Chapters 7-8: Linear Algebra Sections 7.1, $7.2 \& 7.4$

Transposition

1. Matrices and vectors

- An $m \times n$ matrix is an array with m rows and n columns. It is typically written in the form

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

where i is the row index and j is the column index.

- A column vector is an $m \times 1$ matrix. Similarly, a row vector is a $1 \times n$ matrix.
- The entries $a_{i j}$ of a matrix A may be real or complex.

Matrices and vectors (continued)

- Examples:

- $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is a 2×2 square matrix with real entries.
- $u=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is a column vector of A.
- $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 3-7 i\end{array}\right]$ is a 3×3 diagonal matrix, with
complex entries.
- An $n \times n$ diagonal matrix whose entries are all ones is called the $n \times n$ identity matrix.
- $C=\left[\begin{array}{cccc}1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0\end{array}\right]$ is a 2×4 matrix with real entries.

Definitions
Matrix addition and scalar multiplication
Matrix multiplication
Rules for matrix addition and multiplication Transposition

Matrix addition and scalar multiplication

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be two $m \times n$ matrices, and let c be a scalar.

- The matrices A and B are equal if and only if they have the same entries,

$$
A=B \Longleftrightarrow a_{i j}=b_{i j}, \text { for all } i, j, 1 \leq i \leq m, 1 \leq j \leq n
$$

- The sum of A and B is the $m \times n$ matrix obtained by adding the entries of A to those of B,

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

- The product of A with the scalar c is the $m \times n$ matrix obtained by multiplying the entries of A by c,

$$
c A=\left[c a_{i j}\right]
$$

2. Matrix multiplication

- Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and $B=\left[b_{i j}\right]$ be an $n \times p$ matrix. The product $C=A B$ of A and B is an $m \times p$ matrix whose entries are obtained by multiplying each row of A with each column of B as follows:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

- Examples: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $C=\left[\begin{array}{cccc}1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0\end{array}\right]$.
- Is the product $A C$ defined? If so, evaluate it.
- Same question with the product $C A$.
- What is the product of A with the third column vector of C ?

Matrices and vectors
Linear independence
Vector space
Rank

Definitions
Matrix addition and scalar multiplication
Matrix multiplication
Rules for matrix addition and multiplication
Transposition

Matrix multiplication (continued)

- More examples:

- Consider the system of equations

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}-x_{3}=4 \\
x_{2}-7 x_{3}=0 \\
-x_{1}+4 x_{2}-6 x_{3}=-10
\end{array} .\right.
$$

Write this system in the form $A X=Y$, where A is a matrix and X and Y are two column vectors.

- Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] .
$$

Calculate the products $A B$ and $B A$.

3. Rules for matrix addition and multiplication

- The rules for matrix addition and multiplication by a scalar are the same as the rules for addition and multiplication of real or complex numbers.
- In particular, if A and B are matrices and c_{1} and c_{2} are scalars, then

$$
\begin{aligned}
& A+B=B+A \\
& (A+B)+C=A+(B+C) \\
& c_{1}(A+B)=c_{1} A+c_{1} B \\
& \left(c_{1}+c_{2}\right) A=c_{1} A+c_{2} A \\
& c_{1}\left(c_{2} A\right)=\left(c_{1} c_{2}\right) A
\end{aligned}
$$

whenever the above quantities make sense.

Rules for matrix addition and multiplication (continued)

- The product of two matrices is associative and distributive, i.e.

$$
\begin{aligned}
& A(B C)=(A B) C=A B C \\
& A(B+C)=A B+A C \quad(A+B) C=A C+B C
\end{aligned}
$$

- However, the product of two matrices is not commutative. If A and B are two square matrices, we typically have

$$
A B \neq B A
$$

- For two square matrices A and B, the commutator of A and B is defined as

$$
[A, B]=A B-B A
$$

In general, $[A, B] \neq 0$. If $[A, B]=0$, one says that the matrices A and B commute.

4. Transposition

- The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} obtained from A by switching its rows and columns, i.e.

$$
\text { if } A=\left[a_{i j}\right], \quad \text { then } A^{T}=\left[a_{j i}\right] \text {. }
$$

- Example: Find the transpose of $C=\left[\begin{array}{cccc}1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0\end{array}\right]$.
- Some properties of transposition. If A and B are matrices, and c is a scalar, then

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{T} \quad(c A)^{T}=c A^{T} \\
& (A B)^{T}=B^{T} A^{T} \quad\left(A^{T}\right)^{T}=A,
\end{aligned}
$$

whenever the above quantities make sense.

$$
\begin{array}{r}
\text { Matrices and vectors } \\
\text { Linear independence } \\
\text { Vector space } \\
\text { Rank }
\end{array}
$$

5. Linear independence

- A linear combination of the n vectors $a_{1}, a_{2}, \cdots, a_{n}$ is an expression of the form

$$
c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n},
$$

where the c_{i} 's are scalars.

- A set of vectors $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ is linearly independent if the only way of having a linear combination of these vectors equal to zero is by choosing all of the coefficients equal to zero. In other words, $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ is linearly independent if and only if

$$
c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}=0 \Longrightarrow c_{1}=c_{2}=\cdots=c_{n}=0
$$

Linear independence (continued)

- Examples:

- Are the columns of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ linearly independent?
- Same question with the columns of the matrix

$$
C=\left[\begin{array}{cccc}
1 & 2 & 3 & 10 \\
1 & 6 & -8 & 0
\end{array}\right]
$$

- Same question with the rows of the matrix C defined above.
- A set that is not linearly independent is called linearly dependent.
- Can you find a condition on a set of n vectors, which would guarantee that these vectors are linearly dependent?

$$
\begin{array}{r}
\text { Matrices and vectors } \\
\text { Linear independence } \\
\text { Vector space } \\
\text { Rank }
\end{array}
$$

Definitions

Bases and dimension

6. Vector space

- A real (or complex) vector space is a non-empty set V whose elements are called vectors, and which is equipped with two operations called vector addition and multiplication by a scalar.
- The vector addition satisfies the following properties.
(1) The sum of two vectors $a \in V$ and $b \in V$ is denoted by $a+b$ and is an element of V.
(2) It is commutative: $a+b=b+a$, for all $a, b \in V$.
(3) It is associative: $(a+b)+c=a+(b+c)$ for all $a, b, c \in V$.
(9) There exists a unique zero vector, denoted by 0 , such that for every vector $a \in V, a+0=a$.
(3) For each $a \in V$, there exists a unique vector $(-a) \in V$ such that $a+(-a)=0$.

Vector space (continued)

- The multiplication by a scalar satisfies the following properties.
(1) The multiplication of a vector $a \in V$ by a scalar $\alpha \in \mathbb{R}$ (or $\alpha \in \mathbb{C}$) is denoted by αa and is an element of V.
(2) Multiplication by a scalar is distributive:

$$
\alpha(a+b)=\alpha a+\alpha b, \quad(\alpha+\beta) a=\alpha a+\beta a,
$$

for all $a, b \in V$ and $\alpha, \beta \in \mathbb{R}$ (or $\mathbb{C})$.
(3) It is associative: $\alpha(\beta a)=(\alpha \beta)$ a for all $a \in V$ and $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}).
(9) Multiplying a vector by 1 gives back that vector, i.e.

$$
1 a=a,
$$

for all $a \in V$.

Chapters 7-8: Linear Algebra

Bases and dimension

- The span of set of vectors $\mathcal{U}=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ is the set of all linear combinations of vectors in \mathcal{U}. It is denoted by

$$
\operatorname{Span}\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} \text { or } \operatorname{Span}(\mathcal{U})
$$

and is a subspace of V.

- A basis \mathcal{B} of a subspace S of V is a set of vectors of S such that
(1) $\operatorname{Span}(\mathcal{B})=S$;
(2) \mathcal{B} is a linearly independent set.
- Theorem: If a basis \mathcal{B} of a subspace S of V has n vectors, then all other bases of S have exactly n vectors.
- The dimension of a vector space V (or of a subspace S of V) spanned by a finite number of vectors is the number of vectors in any of its bases.

7. Rank

- The row space of an $m \times n$ matrix A is the span of the row vectors of A. If A has real entries, the row space of A is a subspace of \mathbb{R}^{n}.
- Similarly, the column space of A is the span of the column vectors of A, and is a subspace of \mathbb{R}^{m}.
- The rank of a matrix A is the dimension of its column space.
- Theorem: The dimensions of the row and column spaces of a matrix A are the same. They are equal to the rank of A.
- Example: Check that the row and column spaces of $C=\left[\begin{array}{cccc}1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0\end{array}\right]$ are vector subspaces, and find their dimension.

The rank theorem

- The null space of an $m \times n$ matrix $A, \mathcal{N}(A)$ is the set of vectors u such that $A u=0$. If A has real entries, then $\mathcal{N}(A)$ is a subspace of \mathbb{R}^{n}.
- The rank theorem states that if A is an $m \times n$ matrix, then

$$
\operatorname{rank}(A)+\operatorname{dim}(\mathcal{N}(A))=n
$$

- Example: Find the rank and the null space of the matrix $C=\left[\begin{array}{cccc}1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0\end{array}\right]$.
Check that the rank theorem applies.

