Chapter 5: Expansions

Sections 5.1, 5.2, 5.7 \& 5.8

1. Power series solutions of ordinary differential equations

- A power series about $x=x_{0}$ is an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

- This series is convergent (or converges) if the sequence of partial sums

$$
S_{n}(x)=\sum_{i=0}^{n} a_{i}\left(x-x_{0}\right)^{i}
$$

has a (finite) limit, $S(x)$, as $n \rightarrow \infty$. In such a case, we write

$$
S(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

- If the series is not convergent, we say that it is divergent, or that it diverges.

Radius of convergence

- One can show (Abel's lemma) that if a power series converges for $\left|x-x_{0}\right|=R_{0}$, then it converges absolutely for all x 's such that $\left|x-x_{0}\right|<R_{0}$.
- This allows us to define the radius of convergence R of the series as follows:
- If the series only converges for $x=x_{0}$, then $R=0$.
- If the series converges for all values of x, then $R=\infty$.
- Otherwise, R is the largest number such that the series converges for all x 's that satisfy $\left|x-x_{0}\right|<R$.
- A useful test for convergence is the ratio test:

$$
R=\frac{1}{K}, \text { where } K=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|,
$$

where K could be infinite or zero, and it is assumed that the a_{n} 's are non-zero.

Power series as solutions to ODE's

- Taylor series are power series.
- A function f is analytic at a point $x=x_{0}$ if it can locally be written as a convergent power series, i.e. if there exists $R>0$ such that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

for all x 's that satisfy $\left|x-x_{0}\right|<R$.

- If the functions p / h and q / h in the differential equation

$$
\begin{equation*}
h(x) y^{\prime \prime}+p(x) y^{\prime}+q(x)=0 \tag{1}
\end{equation*}
$$

are analytic at $x=x_{0}$, then every solution of (1) is analytic at $x=x_{0}$.

Power series as solutions to ODE's (continued)

- We can therefore look for solutions to (1) in the form of a power series.
- Example: Solve $y^{\prime \prime}-2 y^{\prime}+y=0$ by the power series method.
- Many special functions are defined as power series solutions to differential equations like (1).
- Legendre polynomials are solutions to Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ where n is a non-negative integer.
- Bessel functions are solutions to Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$ with $\nu \in \mathbb{C}$.

2. Sturm-Liouville problems

- A regular Sturm-Liouville problem is an eigenvalue problem of the form

$$
\begin{equation*}
L y=-\lambda \sigma(x) y, \quad L y=\left[p(x) y^{\prime}\right]^{\prime}+q(x) y \tag{2}
\end{equation*}
$$

p, q and σ are real continuous functions on $[a, b], a, b \in \mathbb{R}$, $p(x)>0$ and $\sigma(x)>0$ on $[a, b]$, and $y(x)$ is square-integrable on $[a, b]$ and satisfies given boundary conditions.

- In what follows, we will use separated boundary conditions

$$
\begin{equation*}
C_{1} y(a)+C_{2} y^{\prime}(a)=0, \quad C_{3} y(b)+C_{4} y^{\prime}(b)=0 \tag{3}
\end{equation*}
$$

- An eigenvalue of the Sturm-Liouville problem is a number λ for which there exists an eigenfunction $y(x) \neq 0$ that satisfies (2) and (3).

Sturm-Liouville problems (continued)

- One can show that with separated boundary conditions, all eigenvalues of the Sturm-Liouville problem are real (assuming they exist).
- In such a case, eigenfunctions associated with different eigenvalues are orthogonal (with respect to the weight function σ).
- Two functions $y_{1}(x)$ and $y_{2}(x)$ are orthogonal with respect to the weight function $\sigma(\sigma(x)>0$ on $[a, b])$ if

$$
<y_{1}, y_{2}>\equiv \int_{a}^{b} y_{1}(x) y_{2}(x) \sigma(x) d x=0
$$

Sturm-Liouville problems (continued)

- Legendre's and Bessel's equations are examples of singular Sturm-Liouville problems.
- Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ can be written as

$$
\left[p(x) y^{\prime}\right]^{\prime}+q(x) y=-\lambda y
$$

where $p(x)=1-x^{2}, q(x)=0$ and $\lambda=n(n+1)$. In this case there are no boundary conditions and $[a, b]=[-1,1]$.

- Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$ can be written in the form (2) by setting $p(x)=\sigma(x)=x, \lambda=1$, and $q(x)=-\nu^{2} / x$. In this case, $[a, b]=[0, R], R>0$ and $y(x)$ is required to vanish at $x=R$.

3. Orthogonal eigenfunction expansions

- Recall that if A is a square $n \times n$ matrix with real entries, then the (genuine and generalized) eigenvectors of A, $U_{1}, U_{2}, \cdots, U_{n}$, form a basis of \mathbb{R}^{n}.
- This means that every vector $X \in \mathbb{R}^{n}$ can be written in the form

$$
\begin{equation*}
X=a_{1} U_{1}+a_{2} U_{2}+\cdots+a_{n} U_{n} \tag{4}
\end{equation*}
$$

where the coefficients a_{i} are uniquely determined.

- Moreover, if the U_{i} 's are orthonormal (i.e. orthogonal and of norm one), then each coefficient a_{i} can be found by taking the dot product of X with U_{i}, i.e. $a_{i}=<X, U_{i}>$.
- In this case, (4) is an orthogonal expansion of X on the eigenvectors of A.

Orthogonal eigenfunction expansions (continued)

- Similarly, there exist special linear differential operators, such as Sturm-Liouville operators, whose eigenfunctions form a complete orthonormal basis for a space of functions satisfying given boundary conditions.
- We can then use such a complete orthonormal basis, $\left\{y_{1}, y_{2}, \cdots\right\}$, to write any function in the space as a uniquely determined linear combination of the basis functions. Such an expansion is called an orthonormal expansion or a generalized Fourier series.
- In such a case, for every function f in the space, we can write

$$
f(x)=\sum_{i=1}^{\infty} a_{i} y_{i}(x), \quad a_{i}=<f, y_{i}>, \quad\left\|y_{i}\right\|=1
$$

Trigonometric series

- Trigonometric series are the most important example of Fourier series.
- Consider the Sturm-Liouville problem with periodic boundary conditions $(p(x)=1, q(x)=0, \sigma(x)=1)$,

$$
y^{\prime \prime}+\lambda y=0, \quad y(\pi)=y(-\pi), \quad y^{\prime}(\pi)=y^{\prime}(-\pi)
$$

- The eigenfunctions are $1, \cos (x), \sin (x), \cos (2 x)$, $\sin (2 x), \quad \cdots, \quad \cos (m x), \quad \sin (m x), \quad \cdots$, and correspond to the eigenvalues $0,1,1,4,4, \cdots, m^{2}, m^{2}, \cdots$.
- The above eigenfunctions are orthogonal but not of norm one. They can be made orthonormal by dividing each eigenfunction by its norm. They form a complete basis of the space of square integrable functions on $[-\pi, \pi]$.

