Name:

□ Check box if you are part of a study group

Notes:

- 1. Show all of your work, present it neatly, and explain what you are doing. In particular, write complete sentences, either using words or mathematical symbols.
- 2. You will only receive credit for the work that is shown.
- 3. It is **more important** to leave out one or two sub-questions and do all of the others in depth, than to do a little bit of each and finish none.
- 4. **Two pages of formulas** for Fourier series and transforms and for Laplace transforms are attached to this exam.
- 5. Question 9 is a bonus question and is worth 10 points.

Question	1	2	3	4	5	6	7	8	Total
Score	/12	/15	/20	/20	/10	/35	/23	/25	/160

1) [12 points] Find all of the values of *z* for which $z^6 = -64$. Show all your work. Give an exact, but simplified, answer for each root.

- 2) Consider the function u(x, y) = sin(x) cosh(y), where x and y are real variables.
 - a) [4 points] Show that the function u(x,y) is harmonic. Show all your work.

b) [8 points] Find a function v(x,y) such that u and v are harmonic conjugates. Explain what you are doing.

c) [3 points] Write u(x,y) + i v(x,y) as a function of z = x + i y. Show all your work.

3) [20 points] Solve the following system of differential equations

$$\begin{cases} \frac{dx_1}{dt} = 3x_1 - x_2\\ \frac{dx_2}{dt} = 8x_1 - 3x_2 \end{cases},$$

with initial conditions $x_1(0) = 2$, $x_2(0) = 3$.

You may use the method of your choice, but you have to show all of your work. If you use Laplace transforms, remember that $\mathcal{L}(e^{at})(s) = \frac{1}{s-a}$.

4) [20 points] Find the Fourier transform of $f(x) = x e^{(-a|x|)}$, where a > 0. Show all your work. 5) [10 points] Consider the following polynomials (they are two Legendre polynomials):

$$P_2(x) = \frac{1}{2}(3x^2 - 1), \quad P_3(x) = \frac{1}{2}(5x^3 - 3x).$$

Calculate the dot product of P_2 and P_3 , and show that these two polynomials are orthogonal. Here, the dot product of two functions u and v is defined as

$$\langle u,v\rangle = \int_{-1}^{1} u(x) v(x) dx.$$

6) [35 points] Solve the heat equation,

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \qquad 0 \le x \le 2, \qquad t \ge 0,$$

with boundary conditions u(0,t) = 0 and u(2,t) = 0, and initial condition $u(x,0) = \sin(\pi x) + 7\sin(2\pi x) - 8\sin(4\pi x)$. Clearly identify all of the steps in solving this equation. Show all your work.

7) Consider the following vectors in \mathbb{R}^3 .

$$U_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, U_{2} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, U_{3} = \begin{bmatrix} 3 \\ 6 \\ -5 \end{bmatrix}.$$

a) [3 points] Show that U_1 , U_2 and U_3 are orthogonal to one another.

b) [10 points] Show that U_1 , U_2 and U_3 form a basis of \mathbb{R}^3 . Explain your reasoning.

 U_3 }. In other words, write X as a linear combination of U_1 , U_2 and U_3 . Show all your work.

- 8) Consider the function $f(x) = e^x$, defined on the interval $-1 \le x \le 1$.
 - a) [17 points] Find the **complex** Fourier series of the function *f*. Show all your work.

b) [8 points] What is the Fourier series of f equal to at x = 1? Explain.

9) **Bonus questions (10 points):** Calculate the Laplace transform of f(t) = tand use this information to find the inverse Laplace transform of $\frac{1}{s^4}$. Generalize your result and find the inverse Laplace transform of $\frac{1}{s^n}$, for n = 2, 3, 4, ...