Complex Numbers

Concept tests

Every nonnegative real number has a real square root

1. True
2. False

For any complex number z, the product $z \cdot \bar{z}$ is a real number
, 1. True
2. False

It is possible for a function of a complex variable to be multi-valued
, 1. True
2. False

The square of any complex number is a real number

1. True
, 2. False

If f is a polynomial and $f(z)=i$, then $f(\bar{z})=i$

1. True
, 2. False

If $z=x+i y$, where x and y are positive, then $z^{2}=a+i b$ has a and b positive.

1. True
\checkmark 2. False

2. True
3. False
.

Every nonzero complex number z can be written in the form $\mathrm{z}=\mathrm{e}^{\mathrm{w}}$, where w is another complex number.

Which of the statements below describes the region of the complex plane corresponding

$$
\text { to }|z-i| \leq 9 \text { ? }
$$

1. The circle of radius 3 centered at i
2. The disk of radius 9 centered at the origin
3. The disk of radius 9 centered at i

If z is a complex number, then e^{iz} has modulus 1

1. True
\checkmark 2. False

The product of two analytic functions is analytic

1. True
2. False

Any solution of the equation $\mathrm{z}^{4}-16=0$ may be written in the form $\mathrm{z}=2 \mathrm{w}$, where w is a
fourth root of unity

1. True
2. False

The curve of equation $e^{(a+i b) t}$, where a and b are given real numbers and t varies in [0,1], is a piece of a spiral in the complex plane
, 1. True
2. False

The curve of equation $e^{a+i b}$, where a and b are real numbers, a varies and b is fixed, is a straight line in the complex plane

1. True
2. False

If a function has a limit as $z \rightarrow z_{0}$, then the limit does not depend on the path followed
by z as it approaches z_{o}

1. True
\checkmark 2. False
2. True
3. False

Is the function $|\mathrm{z}|^{2}$ entire?

1. Yes
, 2. No

The function $|z|^{2}$ is analytic at the origin

1. True
, 2. False

2. True
3. False

The graph below shows the modulus of a function of a complex variable $f(z)$. Is f entire?

1. Yes
2. No
3. Not enough information to decide

The graph below shows a contour plot of two functions $u(x, y)$ and $v(x, y)$. Is the function $f(z)=u(x, y)+i v(x, y)$ analytic?

1. Yes

V2. No

3. Not enough information to decide

