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1. Definitions

The Laplace transform, L(f ), of a piecewise continuous
function f (defined on [0, ∞)) is given by

L(f )(s) = F (s) =

∫ ∞

0
exp(−s t) f (t) dt.

Clearly, the above integral only converges if f does not grow
too fast at infinity. More precisely, if there exist constants
M > 0 and k ∈ R such that

|f (t)| ≤ M exp(k t)

for t large enough, then the Laplace transform of f exists for
all s > k.

If f has a Laplace transform F , we also say that f is the
inverse Laplace transform of F , and write f = L−1(F ).
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2. Properties of the Laplace transform

The Laplace transform is a linear transformation, i.e. if f1 and
f2 have Laplace transforms, and if α1 and α2 are constants,
then

L (α1f1 + α2f2) = α1L(f1) + α2L(f2).

As for Fourier transforms, the statement

f = L−1 (L(f ))

should be understood in a point-wise fashion only at points
where f is continuous.

Since there is no explicit formula for the inverse Laplace
transform, formal inversion is accomplished by using tables,
shifting t and s, taking derivatives of known Laplace
transforms, or integrating them.
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s-shifting, Laplace transform of derivatives &
antiderivatives

Note: All of the formulas written in what follows implicitly
assume that the various functions used have well-defined
Laplace transforms. One should therefore check that the
corresponding Laplace transforms exist before using these
formulas.

s-shifting formulas

L (
ea t f (t)

)
(s) = F (s − a), ea t f (t) = L−1 (F (s − a)) (t).

Laplace transform of derivatives

L (
f ′

)
(s) = s L(f )(s) − f (0),

L (
f ′′

)
(s) = s2L(f )(s) − s f (0) − f ′(0).
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Laplace transform of derivatives and antiderivatives

More generally,

L
(
f (n)

)
(s) = snL(f )(s)−sn−1f (0)−sn−2f ′(0)−· · ·−f (n−1)(0).

Laplace transform of antiderivatives

L
(∫ t

0
f (τ) dτ

)
(s) =

1

s
L(f )(s),

∫ t

0
f (τ) dτ = L−1

(
1

s
L(f )(s)

)
(t).

Examples:
Find the Laplace transforms of sin(ωt) and cos(ωt).

Find the inverse Laplace transforms of 1/(s(s2 + 1)) and
1/(s2(s2 + 1)).
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Heaviside and delta functions; t-shifting

The Heaviside function (or step function) H(t) is defined as

H(t) =

{
0 if t < 0
1 if t ≥ 0

.

We can calculate that, for a > 0, L (H(t − a)) (s) =
e−as

s
.

More generally, we have the following time-shifting formulas
for a > 0.

L (f (t − a) H(t − a)) (s) = e−asL(f )(s)

f (t − a) H(t − a) = L−1
(
e−asL(f )(s)

)
(t).

The above formulas are useful to calculate the Laplace
transforms of signals that are defined in a piecewise fashion.
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Delta functions

The Dirac delta function (or distribution) is defined as the
limit of the following sequence of narrow top-hat functions,

δ(t) = lim
ε→0

fε(t), fε(t) =

{
1
2ε if |t| ≤ ε
0 otherwise

.

Since

∫ ∞

−∞
fε(t) dt = 1, we also write that

∫ ∞

−∞
δ(t) dt = 1.

More generally, for a “well-behaved” function g , we have∫ ∞

−∞
g(t) δ(t − a) dt = g(a).

For a > 0, this allows us to define the Laplace transform of
δ(t − a) as

L (δ(t − a)) (s) = e−as .
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Differentiation and integration of Laplace transforms

In what follows, we write L(f )(s) as F (s).

Differentiation of Laplace transforms

L (t f (t)) (s) = −F ′(s), L−1
(
F ′(s)

)
(t) = −t f (t).

Integration of Laplace transforms

L
(

f (t)

t

)
(s) =

∫ ∞

s
F (ν) dν,

L−1

(∫ ∞

s
F (ν) dν

)
(t) =

f (t)

t
.

Example: Find the inverse Laplace transform of s/(s2 + 1)2.
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Solve y ′′ + y = t/π, with y(π) = 0 and y ′(π) = 1 + 1/π.

Let f (t) =

{
1
2ε if 1 − ε ≤ t ≤ 1 + ε
0 otherwise

, where ε < 1. Solve

y ′′ + 4y ′ − 5y = f (t) with initial conditions y(0) = 0 and
y ′(0) = 0.

Solve y ′′ + 4y ′ − 5y = δ(t − 1), with initial conditions
y(0) = 0, y ′(0) = 0.

Solve the initial value problem
dX

dt
= AX ,

A =

[ −13 −36
6 17

]
, X (0) =

[
1
0

]
.
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