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1. Power series solutions of ordinary differential equations

A power series about x = x0 is an infinite series of the form
∞∑

n=0

an(x − x0)
n.

This series is convergent (or converges) if the sequence of
partial sums

Sn(x) =
n∑

i=0

ai (x − x0)
i

has a (finite) limit, S(x), as n → ∞. In such a case, we write

S(x) =
∞∑

n=0

an(x − x0)
n.

If the series is not convergent, we say that it is divergent, or
that it diverges.
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Radius of convergence

One can show (Abel’s lemma) that if a power series converges
for |x − x0| = R0, then it converges absolutely for all x ’s such
that |x − x0| < R0.

This allows us to define the radius of convergence R of the
series as follows:

If the series only converges for x = x0, then R = 0.
If the series converges for all values of x , then R = ∞.
Otherwise, R is the largest number such that the series
converges for all x ’s that satisfy |x − x0| < R.

A useful test for convergence is the ratio test:

R =
1

K
, where K = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,

where K could be infinite or zero, and it is assumed that the
an’s are non-zero.
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Power series as solutions to ODE’s

Taylor series are power series.

A function f is analytic at a point x = x0 if it can locally be
written as a convergent power series, i.e. if there exists R > 0
such that

f (x) =
∞∑

n=0

f (n)(x0)

n!
(x − x0)

n

for all x ’s that satisfy |x − x0| < R.

If the functions p/h and q/h in the differential equation

h(x)y ′′ + p(x)y ′ + q(x) = 0 (1)

are analytic at x = x0, then every solution of (1) is analytic at
x = x0.
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Power series as solutions to ODE’s (continued)

We can therefore look for solutions to (1) in the form of a
power series.

Example: Solve y ′′ − 2y ′ + y = 0 by the power series method.

Many special functions are defined as power series solutions to
differential equations like (1).

Legendre polynomials are solutions to Legendre’s equation
(1 − x2)y ′′ − 2xy ′ + n(n + 1)y = 0 where n is a non-negative
integer.

Bessel functions are solutions to Bessel’s equation
x2y ′′ + xy ′ + (x2 − ν2)y = 0 with ν ∈ C.
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2. Sturm-Liouville problems

A regular Sturm-Liouville problem is an eigenvalue problem of
the form

L y = −λ σ(x) y , L y =
[
p(x)y ′]′ + q(x)y , (2)

p, q and σ are real continuous functions on [a, b], a, b ∈ R,
p(x) > 0 and σ(x) > 0 on [a, b], and y(x) is square-integrable
on [a, b] and satisfies given boundary conditions.

In what follows, we will use separated boundary conditions

C1y(a) + C2y
′(a) = 0, C3y(b) + C4y

′(b) = 0. (3)

An eigenvalue of the Sturm-Liouville problem is a number λ
for which there exists an eigenfunction y(x) �= 0 that satisfies
(2) and (3).
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Sturm-Liouville problems (continued)

One can show that with separated boundary conditions, all
eigenvalues of the Sturm-Liouville problem are real (assuming
they exist).

In such a case, eigenfunctions associated with different
eigenvalues are orthogonal (with respect to the weight
function σ).

Two functions y1(x) and y2(x) are orthogonal with respect to
the weight function σ (σ(x) > 0 on [a, b]) if

< y1, y2 >≡
∫ b

a
y1(x) y2(x) σ(x) dx = 0.
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Sturm-Liouville problems (continued)

Legendre’s and Bessel’s equations are examples of singular
Sturm-Liouville problems.

Legendre’s equation (1 − x2)y ′′ − 2xy ′ + n(n + 1)y = 0 can
be written as [

p(x)y ′]′ + q(x)y = −λy

where p(x) = 1 − x2, q(x) = 0 and λ = n(n + 1). In this case
there are no boundary conditions and [a, b ] = [−1, 1].

Bessel’s equation x2y ′′ + xy ′ + (x2 − ν2)y = 0 can be written
in the form (2) by setting p(x) = σ(x) = x , λ = 1, and
q(x) = −ν2/x . In this case, [a, b ] = [0, R ], R > 0 and y(x)
is required to vanish at x = R.
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3. Orthogonal eigenfunction expansions

Recall that if A is a square n × n matrix with real entries, then
the (genuine and generalized) eigenvectors of A,
U1, U2, · · · , Un, form a basis of R

n.

This means that every vector X ∈ R
n can be written in the

form
X = a1U1 + a2U2 + · · · + anUn, (4)

where the coefficients ai are uniquely determined.

Moreover, if the Ui ’s are orthonormal (i.e. orthogonal and of
norm one), then each coefficient ai can be found by taking
the dot product of X with Ui , i.e. ai =< X , Ui >.

In this case, (4) is an orthogonal expansion of X on the
eigenvectors of A.
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Orthogonal eigenfunction expansions (continued)

Similarly, there exist special linear differential operators, such
as Sturm-Liouville operators, whose eigenfunctions form a
complete orthonormal basis for a space of functions satisfying
given boundary conditions.

We can then use such a complete orthonormal basis,
{y1, y2, · · · }, to write any function in the space as a uniquely
determined linear combination of the basis functions. Such an
expansion is called an orthonormal expansion or a generalized
Fourier series.

In such a case, for every function f in the space, we can write

f (x) =
∞∑
i=1

ai yi (x), ai =< f , yi >, ||yi || = 1.
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Trigonometric series

Trigonometric series are the most important example of
Fourier series.

Consider the Sturm-Liouville problem with periodic boundary
conditions (p(x) = 1, q(x) = 0, σ(x) = 1),

y ′′ + λy = 0, y(π) = y(−π), y ′(π) = y ′(−π).

The eigenfunctions are 1, cos(x), sin(x), cos(2x),
sin(2x), · · · , cos(mx), sin(mx), · · · , and correspond
to the eigenvalues 0, 1, 1, 4, 4, · · · , m2, m2, · · · .
The above eigenfunctions are orthogonal but not of norm one.
They can be made orthonormal by dividing each eigenfunction
by its norm. They form a complete basis of the space of
square integrable functions on [−π, π].
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