Chapter 13: Complex Numbers Sections 13.3 & 13.4

Chapter 13: Complex Numbers

Limits, continuity, and differentiation A criterion for analyticity Function of a complex variable Limits and continuity Differentiability Analytic functions

1. Function of a complex variable

• A (single-valued) function f of a complex variable z is such that for every z in the domain of definition \mathcal{D} of f, there is a unique complex number w such that

$$w=f(z).$$

• The real and imaginary parts of *f*, often denoted by *u* and *v*, are such that

 $f(z) = u(x, y) + iv(x, y), \quad z = x + iy, \quad x, y \in \mathbb{R}, \quad f(z) \in \mathbb{C},$ with $u(x, y) \in \mathbb{R}$ and $v(x, y) \in \mathbb{R}$. Limits, continuity, and differentiation A criterion for analyticity Function of a complex variable Limits and continuity Differentiability Analytic functions

Function of a complex variable (continued)

- f(z) = z is such that u(x, y) = x and v(x, y) = y.
- Find the real and imaginary parts of $f(z) = \overline{z}$.

•
$$f(z) = \frac{1}{\overline{z}}$$
 is defined for all $z \neq 0$ and is such that

$$u(x,y) = \frac{x}{x^2 + y^2}, \qquad v(x,y) = \frac{y}{x^2 + y^2}.$$

2. Limits and continuity

• An open neighborhood of the point $z_0 \in \mathbb{C}$ is a set of points $z \in \mathbb{C}$ such that

$$|z - z_0| < \epsilon$$
, for some $\epsilon > 0$.

- Let f be a function of a complex variable z, defined in a neighborhood of $z = z_0$, except maybe at $z = z_0$.
- We say that f has the limit w_0 as z goes to z_0 , i.e. that

$$\lim_{z\to z_0}f(z)=w_0,$$

if for every $\epsilon > 0$, one can find $\delta > 0$, such that for all $z \in \mathcal{D}$,

$$|z-z_0| < \delta \Longrightarrow |f(z)-w_0| < \epsilon.$$

• **Example:**
$$\lim_{z \to i} \frac{z^2 + 1}{z - i} = 2i$$
.

Limits, continuity, and differentiation A criterion for analyticity Function of a complex variable Limits and continuity Differentiability Analytic functions

Continuity

• The function f is continuous at $z = z_0$ if f is defined in a neighborhood of z_0 (including at $z = z_0$), and

$$\lim_{z\to z_0}f(z)=f(z_0).$$

- If f(z) is continuous at $z = z_0$, so is $\overline{f(z)}$. Therefore, if f is continuous at $z = z_0$, so are $\Re e(f)$, $\Im m(f)$, and $|f|^2$.
- Conversely, if u(x, y) and v(x, y) are continuous at (x₀, y₀), then f(z) = u(x, y) + iv(x, y) with z = x + iy, is continuous at z₀ = x₀ + iy₀.
- Example: Is the function such that $f(z) = \Im m(z^2)/|z|^2$ for $z \neq 0$ and f(0) = 0, continuous at z = 0?

3. Differentiability

Assume that f is defined in a neighborhood of z = z₀. The derivative of the function f at z = z₀ is

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

assuming that this limit exists.

If f has a derivative at z = z₀, we say that f is differentiable at z = z₀.

- $f(z) = \overline{z}$ is continuous but not differentiable at z = 0.
- $f(z) = z^3$ is differentiable at any $z \in \mathbb{C}$ and $f'(z) = 3z^2$.

Rules for continuity, limits and differentiation

• To find the limit or derivative of a function f(z), proceed as you would do for a function of a real variable.

•
$$f'\left(\frac{1}{z}\right) = -\frac{1}{z^2}.$$

•
$$\frac{d}{dz}z^n = n z^{n-1}, \qquad n \in \mathbb{N}.$$

• Find
$$\lim_{z \to -i} \left(z + \frac{1}{z} \right)$$
.

Rules for continuity, limits and differentiation (continued)

- Properties involving the sum, difference or product of functions of a complex variable are the same as for functions of a real variable. In particular,
 - The limit of a product (sum) is the product (sum) of the limits.
 - The product and quotient rules for differentiation still apply.
 - The chain rule still applies.
- Examples:

• Find
$$\frac{d}{dz}\left(\frac{z^2+1}{z-i}\right)$$
.

• Find
$$\frac{d}{dz}(z^3+9z-7)^4$$
.

4. Analytic functions

- A function f(z) is analytic at z = z₀ if f(z) is differentiable in a neighborhood of z₀.
- A region of the complex plane is a set consisting of an open set, possibly together with some or all of the points on its boundary.
- We say that f is analytic in a region \mathcal{R} of the complex plane, if it is analytic at every point in \mathcal{R} .
- One may use the word holomorphic instead of the word analytic.

Analytic functions (continued)

- A function that is analytic at every point in the complex plane is called entire.
- Polynomials of a complex variable are entire.
 - For instance, $f(z) = 3z 7z^2 + z^3$ is analytic at every z.
- Rational functions of a complex variable of the form $f(z) = \frac{g(z)}{h(z)}$, where g and h are polynomials, are analytic everywhere, except at the zeros of h(z).
 - For instance, $\frac{z^2+1}{z-i}$ is analytic except at z=i.
 - In the above example, z = i is called a pole of f(z).

5. The Cauchy-Riemann equations

• If f(z) = u(x, y) + iv(x, y) is defined in a neighborhood of z = x + iy, and if f is differentiable at z, then

 $u_x(x,y) = v_y(x,y),$ and $u_y(x,y) = -v_x(x,y).$ (1)

These are called the Cauchy-Riemann equations.

- Conversely, if the partial derivatives of u and v exist in a neighborhood of z = x + iy, if they are continuous at z and satisfy the Cauchy-Riemann equations at z, then f(z) = u(x, y) + iv(x, y) is differentiable at z.
- The Cauchy-Riemann equations therefore give a criterion for analyticity.

The Cauchy-Riemann equations (continued)

- Indeed, if a function is analytic at z, it must satisfy the Cauchy-Riemann equations in a neighborhood of z. In particular, if f does not satisfy the Cauchy-Riemann equations, then f cannot be analytic.
- Conversely, if the partial derivatives of u and v exist, are continuous, and satisfy the Cauchy-Riemann equations in a neighborhood of z = x + iy, then f(z) = u(x, y) + iv(x, y) is analytic at z.

- Use the Cauchy-Riemann equations to show that \overline{z} is not analytic.
- Use the Cauchy-Riemann equations to show that $\frac{1}{z}$ is analytic everywhere except at z = 0.

Applications of the Cauchy-Riemann equations

• A consequence of the Cauchy-Riemann equations is that

$$f'(z) = u_x + iv_x = v_y - iu_y.$$
 (2)

- We will use these formulas later to calculate the derivative of some analytic functions.
- Another consequence of the Cauchy-Riemann equations is that an entire function with constant absolute value is constant. In fact, a more general result is that an entire function that is bounded (including at infinity) is constant.

6. Harmonic functions

- One can show that if f is analytic in a region R of the complex plane, then it is infinitely differentiable at any point in R.
- If f(z) = u(x, y) + iv(x, y) is analytic in \mathcal{R} , then both u and v satisfy Laplace's equation in \mathcal{R} , i.e.

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$
, and $\nabla^2 v = v_{xx} + v_{yy} = 0$. (3)

• A function that satisfies Laplace's equation is called an harmonic function.

Harmonic conjugate

- If f(z) = u(x, y) + iv(x, y) is analytic in \mathcal{R} , then we saw that both u and v are harmonic (i.e. satisfy Laplace's equation) in \mathcal{R} .
- We say that *u* and *v* are harmonic conjugates of one another.
- Given an harmonic function u, one can use the Cauchy-Riemann equations to find its harmonic conjugate v, and vice-versa.

- Check that u(x, y) = 2xy is harmonic, and find its harmonic conjugate v.
- Given an harmonic function v(x, y), how would you find its harmonic conjugate u(x, y)?