Expansions

Clicker questions

Does the following series converge for $x=1 / 2$?

$$
\sum_{n=0}^{\infty} x^{n}
$$

1. Yes
2. No

Does the following series converge for $x=3$?

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

, 1. Yes
2. No

What is the radius of convergence of the following series?

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

1. O
2. 1
, 3. ∞

What is the function $p(\mathrm{x})$ for the following Sturm-Liouville equation?

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

1. $2 x$
2. $1-x$
, 3. $1-x^{2}$

What is the eigenvalue λ for the following Sturm-Liouville equation?

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

1. 1
2. 0
3. n
4. $n(n+1)$
5. $-n(n+1)$

What is the function $q(\mathrm{x})$ for the following Sturm-Liouville equation?

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

1. $2 x$
2. 0
3. $1-x^{2}$

Find the coefficient of the orthonormal expansion of [1:llll $\left.1^{2} 3\right]^{\mathrm{T}}$ on the following orthonormal basis

$$
\left\{\left[\begin{array}{lll}
4 / 5 & 3 / 5 & \mathrm{o}
\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}
-3 / 5 & 4 / 5 & \mathrm{o}
\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}
\mathrm{o} & \mathrm{o} & 1
\end{array}\right]^{\mathrm{T}}\right\}
$$

1. $4 / 5,8 / 5,3$
2. 2, 1, 3
3. $1,2,3$

Find the coefficient of the orthogonal expansion of $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ on the following orthogonal basis $\left.\left\{\begin{array}{lll}4 & 3 & o\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}-3 & 4 & \mathrm{o}\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}\mathrm{O} & \mathrm{o} & 1\end{array}\right]^{\mathrm{T}}\right\}$

1. $4 / 5,8 / 5,3$

V2. $2 / 5,1 / 5,3$
3. $2 / 5,1 / 5,3 / 5$

Find the coefficient of the orthogonal expansion of [4 56] ${ }^{\mathrm{T}}$ on the following orthogonal basis $\left\{\begin{array}{lll}4 & 3 & o\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}-3 & 4 & 0\end{array}\right]^{\mathrm{T}}$, $\left.\left[\begin{array}{llll}\mathrm{O} & 0\end{array}\right]^{\mathrm{T}}\right\}$

1. $31 / 25,8 / 25,6$
2. $31,8,6$
3. $31 / 5,8 / 5,6$

