Chapter 11: Fourier Transforms Sections 8 & 9

Chapter 11: Fourier Transforms

1. Fourier transforms

- Consider a function f, which is not necessarily periodic, but absolutely integrable (i.e. $\int_{-\infty}^{\infty} |f(x)| dx < \infty$) and piecewise continuously differentiable on $(-\infty, \infty)$.
- The Fourier transform of *f* is defined as

$$\mathcal{F}(f) = \widehat{f}, \quad \text{where} \quad \widehat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-ikx) \, dx.$$

• The inverse Fourier transform of \hat{f} is defined as

$$\mathcal{F}^{-1}(\widehat{f}) = f$$
, where $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(k) \exp(ikx) dk$.

• The relation $f = \mathcal{F}^{-1}(\mathcal{F}(f))$ reads

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\nu) \exp(ik(x-\nu)) \, d\nu \, dk. \quad (1)$$

Properties of the Fourier transform

- As for Fourier series, Equation (1), i.e. $f(x) = \left(\mathcal{F}^{-1}(\widehat{f})\right)(x)$ is only true at points where f is continuous.
- At a point of discontinuity x_0 of f, the inverse Fourier transform of f converges to the average $\frac{1}{2} [f^+(x_0) + f^-(x_0)]$.
- The Fourier transform is a linear transformation, i.e. if f_1 and f_2 are such that their Fourier transforms exist and if α and β are two arbitrary constants, then

$$\mathcal{F}(\alpha f_1 + \beta f_2) = \alpha \mathcal{F}(f_1) + \beta \mathcal{F}(f_2)$$

• Fourier transform of the derivative. If f and its derivatives are piecewise continuously differentiable and are absolutely integrable on \mathbb{R} , and if $\lim_{x\to\pm\infty} f(x) = 0$, then the Fourier transform of the derivative of f is such that $\widehat{f'}(k) = ik \widehat{f}(k)$.

Convolution

• The convolution of two absolutely integrable functions f and g is denoted by f * g and defined as

$$(f*g)(x) = \int_{-\infty}^{\infty} f(x-t)g(t) dt = \int_{-\infty}^{\infty} f(t)g(x-t) dt.$$

 Convolution theorem. If f and g are both piecewise continuously differentiable and absolutely integrable on R, then the Fourier transform of the convolution of f and g is given by

$$\mathcal{F}(f * g) = \sqrt{2\pi} \mathcal{F}(f) \mathcal{F}(g).$$

Example: Find the Fourier transform of f * g where f(x) = exp(-ax²), a > 0, and g is such that g(x) = exp(-ax) if x > 0 and g(x) = 0 otherwise.

2. Sine and cosine transforms

Consider a piecewise continuously differentiable function f, which is absolutely integrable on \mathbb{R} .

• If *f* is even, then the Fourier transform of *f* can be written as a cosine transform, i.e.

$$\widehat{f}(k) = \widehat{f}_c(k) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(kx) dx,$$

and

$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \widehat{f}_c(k) \cos(kx) \, dk.$$

• Similarly, if f is odd, then the Fourier transform of f is a sine transform, i.e. $\hat{f}(k) = -i \hat{f}_s(k)$, where

$$\widehat{f}_{s}(k) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin(kx) dx, \ f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \widehat{f}_{s}(k) \sin(kx) dk.$$