Complex Numbers - Check your understanding

Can you explain where De Moivre's formula comes from? Can you use this formula to for instance find $\cos (n \theta)$ in terms of $\cos (\theta)$ and $\sin (\theta)$?
\square Can you list all of the multi-valued functions we discussed in class?
\square Can you use the definitions of cosine and sine to show that $\cos ^{2}(z)+\sin ^{2}(z)=1$?
Given the formula for $\ln (\mathrm{z})$, can you show that $\mathrm{e}^{\ln (z)}=z$? Is $\ln \left(\mathrm{e}^{z}\right)$ equal to z ? Why or why not?

Does the formula $\ln (4)=\ln (4)+2$ i $p \pi$ mean that $p=0$?
\square Can you explain where the Cauchy-Riemann equations come from? Can you show how they are derived?

Do you know the difference between the following statements: " f is differentiable at $z=z_{0} ", " f$ is analytic at $z=z_{0} ", " f$ is entire"?
\square Can you give an example of a function which is not entire? Can you give an example of a function which is not analytic at $z=0$, but analytic elsewhere?
\square Can you give an example of a function which is not analytic at $z=i$, but analytic elsewhere?
\square If f is analytic, what can you say about the contours of the real and imaginary parts of f ? Why?
\square If f is entire, what can you say about the modulus of f ? Why?
\square Can you explain why the real and imaginary parts of an analytic function satisfy Laplace's equation?
\square Can you say what the periods of $\mathrm{e}^{z}, \cos (z), \sin (z), \cosh (z), \sinh (z)$, are?
\square What happens on a branch cut of the logarithm?
\square Review the concept tests we did in class.

