Chapter 5: Expansions Sections 5.1, 5.2, 5.7 & 5.8

Chapter 5: Expansions

1. Power series solutions of ordinary differential equations

• A power series about $x = x_0$ is an infinite series of the form

$$\sum_{n=0}^{\infty}a_n(x-x_0)^n.$$

• This series is convergent (or converges) if the sequence of partial sums

$$S_n(x) = \sum_{i=0}^n a_i (x - x_0)^i$$

has a (finite) limit, S(x), as $n \to \infty$. In such a case, we write

$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

• If the series is not convergent, we say that it is divergent, or that it diverges.

Radius of convergence

- One can show (Abel's lemma) that if a power series converges for $|x x_0| = R_0$, then it converges absolutely for all x's such that $|x x_0| < R_0$.
- This allows us to define the radius of convergence *R* of the series as follows:
 - If the series only converges for $x = x_0$, then R = 0.
 - If the series converges for all values of x, then $R = \infty$.
 - Otherwise, R is the largest number such that the series converges for all x's that satisfy $|x x_0| < R$.
- A useful test for convergence is the ratio test:

$$R = rac{1}{K}$$
, where $K = \lim_{n \to \infty} \left| rac{a_{n+1}}{a_n} \right|$,

where K could be infinite or zero, and it is assumed that the a_n 's are non-zero.

Power series Radius of convergence Power series as solutions to ODE's

Power series as solutions to ODE's

- Taylor series are power series.
- A function f is analytic at a point x = x₀ if it can locally be written as a convergent power series, i.e. if there exists R > 0 such that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

for all x's that satisfy $|x - x_0| < R$.

• If the functions p/h and q/h in the differential equation

$$h(x)y'' + p(x)y' + q(x) = 0$$
 (1)

are analytic at $x = x_0$, then every solution of (1) is analytic at $x = x_0$.

Power series as solutions to ODE's (continued)

- We can therefore look for solutions to (1) in the form of a power series.
- **Example:** Solve y'' 2y' + y = 0 by the power series method.
- Many special functions are defined as power series solutions to differential equations like (1).
 - Legendre polynomials are solutions to Legendre's equation $(1 x^2)y'' 2xy' + n(n+1)y = 0$ where *n* is a non-negative integer.
 - Bessel functions are solutions to Bessel's equation $x^2y'' + xy' + (x^2 \nu^2)y = 0$ with $\nu \in \mathbb{C}$.

Sturm-Liouville problems Orthogonality of eigenfunctions Examples

2. Sturm-Liouville problems

• A regular Sturm-Liouville problem is an eigenvalue problem of the form

$$Ly = -\lambda \sigma(x) y,$$
 $Ly = [p(x)y']' + q(x)y,$ (2)

p, q and σ are real continuous functions on [a, b], $a, b \in \mathbb{R}$, p(x) > 0 and $\sigma(x) > 0$ on [a, b], and y(x) is square-integrable on [a, b] and satisfies given boundary conditions.

• In what follows, we will use separated boundary conditions

$$C_1y(a) + C_2y'(a) = 0,$$
 $C_3y(b) + C_4y'(b) = 0.$ (3)

 An eigenvalue of the Sturm-Liouville problem is a number λ for which there exists an eigenfunction y(x) ≠ 0 that satisfies
(2) and (3).

Sturm-Liouville problems (continued)

- One can show that with separated boundary conditions, all eigenvalues of the Sturm-Liouville problem are real (assuming they exist).
- In such a case, eigenfunctions associated with different eigenvalues are orthogonal (with respect to the weight function σ).
- Two functions y₁(x) and y₂(x) are orthogonal with respect to the weight function σ (σ(x) > 0 on [a, b]) if

$$< y_1, y_2 > \equiv \int_a^b y_1(x) y_2(x) \sigma(x) dx = 0.$$

Sturm-Liouville problems (continued)

• Legendre's and Bessel's equations are examples of singular Sturm-Liouville problems.

• Legendre's equation $(1 - x^2)y'' - 2xy' + n(n+1)y = 0$ can be written as

$$[p(x)y']' + q(x)y = -\lambda y$$

where $p(x) = 1 - x^2$, q(x) = 0 and $\lambda = n(n+1)$. In this case there are no boundary conditions and [a, b] = [-1, 1].

 Bessel's equation x²y" + xy' + (x² - ν²)y = 0 can be written in the form (2) by setting p(x) = σ(x) = x, λ = 1, and q(x) = -ν²/x. In this case, [a, b] = [0, R], R > 0 and y(x) is required to vanish at x = R.

Finite-dimensional expansions Complete orthonormal bases Trigonometric series

3. Orthogonal eigenfunction expansions

- Recall that if A is a square n × n matrix with real entries, then the (genuine and generalized) eigenvectors of A, U₁, U₂, · · · , U_n, form a basis of Rⁿ.
- This means that every vector $X \in \mathbb{R}^n$ can be written in the form

$$X = a_1 U_1 + a_2 U_2 + \dots + a_n U_n,$$
 (4)

where the coefficients a_i are uniquely determined.

- Moreover, if the U_i's are orthonormal (i.e. orthogonal and of norm one), then each coefficient a_i can be found by taking the dot product of X with U_i, i.e. a_i =< X, U_i >.
- In this case, (4) is an orthogonal expansion of X on the eigenvectors of A.

Orthogonal eigenfunction expansions (continued)

- Similarly, there exist special linear differential operators, such as Sturm-Liouville operators, whose eigenfunctions form a complete orthonormal basis for a space of functions satisfying given boundary conditions.
- We can then use such a complete orthonormal basis, {y₁, y₂, ...}, to write any function in the space as a uniquely determined linear combination of the basis functions. Such an expansion is called an orthonormal expansion or a generalized Fourier series.
- In such a case, for every function f in the space, we can write

$$f(x) = \sum_{i=1}^{\infty} a_i y_i(x), \qquad a_i = < f, y_i >, \qquad ||y_i|| = 1.$$

Finite-dimensional expansions Complete orthonormal bases Trigonometric series

Trigonometric series

- Trigonometric series are the most important example of Fourier series.
- Consider the Sturm-Liouville problem with periodic boundary conditions (p(x) = 1, q(x) = 0, $\sigma(x) = 1$),

$$y'' + \lambda y = 0,$$
 $y(\pi) = y(-\pi),$ $y'(\pi) = y'(-\pi).$

- The eigenfunctions are 1, cos(x), sin(x), cos(2x), sin(2x), ..., cos(mx), sin(mx), ..., and correspond to the eigenvalues 0, 1, 1, 4, 4, ..., m², m²,
- The above eigenfunctions are orthogonal but not of norm one. They can be made orthonormal by dividing each eigenfunction by its norm. They form a complete basis of the space of square integrable functions on [-π, π].