Complex Numbers – Check your understanding

 \Box Can you explain where De Moivre's formula comes from? Can you use this formula to for instance find $\cos(n \theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$?

□ Can you list all of the multi-valued functions we discussed in class?

 \Box Can you use the definitions of cosine and sine to show that $\cos^2(z) + \sin^2(z) = 1$?

 \Box Given the formula for ln(z), can you show that $e^{\ln(z)} = z$? Is ln(e^z) equal to z? Why or why not?

 \Box Does the formula $\ln(4) = \ln(4) + 2 i p \pi$ mean that p = 0?

□ Can you explain where the Cauchy-Riemann equations come from? Can you show how they are derived?

 \Box Do you know the difference between the following statements: "*f* is differentiable at $z = z_0$ ", "*f* is analytic at $z = z_0$ ", "*f* is entire"?

 \Box Can you give an example of a function which is not entire? Can you give an example of a function which is not analytic at z = 0, but analytic elsewhere?

 \Box Can you give an example of a function which is not analytic at z = i, but analytic elsewhere?

 \Box If *f* is analytic, what can you say about the contours of the real and imaginary parts of *f*? Why?

 \Box If *f* is entire, what can you say about the modulus of *f*? Why?

□ Can you explain why the real and imaginary parts of an analytic function satisfy Laplace's equation?

 \Box Can you say what the periods of e^z , $\cos(z)$, $\sin(z)$, $\cosh(z)$, $\sinh(z)$, are?

□ What happens on a branch cut of the logarithm?

□ Review the concept tests we did in class.