Name:

Notes:

- 1. Show all of your work, present it neatly, and explain what you are doing. In particular, write complete sentences, either using words or mathematical symbols.
- 2. You will only receive credit for the work that is shown.
- 3. You can score a maximum of 130 points on this test. So **there are 10 "bonus" points**.
- 4. It is **more important** to leave out a problem and do all of the others in depth, than to do a little bit of each problem and finish none.

Question	1	2	3	4	5	6	7	8	9	Total
Score	/20	/20	/20	/25	/5	/10	/10	/10	/10	/120

- 1. Consider the function $f(z) = \frac{i}{z-1}$.
 - a) [5 points] Write down the Cauchy-Riemann equations for an analytic function u(x, y) + i v(x, y).
 - b) [12 points] Use the Cauchy-Riemann equations to show that the function f above is analytic everywhere, except at z = 1.

c) [3 points] Is the function f entire? Why or why not?

- 2. Consider the function $u(x, y) = x (x^2 3 y^2)$.
 - a) [5 points] Show that *u* is harmonic.

b) [12 points] Find the harmonic conjugate of u, and call this function V(x, y). Explain what you are doing.

c) [3 points] Express u(x, y) + i v(x, y) as a function of the variable z = x + i y. Show all of your work.

3. Evaluate the following expressions and write the result in the form a + i b, where a and b are real. Give **exact answers** (do not approximate them numerically). If a function is multi-valued, give **all of the possible values** of that function.

a) [3 points] $\operatorname{Ln}\left(\sqrt{3}+i\right)$

b) [3 points] $\ln(\sqrt{3} + i)$

c) [3 points] $\cosh(2 + i\pi)$

d) [3 points] $\exp(7i\pi + 1)$

e) [8 points] $\sqrt[3]{-2+2i}$

- 4. Consider the function $g(z) = \frac{1}{\overline{z}}$.
 - a) [4 points] Given that it involves a term in \overline{z} , do you expect g(z) to be differentiable at z = 1? Why or why not?

b) [4 points] Express the following difference quotient in terms of Δx , and Δy : $Q(\Delta x, \Delta y) = \frac{g(1 + \Delta z) - g(1)}{\Delta z}$, where $\Delta z = \Delta x + i \Delta y$. Do not try to separate the real part of Q from its imaginary part. c) [10 points] Calculate the limit of $Q(\Delta x, \Delta y)$ as $\Delta z \rightarrow 0$, along the line of equation $\Delta y = t \Delta x$. Show all your work.

d) [4 points] Using the result of part c), show that the function g(z) is not differentiable at z = 1. Justify your answer.

e) [3 points] Is the function g analytic at z = 1? Why or why not?

5. [5 points] Give an example of a multi-valued function of a complex variable. Explain why it is multi-valued.

6. [10 points] Use De Moivre's formula to express cos(4 x) in terms of cos(x) and sin(x).

7. [10 points] Is the following set of vectors linearly independent? Why or why

ſ	$\lceil 2 \rceil$		0		1	
not? {	4	,	2	,	1	}.
	[7]		5		1	

8. [10 points] Find a basis of the column space of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 4 & 2 & 1 \\ 7 & 5 & 1 \end{bmatrix}$.

Note that the columns of A are the same vectors as in Problem 7 above. Explain what you are doing.

- 9. Consider the vector $U_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
 - a) [5 points] Find two vectors, U_1 and U_2 , whose entries are **all non-zero**, and which, together with the vector U_3 above, form a basis for \mathbb{R}^3 .

b) [5 points] Explain why the set $\{U_1, U_2, U_3\}$ that you have found is a basis of \mathbb{R}^3 .