1. Linear systems of equations

- A linear system of equations of the form

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

can be written in matrix form as $A X=B$, where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Linear systems of equations

Eigenvalues and eigenvectors

Solutions

Solution(s) of a linear system of equations

- Given a matrix A and a vector B, a solution of the system $A X=B$ is a vector X which satisfies the equation $A X=B$.
- If B is not in the column space of A, then the system $A X=B$ has no solution. One says that the system is not consistent. In the statements below, we assume that the system $A X=B$ is consistent.
- If the null space of A is non-trivial, then the system $A X=B$ has more than one solution.
- The system $A X=B$ has a unique solution provided $\operatorname{dim}(\mathcal{N}(A))=0$.
- Since, by the rank theorem, $\operatorname{rank}(A)+\operatorname{dim}(\mathcal{N}(A))=n($ recall that n is the number of columns of A), the system $A X=B$ has a unique solution if and only if $\operatorname{rank}(A)=n$.

Chapters 7-8: Linear Algebra

Linear systems of equations
 Eigenvalues and eigenvectors

Solutions
Solution(s) of a linear system of equations (continued)

- A linear system of the form $A X=0$ is said to be homogeneous.
- Solutions of $A X=0$ are vectors in the null space of A.
- If we know one solution X_{0} to $A X=B$, then all solutions to $A X=B$ are of the form

$$
X=X_{0}+X_{h}
$$

where X_{h} is a solution to the associated homogeneous equation $A X=0$.

- In other words, the general solution to the linear system $A X=B$, if it exists, can be written as the sum of a particular solution X_{0} to this system, plus the general solution of the associated homogeneous system.

2. Inverse of a matrix

- If A is a square $n \times n$ matrix, its inverse, if it exists, is the matrix, denoted by A^{-1}, such that

$$
A A^{-1}=A^{-1} A=I_{n},
$$

where I_{n} is the $n \times n$ identity matrix.

- A square matrix A is said to be singular if its inverse does not exist. Similarly, we say that A is non-singular or invertible if A has an inverse.
- The inverse of a square matrix $A=\left[a_{i j}\right]$ is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[C_{i j}\right]^{T}
$$

where $\operatorname{det}(A)$ is the determinant of A and $C_{i j}$ is the matrix of cofactors of A.

Chapters 7-8: Linear Algebra

Determinant of a matrix
 Peterminant of a matrix roperties of the inverse

Linear systems of n equations with n unknowns
Properties of determinants

- If a determinant has a row or a column entirely made of zeros, then the determinant is equal to zero.
- The value of a determinant does not change if one replaces one row (resp. column) by itself plus a linear combination of other rows (resp. columns).
- If one interchanges 2 columns in a determinant, then the value of the determinant is multiplied by -1 .
- If one multiplies a row (or a column) by a constant C, then the determinant is multiplied by C.
- If A is a square matrix, then A and A^{T} have the same determinant.

Determinant of a matrix

- The determinant of a square $n \times n$ matrix $A=\left[a_{i j}\right]$ is the scalar

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} C_{i j}=\sum_{j=1}^{n} a_{i j} C_{i j}
$$

where the cofactor $C_{i j}$ is given by

$$
C_{i j}=(-1)^{i+j} M_{i j},
$$

and the minor $M_{i j}$ is the determinant of the matrix obtained from A by "deleting" the i-th row and j-th column of A.

- Example: Calculate the determinant of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

Chapters 7-8: Linear Algebra

Linear systems of equations
 Eigenvalues and eigenvectors Properties of the inverse
 Linear systems of n equations with n unknowns
 Properties of the inverse

- Since the inverse of a square matrix A is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[C_{i j}\right]^{T},
$$

we see that A is invertible if and only if $\operatorname{det}(A) \neq 0$.

- If A is an invertible 2×2 matrix, $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right],
$$

and $\operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}$.

- If A and B are invertible, then

$$
(A B)^{-1}=B^{-1} A^{-1} \quad \text { and } \quad\left(A^{-1}\right)^{-1}=A
$$

- Consider the following linear system of n equations with n unknowns,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \cdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

- This system can be also be written in matrix form as $A X=B$, where A is a square matrix.
- If $\operatorname{det}(A) \neq 0$, then the above system has a unique solution X given by

$$
X=A^{-1} B
$$

Chapters 7-8: Linear Algebra

Linear systems of equations
Inverse of a matrix
Eigenvalues and eigenvectors
Eigenvalues and eigenvectors
Determinant of a matrix
Properties of the inverse
Properties of the inverse
Linear systems of n equations with n unknowns

Linear systems of equations - summary (continued)

Consider the linear system $A X=B$ where A is an $m \times n$ matrix.

- If $m=n$ and the system is consistent, then
- Either $\operatorname{det}(A) \neq 0$, in which case $\operatorname{rank}(A)=n$, $\operatorname{dim}(\mathcal{N}(A))=0$, and the system has a unique solution;
- $\operatorname{Or} \operatorname{det}(A)=0$, in which case $\operatorname{dim}(\mathcal{N}(A))>0, \operatorname{rank}(A)<n$, and the system has an infinite number of solutions.
- Note that when $m=n$, having $\operatorname{det}(A)=0$ means that the columns of A are linearly dependent.
- It also means that $\mathcal{N}(A)$ is non-trivial and that $\operatorname{rank}(A)<n$.

Consider the linear system $A X=B$ where A is an $m \times n$ matrix.

- The system may not be consistent, in which case it has no solution.
- To decide whether the system is consistent, check that B is in the column space of A.
- If the system is consistent, then
- Either $\operatorname{rank}(A)=n($ which also means that $\operatorname{dim}(\mathcal{N}(A))=0)$, and the system has a unique solution.
- $\operatorname{Or} \operatorname{rank}(A)<n$ (which also means that $\mathcal{N}(A)$ is non-trivial), and the system has an infinite number of solutions.

- Let A be a square $n \times n$ matrix. We say that X is an eigenvector of A with eigenvalue λ if

$$
X \neq 0 \quad \text { and } \quad A X=\lambda X
$$

- The above equation can be re-written as

$$
\left(A-\lambda I_{n}\right) X=0
$$

- Since $X \neq 0$, this implies that $A-\lambda I_{n}$ is not invertible, i.e. that $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
- The eigenvalues of A are therefore found by solving the characteristic equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Eigenvalues

- The characteristic polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$ is a polynomial of degree n in λ. It has n complex roots, which are not necessarily distinct from one another.
- If λ is a root of order k of the characteristic polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$, we say that λ is an eigenvalue of A of algebraic multiplicity k.
- If A has real entries, then its characteristic polynomial has real coefficients. As a consequence, if λ is an eigenvalue of A, so is $\bar{\lambda}$.
- It A is a 2×2 matrix, then its characteristic polynomial is of the form $\lambda^{2}-\lambda \operatorname{Tr}(A)+\operatorname{det}(A)$, where the trace of $A, \operatorname{Tr}(A)$, is the sum of the diagonal entries of A.

Chapters 7-8: Linear Algebra

```
Eigenvaiues
Eigenvector
Properties of eigenvalues and eigenvectors
```

Eigenvectors

- Once an eigenvalue λ of A has been found, one can find an associated eigenvector, by solving the linear system

$$
\left(A-\lambda I_{n}\right) X=0
$$

- Since $\mathcal{N}\left(A-\lambda I_{n}\right)$ is not trivial, there is an infinite number of solutions to the above equation. In particular, if X is an eigenvector of A with eigenvalue λ, so is αX, where $\alpha \in \mathbb{R}$ (or $\mathbb{C})$ and $\alpha \neq 0$.
- The set of eigenvectors of A with eigenvalue λ, together with the zero vector, form a subspace of $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right), E_{\lambda}$, called the eigenspace of A corresponding to the eigenvalue λ.
- The dimension of E_{λ} is called the geometric multiplicity of λ.

Eigenvalues

Eigenvectors
Properties of eigenvalues and eigenvectors
Eigenvalues (continued)

Examples: Find the eigenvalues of the following matrices.

- $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 5\end{array}\right]$.
- $B=\left[\begin{array}{cc}-1 & 9 \\ 0 & 5\end{array}\right]$.
- $C=\left[\begin{array}{cc}-13 & -36 \\ 6 & 17\end{array}\right]$.
- $D=\left[\begin{array}{ccc}4 & -1 & 1 \\ -1 & 4 & -1 \\ -1 & 1 & 2\end{array}\right]$

Chapters 7-8: Linear Algebra

Linear systems of equations
Inverse of a matrix
Eigenvalues and eigenvectors

```
Eigenvalues
Properties of eigenvalues and eigenvectors
```


Eigenvectors (continued)

- Examples: Find the eigenvectors of the following matrices.

Each time, give the algebraic and geometric multiplicities of the corresponding eigenvalues.

$$
\begin{aligned}
& \text { - } A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right] . \\
& \text { - } C=\left[\begin{array}{cc}
-13 & -36 \\
6 & 17
\end{array}\right] . \\
& \text { - } D=\left[\begin{array}{ccc}
4 & -1 & 1 \\
-1 & 4 & -1 \\
-1 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Properties of eigenvalues and eigenvectors

Properties of eigenvalues and eigenvectors (continued)

- The geometric multiplicity m_{λ} of an eigenvalue λ is less than or equal to its algebraic multiplicity M_{λ}.
- If $M_{\lambda}=1$, then $m_{\lambda}=1$.
- If m_{λ} is not equal to M_{λ}, then one can find $M_{\lambda}-m_{\lambda}$ linearly independent generalized eigenvectors of A, by solving a sequence of equations of the form

$$
\left(A-\lambda I_{n}\right) U_{i+1}=U_{i}, \quad i \in\left\{1, \cdots, M_{\lambda}-m_{\lambda}\right\}
$$

where $U_{1}=X_{\lambda}$ is a genuine eigenvector of A with eigenvalue λ.

- Examples: Find the genuine and generalized eigenvectors of the following matrices
- $M=\left[\begin{array}{llll}4 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4\end{array}\right]$
- $N=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
- If A has k distinct eigenvalues and $\mathcal{B}_{1}, \cdots, \mathcal{B}_{k}$ are bases of the corresponding generalized eigenspaces, then $\left\{\mathcal{B}_{1}, \cdots, \mathcal{B}_{k}\right\}$ is a basis of \mathbb{R}^{n} (or \mathbb{C}^{n}).

