Chapter 11: Fourier Series

Sections 1-5

1. Fourier series

- We saw before that the set of functions $\{1, \cos (x), \sin (x)$, $\cos (2 x), \sin (2 x), \cdots, \cos (m x), \sin (m x), \cdots\}$, where m is a non-negative integer, forms a complete orthogonal basis of the space of square integrable functions on $[-\pi, \pi]$.
- This means that we can define the Fourier series of any square integrable function on $[-\pi, \pi]$ as

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]
$$

where $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x$ and, for $n \geq 1$,

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \text { and } b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

Convergence of Fourier series

- If f is continuously differentiable on $[-\pi, \pi]$ except at possibly a finite number of points where it has a left-hand and a right-hand derivative, then the partial sum

$$
f_{N}(x)=a_{0}+\sum_{n=1}^{N}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]
$$

with the a_{i} defined above, converges to $f(x)$ as $N \rightarrow \infty$ if f is continuous at x. At a point of discontinuity, the Fourier series converges towards

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right] .
$$

Convergence of Fourier series (continued)

- Examples:
- Calculate the first three non-zero Fourier coefficients of the rectangular wave function

$$
f(x)=\left\{\begin{array}{ll}
-\frac{\pi}{4} & \text { if }-\pi<x \leq 0 \\
\frac{\pi}{4} & \text { if } 0<x \leq \pi
\end{array} \quad \text { and } \quad f(x+2 \pi)=f(x)\right.
$$

- To what value does the above Fourier series converge if
- $x=0$?
- $x=1$?
- $x=\pi$?
- Experiment with the MIT applet called Fourier Coefficients.
- Gibbs phenomenon: Near a point of discontinuity x_{0}, the partial sums $f_{N}(x)$ exhibits oscillations which, for small values of N, are noticeable even far from x_{0}. As $N \rightarrow \infty$, the oscillations get "compressed" near x_{0} but never disappear.

2. Fourier series for $2 L$-periodic functions

- If instead of being 2π-periodic, the function f has period $2 L$, we can obtain its Fourier series by re-scaling the variable x.
- Indeed, let $g(v)=f\left(\frac{v L}{\pi}\right)$. Then, g is 2π-periodic and one can write down its Fourier series as before. Going back to the x-variable, one obtains

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \frac{\pi x}{L}\right)+b_{n} \sin \left(n \frac{\pi x}{L}\right)\right]
$$

where $a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x$ and, for $n \geq 1$,
$a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(n \frac{\pi x}{L}\right) d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(n \frac{\pi x}{L}\right) d x$.

3. Even and odd functions

From the above formula, it is easy to see that

- If f is even, then the b_{n} 's are all zero, and the Fourier series of f is a Fourier cosine series, i.e.

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \frac{\pi x}{L}\right)\right]
$$

Its non-zero coefficients are given by

$$
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(n \frac{\pi x}{L}\right) d x .
$$

- Similarly, if f is odd, then the a_{n} 's are all zero, and the Fourier series of f is a Fourier sine series,

$$
f(x)=\sum_{n=1}^{\infty}\left[b_{n} \sin \left(n \frac{\pi x}{L}\right)\right], \quad b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(n \frac{\pi x}{L}\right) d x
$$

4. Complex form of the Fourier series

- The Fourier series of a function f,

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \frac{\pi x}{L}\right)+b_{n} \sin \left(n \frac{\pi x}{L}\right)\right],
$$

can be re-written in complex form as

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(i n \frac{\pi x}{L}\right)
$$

where the complex coefficients c_{n} are given by

$$
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) \exp \left(-i n \frac{\pi x}{L}\right) d x, \quad n=0, \pm 1, \pm 2, \cdots .
$$

5. Half-range expansions

- Sometimes, if one only needs a Fourier series for a function defined on the interval $[0, L]$, it may be preferable to use a sine or cosine Fourier series instead of a regular Fourier series.
- This can be accomplished by extending the definition of the function in question to the interval $[-L, 0]$ so that the extended function is either even (if one wants a cosine series) or odd (if one wants a sine series).
- Such Fourier series are called half-range expansions.
- Example: Find the half-range sine and cosine expansions of the function $f(x)=1$ on the interval $[0,1]$.

6. Forced oscillations

- Consider the forced and damped oscillator described by $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$, where $b^{2}-4 a c<0, b$ is positive and small, and f is a periodic forcing function.
- We know that the general solution to this equation is the sum of a particular solution and the general solution to the homogeneous equation, i.e. $y(x)=y_{h}(x)+y_{p}(x)$.
- Since the equation is linear, the principle of superposition applies. Using Fourier series, we can think of f as a superposition of sines and cosines. As a consequence, if one of the terms in the forcing has a frequency close to the natural frequency of the oscillator, one can expect the solution to be dominated by the corresponding mode.
- See the MIT applet called Harmonic Frequency Response.

