Linear Algebra - Check your understanding

\square Is it possible for a linear system of equations to have exactly 10 solutions? Why or why not?
\square Is it possible for a linear system of equations to have no solution at all? If so, give an example. If not, explain why.
\square Is the determinant defined for a matrix that is not a square matrix?
\square Why is it useful to manipulate a determinant in order to changes some of its entries into zeros?
\square Can you explain why the determinant of a matrix is equal to zero if its columns are linearly dependent?
\square Conversely, if the determinant of a matrix is equal to zero, does it mean that the columns of the matrix are linearly dependent? Why or why not?
\square Is it possible for an eigenvector to be zero?
\square Is it possible for an eigenvalue to be zero?
\square If A is not a square matrix, is it possible to find eigenvalues of A? Why or why not?
\square When you look for eigenvectors of a matrix A associated to a particular eigenvalue λ, do you expect to find exactly one eigenvector, or is there an infinite number of possible eigenvectors? Explain.
\square Give an example of a 3 by 3 matrix whose rank is 1 . What is the dimension of the null space of the matrix you just found? Explain.
\square Give an example of three 3-dimensional vectors that do not span \mathbb{R}^{3}. Choose the vectors so that no two vectors are proportional to one another.

Give an example of three 3-dimensional vectors with non-zero entries that span \mathbb{R}^{3}.
List three different ways of finding the rank of a matrix. Explain why the 3 methods give the same answer.

