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1. Partial differential equations

A partial differential equation (PDE) is an equation giving a
relation between a function of two or more variables, u, and
its partial derivatives.

The order of the PDE is the order of the highest partial
derivative of u that appears in the PDE.

A PDE is linear if it is linear in u and in its partial derivatives.
A linear PDE is homogeneous if all of its terms involve either
u or one of its partial derivatives.

A solution to a PDE is a function u that satisfies the PDE.

Finding a specific solution to a PDE typically requires an
initial condition as well as boundary conditions.
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Examples

Check that u = f (x + ct) + g(x − ct), where f and g are two
smooth functions, is a solution (called d’Alembert’s solution)
to the one-dimensional wave equation,

∂2u

∂t2
= c2 ∂2u

∂x2
.

Is the two-dimensional wave equation (given below) linear?

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)

What is the order of the heat equation
∂u

∂t
=

∂2u

∂x2
?

The Laplace equation reads ∆u = 0, where ∆ is the two- or
three-dimensional Laplacian. Is this equation homogeneous?
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2. The one-dimensional wave equation

The one-dimensional wave equation models the 2-dimensional
dynamics of a vibrating string which is stretched and clamped
at its end points (say at x = 0 and x = L).

The function u(x , t) measures the deflection of the string and
satisfies

∂2u

∂t2
= c2 ∂2u

∂x2
, c2 ∝ T , T ≡ tension of the string

with Dirichlet boundary conditions

u(0, t) = u(L, t) = 0, for all t ≥ 0.

In what follows, we assume that the initial conditions are

u(x , 0) = f (x), ut(x , 0) ≡ ∂u

∂t
(x , 0) = g(x), for x ∈ [0, L].
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Solution by separation of variables

We look for a solution u(x , t) in the form u(x , t) = F (x)G (t).

Substitution into the one-dimensional wave equation gives

1

c2 G (t)

d2G

dt2
=

1

F

d2F

dx2
.

Since the left-hand side is a function of t only and the
right-hand side is a function of x only, and since x and t are
independent, the two terms must be equal to some constant k.

Imposing the boundary conditions gives solutions of the form

un(x , t) =
[
an cos

(
c n

πt

L

)
+ bn sin

(
c n

πt

L

)]
sin

(
n

πx

L

)
,

for n = 1, 2, · · · , where k = −
(n π

L

)2
, and the an’s and bn’s

are arbitrary constants.
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Solution by separation of variables (continued)

The functions un(x , t) are called the normal modes of the
vibrating string. The n-th normal mode has n − 1 nodes,
which are points in space where the string does not vibrate.

The general solution to the one-dimensional wave equation
with Dirichlet boundary conditions is therefore a linear
combination of the normal modes of the vibrating string,

u(x , t) =
∞∑

n=1

Cnun(x , t)

=
∞∑

n=1

[
An cos

(
c n

πt

L

)
+ Bn sin

(
c n

πt

L

)]
sin

(
n

πx

L

)
,

where An = Cnan and Bn = Cnbn.
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Solution by separation of variables (continued)

The coefficients of the above expansion are found by imposing
the initial conditions.

Since un(x , 0) and
∂un

∂t
(x , 0) are proportional to sin(n π x/L),

imposing the initial conditions amounts to finding the
orthogonal expansions of the functions f (x) and g(x) on
{sin(n π x/L), n = 1, 2, · · · }.
Therefore, with Un(x) = sin

(
n

πx

L

)
,

An =
〈u(x , 0), Un(x)〉

‖Un‖2
=

2

L

∫ L

0
f (x) sin

(
n

πx

L

)
dx ,

Bn =
L

c n π

〈ut(x , 0), Un(x)〉
‖Un(x)‖2

=
2

L

∫ L

0

L

c n π
g(x) sin

(
n

πx

L

)
dx .

Chapter 12: Partial Differential Equations



Definitions and examples
The wave equation
The heat equation

The one-dimensional wave equation
Separation of variables
The two-dimensional wave equation

Solution by separation of variables (continued)

Example: Show that the solution to
∂2u

∂t2
= c2 ∂2u

∂x2
with

Dirichlet boundary conditions on [0, 1] and initial condition

u(x , 0) =

⎧⎪⎪⎨
⎪⎪⎩

x

5
if 0 ≤ x ≤ 0.5

1 − x

5
if 0.5 ≤ x ≤ 1

,
∂u

∂t
(x , 0) = 0,

is of the form

u(x , t) =
4

5π2

[
sin(πx) cos(cπt) − 1

9
sin(3πx) cos(3cπt)

+
1

25
sin(5πx) cos(5cπt) + · · ·

]
.

Experiment with the Vibrating String MATLAB GUI.
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3. The two-dimensional wave equation

The two-dimensional wave equation models the 3-dimensional
dynamics of a stretched elastic membrane clamped at its
boundary.

The function u(x , y , t) measures the vertical displacement of
the membrane (think of a drum for instance) and satisfies

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
= c2∇2u,

where c2 is proportional to the tension of the membrane.

The boundary conditions (Dirichlet) are u = 0 on the
boundary of the membrane and the initial conditions are of
the form

u(x , y , 0) = f (x , y), ut(x , y , 0) ≡ ∂u

∂t
(x , y , 0) = g(x , y).
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Rectangular membrane

For a rectangular membrane, we use separation of variables in
cartesian coordinates, i.e. we let

u(x , y , t) = F (x , y)G (t),

where the functions F , and G are to be determined.

Substitution into the wave equation leads to

1

c2G

d2G

dt2
=

1

F
∇2F = −ν2,

where ν is a real constant.

The function F therefore satisfies Helmholtz’s equation,
∇2F + ν2F = 0, which can also be solved by separation of
variables, i.e. by letting F (x , y) = H1(x)H2(y).
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Rectangular membrane (continued)

As before, imposing the boundary conditions leads to a
collection of normal modes for the square membrane, which
are

umn(x , y , t) = [amn cos(λmnt) + bmn sin(λmnt)]

sin
(m π x

a

)
sin

(n π y

b

)
,

where

λmn = cπ

√
m2

a2
+

n2

b2

and the membrane is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

The next step is to impose the initial conditions.
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Rectangular membrane (continued)

Since the wave equation is linear, the solution u can be
written as a linear combination (i.e. a superposition) of the
normal modes for the given boundary conditions. In other
words, we write

u(x , y , t) =
∞∑

m=1

∞∑
n=1

Cmn umn(x , y , t)

=
∞∑

m=1

∞∑
n=1

⎧⎩[Amn cos(λmnt) + Bmn sin(λmnt)]

sin
(m π x

a

)
sin

(m π y

b

)⎫⎭ ,

where Amn = Cmn amn and Bmn = Cmn bmn.
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Rectangular membrane (continued)

The coefficients Amn and Bmn are found by writing the
orthogonal expansions of the initial conditions f (x , y) and
g(x , y) as double Fourier sine series. The corresponding dot
product is defined by

〈f , g〉 =

∫ a

0

∫ b

0
f (x , y) g(x , y) dy dx .

The presence of nodal lines in the normal modes may lead to
the existence of nodal curves in the solution u(x , y , t).

Experiment with the Rectangular Elastic Membrane MATLAB
GUI.
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Circular membrane

For a circular membrane, it is more appropriate to write the
Laplacian in polar coordinates, so that u = u(r , θ, t) solves

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
.

If the membrane has radius R, the boundary conditions are

u(R, θ, t) = 0, for all t.

For radially symmetric solutions (i.e. if uθ(r , θ, t) = 0), the
method of separation of variables leads to normal modes in
terms of Bessel functions. Finding a specific solution amounts
to finding an orthogonal expansion of the initial conditions,
this time in terms of Fourier-Bessel series.

Experiment with the Circular Elastic Membrane MATLAB
GUI.
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4. The one-dimensional heat equation on a finite interval

The one-dimensional heat equation models the diffusion of
heat (or of any diffusing quantity) through a homogeneous
one-dimensional material (think for instance of a rod).

The function u(x , t) measures the temperature of the rod at
point x and at time t. It satisfies the heat equation,

∂u

∂t
= c2 ∂2u

∂x2
, c2 ≡ diffusion coefficient.

Typical boundary conditions are of one of the following types,
Dirichlet: u(0, t) = u(L, t) = 0 for all t ≥ 0;

Neumann:
∂u

∂x
(0, t) =

∂u

∂x
(L, t) = C for all t ≥ 0, where C is

a given constant (often, C = 0);

where we assume that the end points of the rod are at x = 0
and x = L.
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The one-dimensional heat equation (continued)

One can also consider mixed boundary conditions, for instance
Dirichlet at x = 0 and Neumann at x = L.

The initial condition is given in the form

u(x , 0) = f (x),

where f is a known function.

In this section, we solve the heat equation with Dirichlet
boundary conditions. As for the wave equation, we use the
method of separation of variables.

Setting u(x , t) = F (x)G (t) gives

1

c2G

dG

dt
=

1

F

d2F

dx2
= k,

where k is some constant to be determined.
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Separation of variables

As for the wave equation, the boundary conditions can only
be satisfied if we impose k < 0, say k = −ν2.

The solution to
d2F

dx2
= k F = −ν2F is then

F (x) = bn sin
(
n
πx

L

)
, n = 1, 2, · · · ,

where ν has to satisfy ν = nπ/L.

After solving for G (t), we obtain an infinite number of modes,

un(x , t) = bn sin
(
n
πx

L

)
exp

[
−

(c n π

L

)2
t

]
.

where n = 1, 2, · · · .
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Separation of variables (continued)

Since the heat equation is linear, its general solution in the
presence of Dirichlet boundary conditions is given by a linear
combination (or superposition) of the modes un, i.e.

u(x , t) =
∞∑

n=1

Cnun(x , t)

=
∞∑

n=1

Bn sin
(
n
πx

L

)
exp

[
−

(c n π

L

)2
t

]
,

where Bn = Cnbn.

The initial condition reads f (x) =
∞∑

n=1

Bn sin
(
n
πx

L

)
, and the

coefficients Bn can therefore be obtained by finding the
half-range sine expansion of f (x).
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Separation of variables (continued)

In other words, we have

Bn =
2

L

∫ L

0
f (x) sin

(
n
πx

L

)
dx .

For an insulated rod (i.e. for Neumann boundary conditions
with C = 0), the solution is of the form

u(x , t) =
∞∑

n=0

An cos
(
n
πx

L

)
exp

[
−

(c n π

L

)2
t

]
,

and the An are found by writing the half-range cosine
expansion of the initial condition f (x).

Experiment with the One-dimensional Heat Equation
MATLAB GUI.
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5. The one-dimensional heat equation on the whole line

To solve the one-dimensional heat equation on the whole line,
one first formally takes the Fourier transform of the heat
equation,

∂u

∂t
= c2 ∂2u

∂x2
=⇒ dûk

dt
= −c2k2 ûk .

The initial condition, u(x , 0) = f (x) reads ûk(0) = f̂ (k), and
the solution is therefore

u(x , t) =
1√
2π

∫ ∞

−∞
f̂ (k) exp(−c2k2t) exp(i k x) dk.

We can recognize this integral as the inverse Fourier transform
of a product of two Fourier transforms, f̂ (k) and ĝ(k), where
ĝ(k) = exp(−c2k2t).
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Method of convolution

Since we know that g(x) =
1√
2c2t

exp

(
− x2

4c2t

)
, and since

the inverse Fourier transform of a product is the convolution

of the inverse transforms times
1√
2π

, we therefore have

u(x , t) =
1

2c
√

πt

∫ ∞

−∞
f (y) exp

(
−(x − y)2

4c2t

)
dy .

Example: Solve the heat equation on the whole line with
initial condition u(x , 0) = 1 if |x | < 1 and u(x , 0) = 0
otherwise.

Experiment with the Heat Equation on the Whole Line
MATLAB GUI.
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