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1. Matrices and vectors

An m × n matrix is an array with m rows and n columns. It is
typically written in the form

A = [aij ] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ ,

where i is the row index and j is the column index.

A column vector is an m × 1 matrix. Similarly, a row vector is
a 1 × n matrix.

The entries aij of a matrix A may be real or complex.
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Matrices and vectors (continued)

Examples:

A =

[
1 2
3 4

]
is a 2 × 2 square matrix with real entries.

u =

[
1
3

]
is a column vector of A.

B =

⎡
⎣ 1 0 0

0 i 0
0 0 3 − 7i

⎤
⎦ is a 3 × 3 diagonal matrix, with

complex entries.

An n × n diagonal matrix whose entries are all ones is called
the n × n identity matrix.

C =

[
1 2 3 10
1 6 −8 0

]
is a 2 × 4 matrix with real entries.
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Matrix addition and scalar multiplication

Let A = [aij ] and B = [bij ] be two m × n matrices, and let c be a
scalar.

The matrices A and B are equal if and only if they have the
same entries,

A = B ⇐⇒ aij = bij , for all i , j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The sum of A and B is the m × n matrix obtained by adding
the entries of A to those of B,

A + B = [aij + bij ] .

The product of A with the scalar c is the m × n matrix
obtained by multiplying the entries of A by c ,

c A = [c aij ] .
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2. Matrix multiplication

Let A = [aij ] be an m × n matrix and B = [bij ] be an n × p
matrix. The product C = AB of A and B is an m × p matrix
whose entries are obtained by multiplying each row of A with
each column of B as follows:

cij =
n∑

k=1

aik bkj .

Examples: Let A =

[
1 2
3 4

]
and C =

[
1 2 3 10
1 6 −8 0

]
.

Is the product AC defined? If so, evaluate it.

Same question with the product CA.

What is the product of A with the third column vector of C?
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Matrix multiplication (continued)

More examples:
Consider the system of equations

⎧⎨
⎩

3x1 + 2x2 − x3 = 4
x2 − 7x3 = 0
−x1 + 4x2 − 6x3 = −10

.

Write this system in the form AX = Y , where A is a matrix
and X and Y are two column vectors.

Let

A =

[
1 2
3 4

]
and B =

[
5 6
7 8

]
.

Calculate the products AB and BA.
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3. Rules for matrix addition and multiplication

The rules for matrix addition and multiplication by a scalar
are the same as the rules for addition and multiplication of
real or complex numbers.

In particular, if A and B are matrices and c1 and c2 are
scalars, then

A + B = B + A

(A + B) + C = A + (B + C )

c1 (A + B) = c1 A + c1 B

(c1 + c2)A = c1A + c2A

c1 (c2 A) = (c1 c2)A

whenever the above quantities make sense.
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Rules for matrix addition and multiplication (continued)

The product of two matrices is associative and distributive, i.e.

A(BC ) = (AB)C = ABC

A(B + C ) = AB + AC (A + B)C = AC + BC .

However, the product of two matrices is not commutative. If
A and B are two square matrices, we typically have

AB �= BA

For two square matrices A and B, the commutator of A and
B is defined as

[A, B] = AB − BA.

In general, [A, B] �= 0. If [A, B] = 0, one says that the
matrices A and B commute.
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4. Transposition

The transpose of an m × n matrix A is the n × m matrix AT

obtained from A by switching its rows and columns, i.e.

if A = [aij ] , then AT = [aji ] .

Example: Find the transpose of C =

[
1 2 3 10
1 6 −8 0

]
.

Some properties of transposition. If A and B are matrices,
and c is a scalar, then

(A + B)T = AT + BT (c A)T = c AT

(A B)T = BTAT
(
AT

)T
= A,

whenever the above quantities make sense.

Chapters 7-8: Linear Algebra



Matrices and vectors
Linear independence

Vector space
Rank

Definitions
Examples

5. Linear independence

A linear combination of the n vectors a1, a2, · · · , an is an
expression of the form

c1a1 + c2a2 + · · · + cnan,

where the ci ’s are scalars.

A set of vectors {a1, a2, · · · , an} is linearly independent if the
only way of having a linear combination of these vectors equal
to zero is by choosing all of the coefficients equal to zero. In
other words, {a1, a2, · · · , an} is linearly independent if and
only if

c1a1 + c2a2 + · · · + cnan = 0 =⇒ c1 = c2 = · · · = cn = 0.
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Linear independence (continued)

Examples:

Are the columns of the matrix A =

[
1 2
3 4

]
linearly

independent?

Same question with the columns of the matrix

C =

[
1 2 3 10
1 6 −8 0

]
.

Same question with the rows of the matrix C defined above.

A set that is not linearly independent is called linearly
dependent.

Can you find a condition on a set of n vectors, which would
guarantee that these vectors are linearly dependent?
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6. Vector space

A real (or complex) vector space is a non-empty set V whose
elements are called vectors, and which is equipped with two
operations called vector addition and multiplication by a
scalar.

The vector addition satisfies the following properties.
1 The sum of two vectors a ∈ V and b ∈ V is denoted by a + b

and is an element of V .

2 It is commutative: a + b = b + a, for all a, b ∈ V .

3 It is associative: (a + b) + c = a + (b + c) for all a, b, c ∈ V .

4 There exists a unique zero vector, denoted by 0, such that for
every vector a ∈ V , a + 0 = a.

5 For each a ∈ V , there exists a unique vector (−a) ∈ V such
that a + (−a) = 0.
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Vector space (continued)

The multiplication by a scalar satisfies the following
properties.

1 The multiplication of a vector a ∈ V by a scalar α ∈ R (or
α ∈ C) is denoted by α a and is an element of V .

2 Multiplication by a scalar is distributive:

α (a + b) = α a + α b, (α + β) a = α a + β a,

for all a, b ∈ V and α, β ∈ R (or C).

3 It is associative: α (βa) = (α β) a for all a ∈ V and α, β ∈ R

(or C).

4 Multiplying a vector by 1 gives back that vector, i.e.

1 a = a,

for all a ∈ V .
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Bases and dimension

The span of set of vectors U = {a1, a2, · · · , an} is the set of
all linear combinations of vectors in U . It is denoted by

Span{a1, a2, · · · , an} or Span(U)

and is a subspace of V .

A basis B of a subspace S of V is a set of vectors of S such
that

1 Span(B) = S ;

2 B is a linearly independent set.

Theorem: If a basis B of a subspace S of V has n vectors,
then all other bases of S have exactly n vectors.

The dimension of a vector space V (or of a subspace S of V )
spanned by a finite number of vectors is the number of vectors
in any of its bases.
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7. Rank

The row space of an m × n matrix A is the span of the row
vectors of A. If A has real entries, the row space of A is a
subspace of R

n.

Similarly, the column space of A is the span of the column
vectors of A, and is a subspace of R

m.

The rank of a matrix A is the dimension of its column space.

Theorem: The dimensions of the row and column spaces of a
matrix A are the same. They are equal to the rank of A.

Example: Check that the row and column spaces of

C =

[
1 2 3 10
1 6 −8 0

]
are vector subspaces, and find their

dimension.
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The rank theorem

The null space of an m × n matrix A, N (A) is the set of
vectors u such that Au = 0. If A has real entries, then N (A)
is a subspace of R

n.

The rank theorem states that if A is an m × n matrix, then

rank(A) + dim (N (A)) = n.

Example: Find the rank and the null space of the matrix

C =

[
1 2 3 10
1 6 −8 0

]
.

Check that the rank theorem applies.
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