Chapter 6: Laplace Transforms

1. Definitions

- The Laplace transform, \(\mathcal{L}(f) \), of a piecewise continuous function \(f \) (defined on \([0, \infty)\)) is given by

\[
\mathcal{L}(f)(s) = F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt.
\]

- Clearly, the above integral only converges if \(f \) does not grow too fast at infinity. More precisely, if there exist constants \(M > 0 \) and \(k \in \mathbb{R} \) such that

\[|f(t)| \leq M \exp(kt) \]

for \(t \) large enough, then the Laplace transform of \(f \) exists for all \(s > k \).

- If \(f \) has a Laplace transform \(F \), we also say that \(f \) is the inverse Laplace transform of \(F \), and write \(f = \mathcal{L}^{-1}(F) \).

2. Properties of the Laplace transform

- The Laplace transform is a linear transformation, i.e. if \(f_1 \) and \(f_2 \) have Laplace transforms, and if \(\alpha_1 \) and \(\alpha_2 \) are constants, then

\[
\mathcal{L}(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \mathcal{L}(f_1) + \alpha_2 \mathcal{L}(f_2).
\]

- As for Fourier transforms, the statement

\[
f = \mathcal{L}^{-1}\left(\mathcal{L}(f)\right)
\]

should be understood in a point-wise fashion only at points where \(f \) is continuous.

- Since there is no explicit formula for the inverse Laplace transform, formal inversion is accomplished by using tables, shifting \(t \) and \(s \), taking derivatives of known Laplace transforms, or integrating them.

- Note: All of the formulas written in what follows implicitly assume that the various functions used have well-defined Laplace transforms. One should therefore check that the corresponding Laplace transforms exist before using these formulas.

- \(s \)-shifting formulas

\[
\mathcal{L}\left(e^{at}f(t)\right)(s) = F(s-a), \quad e^{at}f(t) = \mathcal{L}^{-1}(F(s-a))(t).
\]

- Laplace transform of derivatives

\[
\mathcal{L}\left(f'\right)(s) = s \mathcal{L}(f)(s) - f(0),
\]

\[
\mathcal{L}\left(f''\right)(s) = s^2 \mathcal{L}(f)(s) - sf(0) - f'(0).
\]
Laplace transform of derivatives and antiderivatives

- More generally,
 \[\mathcal{L} \left(f^{(n)} \right)(s) = s^n \mathcal{L}(f)(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0). \]

- Laplace transform of antiderivatives
 \[\mathcal{L} \left(\int_0^t f(\tau) \, d\tau \right)(s) = \frac{1}{s} \mathcal{L}(f)(s), \]
 \[\int_0^t f(\tau) \, d\tau = \mathcal{L}^{-1} \left(\frac{1}{s} \mathcal{L}(f)(s) \right)(t). \]

Examples:
- Find the Laplace transforms of \(\sin(\omega t) \) and \(\cos(\omega t) \).
- Find the inverse Laplace transforms of \(1/(s(s^2 + 1)) \) and \(1/(s^2(s^2 + 1)) \).

Heaviside and delta functions; \(t \)-shifting

- The Heaviside function (or step function) \(H(t) \) is defined as
 \[H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \geq 0 \end{cases}. \]

- We can calculate that, for \(a > 0 \),
 \[\mathcal{L}(H(t - a))(s) = \frac{e^{-as}}{s}. \]

- More generally, for \(a > 0 \), we have the following time-shifting formulas
 \[\mathcal{L}(f(t - a)H(t - a))(s) = e^{-as} \mathcal{L}(f)(s) \]
 \[f(t - a)H(t - a) = \mathcal{L}^{-1}(e^{-as} \mathcal{L}(f)(s))(t). \]

- The above formulas are useful to calculate the Laplace transforms of signals that are defined in a piecewise fashion.

Delta functions

- The Dirac delta function (or distribution) is defined as the limit of the following sequence of narrow top-hat functions,
 \[\delta(t) = \lim_{\epsilon \to 0} f_\epsilon(t), \quad f_\epsilon(t) = \begin{cases} \frac{1}{2\epsilon} & \text{if } |t| \leq \epsilon \\ 0 & \text{otherwise} \end{cases}. \]
 Since \(\int_{-\infty}^{\infty} f_\epsilon(t) \, dt = 1 \), we also write that \(\int_{-\infty}^{\infty} \delta(t) \, dt = 1 \).

- More generally, for a “well-behaved” function \(g \), we have
 \[\int_{-\infty}^{\infty} g(t) \delta(t - a) \, dt = g(a). \]

- For \(a > 0 \), this allows us to define the Laplace transform of \(\delta(t - a) \) as
 \[\mathcal{L}(\delta(t - a))(s) = e^{-as}. \]

Differentiation and integration of Laplace transforms

In what follows, we write \(\mathcal{L}(f)(s) \) as \(F(s) \).

- Differentiation of Laplace transforms
 \[\mathcal{L}(t f(t))(s) = -F'(s), \quad \mathcal{L}^{-1}(F'(s))(t) = -t f(t). \]

- Integration of Laplace transforms
 \[\mathcal{L} \left(\int_s^\infty F(\nu) \, d\nu \right)(s) = \frac{f(t)}{t}, \quad \mathcal{L}^{-1} \left(\int_s^\infty F(\nu) \, d\nu \right)(t) = \frac{f(t)}{t}. \]

- Example: Find the inverse Laplace transform of \(s/(s^2 + 1)^2 \).
Applications to ODEs and systems of ODEs

- Solve $y'' + y = t/\pi$, with $y(\pi) = 0$ and $y'(\pi) = 1 + 1/\pi$.

- Let $f(t) = \begin{cases} \frac{1}{2\pi} & \text{if } 1 - \epsilon \leq t \leq 1 + \epsilon \\ 0 & \text{otherwise} \end{cases}$, where $\epsilon < 1$. Solve $y'' + 4y' - 5y = f(t)$ with initial conditions $y(0) = 0$ and $y'(0) = 0$.

- Solve $y'' + 4y' - 5y = \delta(t - 1)$, with initial conditions $y(0) = 0$, $y'(0) = 0$.

- Solve the initial value problem $\frac{dX}{dt} = AX$,

 \[
 A = \begin{bmatrix} -13 & -36 \\ 6 & 17 \end{bmatrix}, \quad X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
 \]