

$$X = X_0 + X_h$$

where X_h is a solution to the associated homogeneous equation AX = 0.

In other words, the general solution to the linear system
 AX = B, if it exists, can be written as the sum of a particular solution X₀ to this system, plus the general solution of the associated homogeneous system.

Linear systems of equations Inverse of a matrix Eigenvalues and eigenvectors **Definitions** Determinant of a matrix Properties of the inverse Linear systems of *n* equations with *n* unknowns

2. Inverse of a matrix

• If A is a square $n \times n$ matrix, its inverse, if it exists, is the matrix, denoted by A^{-1} , such that

$$A A^{-1} = A^{-1} A = I_n,$$

where I_n is the $n \times n$ identity matrix.

• A square matrix A is said to be singular if its inverse does not exist. Similarly, we say that A is non-singular or invertible if A has an inverse.

• The inverse of a square matrix $A = [a_{ij}]$ is given by

$$A^{-1} = rac{1}{\det(A)} \left[C_{ij}
ight]^{\mathcal{T}},$$

where det(A) is the determinant of A and C_{ij} is the matrix of cofactors of A.

Chapters 7-8: Linear Algebra

Linear systems of equations Inverse of a matrix Eigenvalues and eigenvectors

Determinant of a matrix Properties of the inverse Linear systems of *n* equations with *n* unknowns

Determinant of a matrix

• The determinant of a square $n \times n$ matrix $A = [a_{ij}]$ is the scalar

$$\det(A) = \sum_{i=1}^n a_{ij} C_{ij} = \sum_{j=1}^n a_{ij} C_{ij}$$

where the cofactor C_{ij} is given by

$$C_{ij}=\left(-1\right) ^{i+j}\ M_{ij},$$

and the minor M_{ij} is the determinant of the matrix obtained from A by "deleting" the *i*-th row and *j*-th column of A.

• **Example:** Calculate the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

Determinant of a matrix Properties of the inverse Linear systems of *n* equations with *n* unknowns

Properties of determinants

we see that A is invertible if and only if $det(A) \neq 0$.

• If A is an invertible 2 × 2 matrix, $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, then

$$A^{-1} = rac{1}{\det(A)} \left[egin{array}{cc} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{array}
ight],$$

and $det(A) = a_{11}a_{22} - a_{21}a_{12}$.

• If A and B are invertible, then

$$(AB)^{-1} = B^{-1}A^{-1}$$
 and $(A^{-1})^{-1} = A$.

and the system has an infinite number of solutions.

Eigenvalues Eigenvectors Properties of eigenvalues and eigenvectors

Eigenvalues

- The characteristic polynomial det(A λI_n) is a polynomial of degree n in λ. It has n complex roots, which are not necessarily distinct from one another.
- If λ is a root of order k of the characteristic polynomial det(A - λI_n), we say that λ is an eigenvalue of A of algebraic multiplicity k.
- If A has real entries, then its characteristic polynomial has real coefficients. As a consequence, if λ is an eigenvalue of A, so is λ̄.
- It A is a 2 × 2 matrix, then its characteristic polynomial is of the form λ² - λ Tr(A) + det(A), where the trace of A, Tr(A), is the sum of the diagonal entries of A.

Eigenvalues Eigenvectors Properties of eigenvalues and eigenvectors

Eigenvectors

• Once an eigenvalue λ of A has been found, one can find an associated eigenvector, by solving the linear system

$$(A-\lambda I_n)X=0.$$

- Since N(A λI_n) is not trivial, there is an infinite number of solutions to the above equation. In particular, if X is an eigenvector of A with eigenvalue λ, so is αX, where α ∈ ℝ (or C) and α ≠ 0.
- The set of eigenvectors of A with eigenvalue λ, together with the zero vector, form a subspace of Rⁿ (or Cⁿ), E_λ, called the eigenspace of A corresponding to the eigenvalue λ.
- The dimension of E_{λ} is called the geometric multiplicity of λ .

• **Examples:** Find the eigenvectors of the following matrices. Each time, give the algebraic and geometric multiplicities of the corresponding eigenvalues.

•
$$A = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$$
.

•
$$C = \begin{bmatrix} -13 & -36 \\ 6 & 17 \end{bmatrix}$$
.

•
$$D = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ & & & \\ -1 & 1 & 2 \end{bmatrix}$$

Linear systems of equations Inverse of a matrix Eigenvalues and eigenvectors

Eigenvalues Eigenvectors Properties of eigenvalues and eigenvectors

Properties of eigenvalues and eigenvectors

- The geometric multiplicity m_{λ} of an eigenvalue λ is less than or equal to its algebraic multiplicity M_{λ} .
- If $M_{\lambda} = 1$, then $m_{\lambda} = 1$.
- If m_λ is not equal to M_λ, then one can find M_λ m_λ linearly independent generalized eigenvectors of A, by solving a sequence of equations of the form

$$(A - \lambda I_n) U_{i+1} = U_i, \qquad i \in \{1, \cdots, M_\lambda - m_\lambda\}$$

where $U_1 = X_{\lambda}$ is a genuine eigenvector of A with eigenvalue λ .

