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1. Complex exponential

The exponential of a complex number z = x + iy is defined as

exp(z) = exp(x + iy) = exp(x) exp(iy)

= exp(x) (cos(y) + i sin(y)) .

As for real numbers, the exponential function is equal to its
derivative, i.e.

d

dz
exp(z) = exp(z). (1)

The exponential is therefore entire.

You may also use the notation exp(z) = ez .
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Properties of the exponential function

The exponential function is periodic with period 2πi : indeed,
for any integer k ∈ Z,

exp(z + 2kπi) = exp(x) (cos(y + 2kπ) + i sin(y + 2kπ))

= exp(x) (cos(y) + i sin(y)) = exp(z).

Moreover,

| exp(z)| = | exp(x)| | exp(iy)| = exp(x)
√(

cos2(y) + sin2(y)
)

= exp(x) = exp (�e(z)) .

As with real numbers,

exp(z1 + z2) = exp(z1) exp(z2);

exp(z) �= 0.
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2. Trigonometric functions

The complex sine and cosine functions are defined in a way
similar to their real counterparts,

cos(z) =
e iz + e−iz

2
, sin(z) =

e iz − e−iz

2i
. (2)

The tangent, cotangent, secant and cosecant are defined as
usual. For instance,

tan(z) =
sin(z)

cos(z)
, sec(z) =

1

cos(z)
, etc.
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Trigonometric functions (continued)

The rules of differentiation that you are familiar with still
work.

Example:
Use the definitions of cos(z) and sin(z),

cos(z) =
e iz + e−iz

2
, sin(z) =

e iz − e−iz

2i
.

to find (cos(z))′ and (sin(z))′.

Show that Euler’s formula also works if θ is complex.
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3. Hyperbolic functions

The complex hyperbolic sine and cosine are defined in a way
similar to their real counterparts,

cosh(z) =
ez + e−z

2
, sinh(z) =

ez − e−z

2
. (3)

The hyperbolic sine and cosine, as well as the sine and cosine,
are entire.

We have the following relations

cosh(iz) = cos(z), sinh(iz) = i sin(z),

(4)

cos(iz) = cosh(z), sin(iz) = i sinh(z).
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4. Complex logarithm

The logarithm w of z �= 0 is defined as

ew = z .

Since the exponential is 2πi-periodic, the complex logarithm is
multi-valued.

Solving the above equation for w = wr + iwi and z = re iθ

gives

ew = ewr e iwi = re iθ =⇒
{

ewr = r
wi = θ + 2pπ

,

which implies wr = ln(r) and wi = θ + 2pπ, p ∈ Z.

Therefore,
ln(z) = ln(|z |) + i arg(z).
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Principal value of ln(z)

We define the principal value of ln(z), Ln(z), as the value of
ln(z) obtained with the principal value of arg(z), i.e.

Ln(z) = ln(|z |) + i Arg(z).

Note that Ln(z)
jumps by −2πi when
one crosses the
negative real axis
from above.

y

x0

Arg(z)=π

1

1

Arg(z)–> - π

The negative real axis is called a branch cut of Ln(z).
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Principal value of ln(z) (continued)

Recall that
Ln(z) = ln(|z |) + i Arg(z).

Since Arg(z) = arg(z) + 2pπ, p ∈ Z, we therefore see that
ln(z) is related to Ln(z) by

ln(z) = Ln(z) + i 2pπ, p ∈ Z.

Examples:
Ln(2) = ln(2), but ln(2) = ln(2) + i 2pπ, p ∈ Z.

Find Ln(−4) and ln(−4).

Find ln(10 i).
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Properties of the logarithm

You have to be careful when you use identities like

ln(z1z2) = ln(z1)+ln(z2), or ln

(
z1

z2

)
= ln(z1)−ln(z2).

They are only true up to multiples of 2πi .

For instance, if z1 = i = exp(iπ/2) and z2 = −1 = exp(iπ),

ln(z1) = i
π

2
+ 2p1iπ, ln(z2) = iπ + 2p2iπ, p1, p2 ∈ Z,

and

ln(z1 z2) = i
3π

2
+ 2p3iπ, p3 ∈ Z,

but p3 is not necessarily equal to p1 + p2.
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Properties of the logarithm (continued)

Moreover, with z1 = i = exp(iπ/2) and z2 = −1 = exp(iπ),

Ln(z1) = i
π

2
, Ln(z2) = i π,

and
Ln(z1 z2) = −i

π

2
�= Ln(z1) + Ln(z2).

However, every branch of the logarithm (i.e. each expression
of ln(z) with a given value of p ∈ Z) is analytic except at the
branch point z = 0 and on the branch cut of ln(z). In the
domain of analyticity of ln(z),

d

dz
(ln(z)) =

1

z
. (5)
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5. Complex power function

If z �= 0 and c are complex numbers, we define

zc = exp (c ln(z))

= exp (c Ln(z) + 2pcπi) , p ∈ Z.

For c ∈ C, this is again a multi-valued function, and we define
the principal value of zc as

zc = exp (c Ln(z))
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