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1. Power series solutions of ordinary differential equations

@ A power series about x = Xxp is an infinite series of the form

o0
Z an(x — xp)".
n=0

@ This series is convergent (or converges) if the sequence of

partial sums
n

Sn(x) = ai(x — x)’
i=0
has a (finite) limit, S(x), as n — oo. In such a case, we write

S(x) =) an(x —x0)".
n=0

@ If the series is not convergent, we say that it is divergent, or
that it diverges.
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Radius of convergence

@ One can show (Abel's lemma) that if a power series converges
for |[x — xo| = Ro, then it converges absolutely for all x's such
that |x — xo| < Ro.

@ This allows us to define the radius of convergence R of the
series as follows:
o If the series only converges for x = xp, then R = 0.
e If the series converges for all values of x, then R = oc.
e Otherwise, R is the largest number such that the series
converges for all x's that satisfy |x — x| < R.

@ A useful test for convergence is the ratio test:

dn+1
dn

)

1 :
R = ra where K = nll_>ngo

where K could be infinite or zero, and it is assumed that the
a,'s are non-zero.
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Power series as solutions to ODE'’s

@ Taylor series are power series.

@ A function f is analytic at a point x = Xxp if it can locally be
written as a convergent power series, i.e. if there exists R > 0
such that

(M) (x
Fo =3 0oy

n=0

for all x's that satisfy |x — xp| < R.

@ If the functions p/h and g/h in the differential equation

h(x)y” + p(x)y" +q(x) =0 (1)

are analytic at x = xp, then every solution of (1) is analytic at
X = X0-
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Power series as solutions to ODE'’s (continued)

@ We can therefore look for solutions to (1) in the form of a
power series.

e Example: Solve y"" — 2y’ 4+ y = 0 by the power series method.

@ Many special functions are defined as power series solutions to
differential equations like (1).

e Legendre polynomials are solutions to Legendre's equation
(1 —x2)y” —2xy’ + n(n+ 1)y = 0 where n is a non-negative
integer.

e Bessel functions are solutions to Bessel's equation

x2y" 4+ xy' + (x? — v?)y = 0 with v € C.
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2. Sturm-Liouville problems

@ A regular Sturm-Liouville problem is an eigenvalue problem of
the form

Ly =-Xo(x)y, Ly=[px)y] +ax)y, (2)

p, g and o are real continuous functions on [a, b], a, b € R,
p(x) > 0 and o(x) > 0 on [a, b], and y(x) is square-integrable
on [a, b] and satisfies given boundary conditions.

@ In what follows, we will use separated boundary conditions
Gy(a)+ Gy'(a) =0,  Gy(b)+ Gy'(b)=0.  (3)

@ An eigenvalue of the Sturm-Liouville problem is a number A

for which there exists an eigenfunction y(x) # 0 that satisfies
(2) and (3).
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Sturm-Liouville problems (continued)

@ One can show that with separated boundary conditions, all
eigenvalues of the Sturm-Liouville problem are real (assuming
they exist).

@ In such a case, eigenfunctions associated with different
eigenvalues are orthogonal (with respect to the weight
function o).

@ Two functions y;(x) and y»(x) are orthogonal with respect to
the weight function o (o(x) > 0 on [a, b]) if

b
< y1,¥2 >E/ y1(x) y2(x) o(x) dx = 0.
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Sturm-Liouville problems (continued)

@ Legendre's and Bessel's equations are examples of singular
Sturm-Liouville problems.

o Legendre's equation (1 — x2)y” —2xy’ + n(n+ 1)y = 0 can
be written as
/
[P()Y'] + a(x)y = =My
where p(x) =1 —x2, g(x) =0 and A = n(n+1). In this case
there are no boundary conditions and [a, b] = [-1,1].

@ Bessel's equation x?y" + xy’ + (x?> — v2)y = 0 can be written
in the form (2) by setting p(x) = o(x) = x, A =1, and
q(x) = —v?/x. In this case, [a,b] = [0, R], R > 0 and y(x)
is required to vanish at x = R.
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3. Orthogonal eigenfunction expansions

@ Recall that if A is a square n x n matrix with real entries, then
the (genuine and generalized) eigenvectors of A,
Ui, Uy, -+, Up,, form a basis of R”.

@ This means that every vector X € R" can be written in the
form

X=alU+al,+ -+ ayUp,, (4)
where the coefficients a; are uniquely determined.
@ Moreover, if the U;'s are orthonormal (i.e. orthogonal and of

norm one), then each coefficient a; can be found by taking
the dot product of X with U;, i.e. a; =< X, U; >.

@ In this case, (4) is an orthogonal expansion of X on the
eigenvectors of A.
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Orthogonal eigenfunction expansions (continued)

@ Similarly, there exist special linear differential operators, such
as Sturm-Liouville operators, whose eigenfunctions form a
complete orthonormal basis for a space of functions satisfying
given boundary conditions.

@ We can then use such a complete orthonormal basis,
{y1, 2, -}, to write any function in the space as a uniquely
determined linear combination of the basis functions. Such an
expansion is called an orthonormal expansion or a generalized
Fourier series.

@ In such a case, for every function f in the space, we can write

f(x)= Za;y,-(x), aj =< f,y; >, [lyill = 1.
i=1
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Trigonometric series

@ Trigonometric series are the most important example of
Fourier series.

@ Consider the Sturm-Liouville problem with periodic boundary
conditions (p(x) =1, q(x) =0, o(x) = 1),

y'+dy=0, y(m)=y(-n), y'(x)=y'(-n).

@ The eigenfunctions are 1, cos(x), sin(x), cos(2x),
sin(2x), ---, cos(mx), sin(mx), ---,and correspond
to the eigenvalues 0, 1,1, 4, 4, ---, m?>, m?, ---

@ The above eigenfunctions are orthogonal but not of norm one.
They can be made orthonormal by dividing each eigenfunction
by its norm. They form a complete basis of the space of
square integrable functions on [—m, 7].
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