

What is the order of the following differential equation?

$$y'' - 2y' + y = 0$$

0 of 5

Is the following differential equation linear? y'' - 2y' + y = 0

- Yes
 - No

Are $y_1(x) = e^x$ and $y_2(x) = x e^x$ solutions of the following differential equation?

$$y$$
" - 2 y ' + y = 0

- ✓1. Yes
 - 2. No

0 of 5

Are $y_1(x) = e^x$ and $y_2(x) = x e^x$ linearly independent?

- Does the following initial value problem have a unique solution near x = 0, y = 1, y'=0? y'' - 2y' + y = 0, y(0) = 1, y'(0) = 0
- ✓1. Yes
 - 2. No

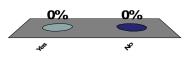
2. No

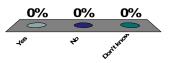
0 of 5

Does the following initial value problem have a unique solution near x = 0, y = 1, y'=0?

$$y'' - 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 2$

1. Yes




Does the following initial value problem have a unique solution for all values of y_0 ?

$$y' = y^{1/2}, \quad y(0) = y_0$$

- 1. Yes
- 2. No
- 3. Don't know

0 of 5

0 of 5

0 of 5

Does the following initial value problem have a unique solution near x = 1, y = 1?

$$y' = y^2$$
, $y(1) = 1$

- ✓1. Yes
 - 2. No

0 of 5

1

Does the solution to the following initial value problem exist for all values of *x*?

$$y' = y^2$$
, $y(1) = 1$

Does the following initial value problem have a unique

solution on the interval [-1, 1]?

 $y^{(4)} - x^3 y$ " + 3 y = 0,

y(0) = 1, y'(0) = 1, y''(0) = 0, $y^{(3)}(0) = 0$

- 1. Yes
- **✓**2. No

0 of 5

10

Does the following initial value problem have a unique solution for all values of *x*?

$$y'' - 2y' + y = 3x$$
, $y(0) = 1$, $y'(0) = 0$

- ✓1. Yes
 - 2. No

✓1. Yes
2. No

10

0 of 5

10

Are $y_1(x)=x$, $y_2(x)=x$ e^x, $y_3(x)=x^3$ and $y_4(x)=x$ e^{3x} linearly independent?

2. No

0 of 5

