Chapter 11: Fourier Transforms

Sections 8 \& 9

1. Fourier transforms

- Consider a function f, which is not necessarily periodic, but absolutely integrable (i.e. $\int_{-\infty}^{\infty}|f(x)| d x<\infty$) and piecewise continuously differentiable on $(-\infty, \infty)$.
- The Fourier transform of f is defined as

$$
\mathcal{F}(f)=\widehat{f}, \quad \text { where } \quad \widehat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \exp (-i k x) d x
$$

- The inverse Fourier transform of \widehat{f} is defined as

$$
\mathcal{F}^{-1}(\widehat{f})=f, \quad \text { where } \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{f}(k) \exp (i k x) d k
$$

- The relation $f=\mathcal{F}^{-1}(\mathcal{F}(f))$ reads

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\nu) \exp (i k(x-\nu)) d \nu d k \tag{1}
\end{equation*}
$$

Properties of the Fourier transform

- As for Fourier series, Equation (1), i.e. $f(x)=\left(\mathcal{F}^{-1}(\widehat{f})\right)(x)$ is only true at points where f is continuous.
- At a point of discontinuity x_{0} of f, the inverse Fourier transform of f converges to the average $\frac{1}{2}\left[f^{+}\left(x_{0}\right)+f^{-}\left(x_{0}\right)\right]$.
- The Fourier transform is a linear transformation, i.e. if f_{1} and f_{2} are such that their Fourier transforms exist and if α and β are two arbitrary constants, then

$$
\mathcal{F}\left(\alpha f_{1}+\beta f_{2}\right)=\alpha \mathcal{F}\left(f_{1}\right)+\beta \mathcal{F}\left(f_{2}\right)
$$

- Fourier transform of the derivative. If f and its derivatives are piecewise continuously differentiable and are absolutely integrable on \mathbb{R}, and if $\lim _{x \rightarrow \pm \infty} f(x)=0$, then the Fourier transform of the derivative of f is such that $\widehat{f^{\prime}}(k)=i k \widehat{f}(k)$.

Convolution

- The convolution of two absolutely integrable functions f and g is denoted by $f * g$ and defined as

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-t) g(t) d t=\int_{-\infty}^{\infty} f(t) g(x-t) d t
$$

- Convolution theorem. If f and g are both piecewise continuously differentiable and absolutely integrable on \mathbb{R}, then the Fourier transform of the convolution of f and g is given by

$$
\mathcal{F}(f * g)=\sqrt{2 \pi} \mathcal{F}(f) \mathcal{F}(g)
$$

- Example: Find the Fourier transform of $f * g$ where $f(x)=\exp \left(-a x^{2}\right), a>0$, and g is such that $g(x)=\exp (-a x)$ if $x>0$ and $g(x)=0$ otherwise.

2. Sine and cosine transforms

Consider a piecewise continuously differentiable function f, which is absolutely integrable on \mathbb{R}.

- If f is even, then the Fourier transform of f can be written as a cosine transform, i.e.

$$
\widehat{f}(k)=\widehat{f}_{c}(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (k x) d x
$$

and

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \widehat{f}_{c}(k) \cos (k x) d k
$$

- Similarly, if f is odd, then the Fourier transform of f is a sine transform, i.e. $\widehat{f}(k)=-i \widehat{f}_{s}(k)$, where

$$
\widehat{f}_{s}(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (k x) d x, f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \widehat{f}_{s}(k) \sin (k x) d k
$$

