on a particular choice of $\arg (z)$, in order to have a single-valued function.
- The principal value of $\arg (z), \operatorname{Arg}(z)$, is such that

$$
\tan (\operatorname{Arg}(z))=\frac{y}{x}, \quad \text { with }-\pi<\operatorname{Arg}(z) \leq \pi
$$

- Note that $\operatorname{Arg}(z)$ jumps by -2π when one crosses the negative real axis from above.

Principal value $\operatorname{Arg}(z)$ (continued)

- Examples:

- Find the principal value of the argument of $z=1-i$.
- Find the principal value of the argument of $z=-10$.

Euler's formula

Integer powers of a complex number
Product and ratio of two complex numbers Roots of a complex number
Triangle inequality

Euler's formula

- Euler's formula reads

$$
\exp (i \theta)=\cos (\theta)+i \sin (\theta), \quad \theta \in \mathbb{R}
$$

- As a consequence, every complex number $z \neq 0$ can be written as

$$
z=|z|(\cos (\theta)+i \sin (\theta))=|z| \exp (i \theta)
$$

- This formula is extremely useful for calculating powers and roots of complex numbers, or for multiplying and dividing complex numbers in polar form.
- You need to be able to go back and forth between the polar and cartesian representations of a complex number.

$$
z=x+i y=|z| \cos (\theta)+i|z| \sin (\theta)
$$

- In particular, you need to know the values of the sine and cosine of multiples of $\pi / 6$ and $\pi / 4$.
- Convert $\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)$ to cartesian coordinates.
- What is the cartesian form of the complex number such that $|z|=3$ and $\operatorname{Arg}(z)=\pi / 4$? $z=x+i y=|z| \cos (\theta)+i|z| \sin (\theta)$.

$$
|z|=3 \text { and } \operatorname{Arg}(z)=\pi / 4 \text { ! }
$$

Polar and cartesian forms of a complex number

Chapter 13: Complex Numbers

Definitions Algebra of complex numbers	Definitions Euler's formula Integer powers of a complex number Product and ratio of two complex numbers Roots of a complex number
Triangle inequality	

To find the n-th power of a complex number $z \neq 0$, proceed as follows
(1) Write z in exponential form,

$$
z=|z| \exp (i \theta)
$$

(2) Then take the n-th power of each side of the above equation

$$
z^{n}=|z|^{n} \exp (i n \theta)=|z|^{n}(\cos (n \theta)+i \sin (n \theta))
$$

(3) In particular, if z is on the unit circle $(|z|=1)$, we have

$$
(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta) .
$$

This is De Moivre's formula.

- The product of $z_{1}=r_{1} \exp \left(i \theta_{1}\right)$ and $z_{2}=r_{2} \exp \left(i \theta_{2}\right)$ is

$$
\begin{align*}
z_{1} z_{2} & =\left(r_{1} \exp \left(i \theta_{1}\right)\right)\left(r_{2} \exp \left(i \theta_{2}\right)\right) \\
& =r_{1} r_{2} \exp \left(i\left(\theta_{1}+\theta_{2}\right)\right) \tag{4}
\end{align*}
$$

- As a consequence,

$$
\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right), \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| .
$$

- We can use Equation (4) to show that

$$
\begin{align*}
& \cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right), \tag{5}\\
& \sin \left(\theta_{1}+\theta_{2}\right)=\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right) .
\end{align*}
$$

Roots of a complex number

To find the n-th roots of a complex number $z \neq 0$, proceed as follows
(1) Write z in exponential form,

$$
z=r \exp (i(\theta+2 p \pi))
$$

with $r=|z|$ and $p \in \mathbb{Z}$.
(2) Then take the n-th root (or the $1 / n$-th power)

$$
\sqrt[n]{z}=z^{1 / n}=r^{1 / n} \exp \left(i \frac{\theta+2 p \pi}{n}\right)=\sqrt[n]{r} \exp \left(i \frac{\theta+2 p \pi}{n}\right)
$$

(3) There are thus n roots of z, given by

$$
z_{k}=\sqrt[n]{r}\left(\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\theta+2 k \pi}{n}\right)\right), \quad k=0, \cdots, n-1
$$

Roots of a complex number (continued)

 Triangle inequalityRoots of a complex number (continued)

- The principal value of $\sqrt[n]{z}$ is the n-th root of z obtained by taking $\theta=\operatorname{Arg}(z)$ and $k=0$.
- The n-th roots of unity are given by
$\sqrt[n]{1}=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)=\omega^{k}, \quad k=0, \cdots, n-1$
where $\omega=\cos (2 \pi / n)+i \sin (2 \pi / n)$.
- In particular, if w_{1} is any n-th root of $z \neq 0$, then the n-th roots of z are given by

$$
w_{1}, w_{1} \omega, w_{1} \omega^{2}, \cdots, w_{1} \omega^{n-1} .
$$

- Examples:

- Find the three cubic roots of 1 .
- Find the four values of $\sqrt[4]{i}$.
- Give a representation in the complex plane of the principal value of the eighth root of $z=-3+4 i$.
- If z_{1} and z_{2} are two complex numbers, then

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
$$

This is called the triangle inequality. Geometrically, it says that the length of any side of a triangle cannot be larger than the sum of the lengths of the other two sides.

- More generally, if $z_{1}, z_{2}, \ldots, z_{n}$ are n complex numbers, then

$$
\left|z_{1}+z_{2}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right| .
$$

