Chapter 13: Complex Numbers

 Sections 13.5, 13.6 \& 13.7
1. Complex exponential

- The exponential of a complex number $z=x+i y$ is defined as

$$
\begin{aligned}
\exp (z) & =\exp (x+i y)=\exp (x) \exp (i y) \\
& =\exp (x)(\cos (y)+i \sin (y)) .
\end{aligned}
$$

- As for real numbers, the exponential function is equal to its derivative, i.e.

$$
\begin{equation*}
\frac{d}{d z} \exp (z)=\exp (z) \tag{1}
\end{equation*}
$$

- The exponential is therefore entire.
- You may also use the notation $\exp (z)=e^{z}$.

Properties of the exponential function

- The exponential function is periodic with period $2 \pi i$: indeed, for any integer $k \in \mathbb{Z}$,

$$
\begin{aligned}
\exp (z+2 k \pi i) & =\exp (x)(\cos (y+2 k \pi)+i \sin (y+2 k \pi)) \\
& =\exp (x)(\cos (y)+i \sin (y))=\exp (z)
\end{aligned}
$$

- Moreover,

$$
\begin{aligned}
|\exp (z)| & =|\exp (x)||\exp (i y)|=\exp (x) \sqrt{\left(\cos ^{2}(y)+\sin ^{2}(y)\right)} \\
& =\exp (x)=\exp (\Re e(z))
\end{aligned}
$$

- As with real numbers,
- $\exp \left(z_{1}+z_{2}\right)=\exp \left(z_{1}\right) \exp \left(z_{2}\right)$;
- $\exp (z) \neq 0$.

Complex exponential

2. Trigonometric functions

- The complex sine and cosine functions are defined in a way similar to their real counterparts,

$$
\begin{equation*}
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i} \tag{2}
\end{equation*}
$$

- The tangent, cotangent, secant and cosecant are defined as usual. For instance,

$$
\tan (z)=\frac{\sin (z)}{\cos (z)}, \quad \sec (z)=\frac{1}{\cos (z)}
$$

etc.

Trigonometric functions (continued)

- The rules of differentiation that you are familiar with still work.
- Example:
- Use the definitions of $\cos (z)$ and $\sin (z)$,

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

to find $(\cos (z))^{\prime}$ and $(\sin (z))^{\prime}$.

- Show that Euler's formula also works if θ is complex.

3. Hyperbolic functions

- The complex hyperbolic sine and cosine are defined in a way similar to their real counterparts,

$$
\begin{equation*}
\cosh (z)=\frac{e^{z}+e^{-z}}{2}, \quad \sinh (z)=\frac{e^{z}-e^{-z}}{2} \tag{3}
\end{equation*}
$$

- The hyperbolic sine and cosine, as well as the sine and cosine, are entire.
- We have the following relations

$$
\begin{array}{ll}
\cosh (i z)=\cos (z), & \sinh (i z)=i \sin (z) \\
\cos (i z)=\cosh (z), & \sin (i z)=i \sinh (z)
\end{array}
$$

Complex exponential

4. Complex logarithm

- The logarithm w of $z \neq 0$ is defined as

$$
e^{w}=z
$$

- Since the exponential is $2 \pi i$-periodic, the complex logarithm is multi-valued.
- Solving the above equation for $w=w_{r}+i w_{i}$ and $z=r e^{i \theta}$ gives

$$
e^{w}=e^{w_{r}} e^{i w_{i}}=r e^{i \theta} \Longrightarrow\left\{\begin{array}{l}
e^{w_{r}}=r \\
w_{i}=\theta+2 p \pi
\end{array}\right.
$$

which implies $w_{r}=\ln (r)$ and $w_{i}=\theta+2 p \pi, \quad p \in \mathbb{Z}$.

- Therefore,

$$
\ln (z)=\ln (|z|)+i \arg (z)
$$

Principal value of $\ln (z)$

- We define the principal value of $\ln (z), \operatorname{Ln}(z)$, as the value of $\ln (z)$ obtained with the principal value of $\arg (z)$, i.e.

$$
\operatorname{Ln}(z)=\ln (|z|)+i \operatorname{Arg}(z)
$$

- Note that $\operatorname{Ln}(z)$ jumps by $-2 \pi i$ when one crosses the negative real axis from above.

- The negative real axis is called a branch cut of $\operatorname{Ln}(z)$.

Principal value of $\ln (z)$ (continued)

- Recall that

$$
\operatorname{Ln}(z)=\ln (|z|)+i \operatorname{Arg}(z)
$$

- Since $\operatorname{Arg}(z)=\arg (z)+2 p \pi, p \in \mathbb{Z}$, we therefore see that $\ln (z)$ is related to $\operatorname{Ln}(z)$ by

$$
\ln (z)=\operatorname{Ln}(z)+i 2 p \pi, \quad p \in \mathbb{Z}
$$

- Examples:
- $\operatorname{Ln}(2)=\ln (2)$, but $\ln (2)=\ln (2)+i 2 p \pi, \quad p \in \mathbb{Z}$.
- Find $\operatorname{Ln}(-4)$ and $\operatorname{In}(-4)$.
- Find $\operatorname{In}(10 i)$.

Properties of the logarithm

- You have to be careful when you use identities like

$$
\ln \left(z_{1} z_{2}\right)=\ln \left(z_{1}\right)+\ln \left(z_{2}\right), \quad \text { or } \quad \ln \left(\frac{z_{1}}{z_{2}}\right)=\ln \left(z_{1}\right)-\ln \left(z_{2}\right)
$$

They are only true up to multiples of $2 \pi i$.

- For instance, if $z_{1}=i=\exp (i \pi / 2)$ and $z_{2}=-1=\exp (i \pi)$, $\ln \left(z_{1}\right)=i \frac{\pi}{2}+2 p_{1} i \pi, \quad \ln \left(z_{2}\right)=i \pi+2 p_{2} i \pi, \quad p_{1}, p_{2} \in \mathbb{Z}$,
and

$$
\ln \left(z_{1} z_{2}\right)=i \frac{3 \pi}{2}+2 p_{3} i \pi, \quad p_{3} \in \mathbb{Z}
$$

but p_{3} is not necessarily equal to $p_{1}+p_{2}$.

Properties of the logarithm (continued)

- Moreover, with $z_{1}=i=\exp (i \pi / 2)$ and $z_{2}=-1=\exp (i \pi)$,

$$
\operatorname{Ln}\left(z_{1}\right)=i \frac{\pi}{2}, \quad \operatorname{Ln}\left(z_{2}\right)=i \pi
$$

and

$$
\operatorname{Ln}\left(z_{1} z_{2}\right)=-i \frac{\pi}{2} \neq \operatorname{Ln}\left(z_{1}\right)+\operatorname{Ln}\left(z_{2}\right)
$$

- However, every branch of the logarithm (i.e. each expression of $\ln (z)$ with a given value of $p \in \mathbb{Z})$ is analytic except at the branch point $z=0$ and on the branch cut of $\ln (z)$. In the domain of analyticity of $\ln (z)$,

$$
\begin{equation*}
\frac{d}{d z}(\ln (z))=\frac{1}{z} \tag{5}
\end{equation*}
$$

5. Complex power function

- If $z \neq 0$ and c are complex numbers, we define

$$
\begin{aligned}
z^{c} & =\exp (c \ln (z)) \\
& =\exp (c \operatorname{Ln}(z)+2 p c \pi i), \quad p \in \mathbb{Z}
\end{aligned}
$$

- For $c \in \mathbb{C}$, this is again a multi-valued function, and we define the principal value of z^{c} as

$$
z^{c}=\exp (c \operatorname{Ln}(z))
$$

