Chapter 12: Partial Differential Equations

1. Partial differential equations

- A partial differential equation (PDE) is an equation giving a relation between a function of two or more variables, u, and its partial derivatives.
- The order of the PDE is the order of the highest partial derivative of u that appears in the PDE.
- A PDE is linear if it is linear in u and in its partial derivatives. A linear PDE is homogeneous if all of its terms involve either u or one of its partial derivatives.
- A solution to a PDE is a function u that satisfies the PDE.
- Finding a specific solution to a PDE typically requires an initial condition as well as boundary conditions.

Examples

- Check that $u=f(x+c t)+g(x-c t)$, where f and g are two smooth functions, is a solution (called d'Alembert's solution) to the one-dimensional wave equation,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

- Is the two-dimensional wave equation (given below) linear?

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

- What is the order of the heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$?
- The Laplace equation reads $\Delta u=0$, where Δ is the two- or three-dimensional Laplacian. Is this equation homogeneous?

Chapter 12: Partial Differential Equations

2. The one-dimensional wave equation

- The one-dimensional wave equation models the 2-dimensional dynamics of a vibrating string which is stretched and clamped at its end points (say at $x=0$ and $x=L$).
- The function $u(x, t)$ measures the deflection of the string and satisfies

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad c^{2} \propto T, T \equiv \text { tension of the string }
$$

with Dirichlet boundary conditions

$$
u(0, t)=u(L, t)=0, \quad \text { for all } t \geq 0
$$

- In what follows, we assume that the initial conditions are

$$
u(x, 0)=f(x), \quad u_{t}(x, 0) \equiv \frac{\partial u}{\partial t}(x, 0)=g(x), \quad \text { for } x \in[0, L]
$$

Solution by separation of variables

- We look for a solution $u(x, t)$ in the form $u(x, t)=F(x) G(t)$.
- Substitution into the one-dimensional wave equation gives

$$
\frac{1}{c^{2} G(t)} \frac{d^{2} G}{d t^{2}}=\frac{1}{F} \frac{d^{2} F}{d x^{2}}
$$

Since the left-hand side is a function of t only and the right-hand side is a function of x only, and since x and t are independent, the two terms must be equal to some constant k.

- Imposing the boundary conditions gives solutions of the form

$$
u_{n}(x, t)=\left[a_{n} \cos \left(\operatorname{cn} \frac{\pi t}{L}\right)+b_{n} \sin \left(c n \frac{\pi t}{L}\right)\right] \sin \left(n \frac{\pi x}{L}\right)
$$

for $n=1,2, \cdots$, where $k=-\left(\frac{n \pi}{L}\right)^{2}$, and the a_{n} 's and b_{n} 's are arbitrary constants.

Chapter 12: Partial Differential Equations

Definitions and examples
The wave equation
The one-dimensional wave equation
Separation of variables
The two-dimensional wave equation

Solution by separation of variables (continued)

- The functions $u_{n}(x, t)$ are called the normal modes of the vibrating string. The n-th normal mode has $n-1$ nodes, which are points in space where the string does not vibrate.
- The general solution to the one-dimensional wave equation with Dirichlet boundary conditions is therefore a linear combination of the normal modes of the vibrating string,

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} C_{n} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty}\left[A_{n} \cos \left(c n \frac{\pi t}{L}\right)+B_{n} \sin \left(c n \frac{\pi t}{L}\right)\right] \sin \left(n \frac{\pi x}{L}\right)
\end{aligned}
$$

where $A_{n}=C_{n} a_{n}$ and $B_{n}=C_{n} b_{n}$.

Solution by separation of variables (continued)

- The coefficients of the above expansion are found by imposing the initial conditions.
- Since $u_{n}(x, 0)$ and $\frac{\partial u_{n}}{\partial t}(x, 0)$ are proportional to $\sin (n \pi x / L)$, imposing the initial conditions amounts to finding the orthogonal expansions of the functions $f(x)$ and $g(x)$ on $\{\sin (n \pi x / L), n=1,2, \cdots\}$.
- Therefore, with $U_{n}(x)=\sin \left(n \frac{\pi x}{L}\right)$,
$A_{n}=\frac{\left\langle u(x, 0), U_{n}(x)\right\rangle}{\left\|U_{n}\right\|^{2}}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(n \frac{\pi x}{L}\right) d x$,
$B_{n}=\frac{L}{c n \pi} \frac{\left\langle u_{t}(x, 0), U_{n}(x)\right\rangle}{\left\|U_{n}(x)\right\|^{2}}=\frac{2}{L} \int_{0}^{L} \frac{L}{c n \pi} g(x) \sin \left(n \frac{\pi x}{L}\right) d x$.

Solution by separation of variables (continued)

- Example: Show that the solution to $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with Dirichlet boundary conditions on $[0,1]$ and initial condition

$$
u(x, 0)=\left\{\begin{array}{ll}
\frac{x}{5} & \text { if } 0 \leq x \leq 0.5 \\
\frac{1-x}{5} & \text { if } 0.5 \leq x \leq 1
\end{array}, \quad \frac{\partial u}{\partial t}(x, 0)=0\right.
$$

is of the form

$$
\begin{aligned}
u(x, t)=\frac{4}{5 \pi^{2}}[\sin (\pi x) \cos (c \pi t) & -\frac{1}{9} \sin (3 \pi x) \cos (3 c \pi t) \\
& \left.+\frac{1}{25} \sin (5 \pi x) \cos (5 c \pi t)+\cdots\right]
\end{aligned}
$$

- Experiment with the Vibrating String MATLAB GUI.

3. The two-dimensional wave equation

- The two-dimensional wave equation models the 3-dimensional dynamics of a stretched elastic membrane clamped at its boundary.
- The function $u(x, y, t)$ measures the vertical displacement of the membrane (think of a drum for instance) and satisfies

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=c^{2} \nabla^{2} u
$$

where c^{2} is proportional to the tension of the membrane.

- The boundary conditions (Dirichlet) are $u=0$ on the boundary of the membrane and the initial conditions are of the form

$$
u(x, y, 0)=f(x, y), \quad u_{t}(x, y, 0) \equiv \frac{\partial u}{\partial t}(x, y, 0)=g(x, y)
$$

Chapter 12: Partial Differential Equations

Rectangular membrane

- For a rectangular membrane, we use separation of variables in cartesian coordinates, i.e. we let

$$
u(x, y, t)=F(x, y) G(t)
$$

where the functions F, and G are to be determined.

- Substitution into the wave equation leads to

$$
\frac{1}{c^{2} G} \frac{d^{2} G}{d t^{2}}=\frac{1}{F} \nabla^{2} F=-\nu^{2}
$$

where ν is a real constant.

- The function F therefore satisfies Helmholtz's equation, $\nabla^{2} F+\nu^{2} F=0$, which can also be solved by separation of variables, i.e. by letting $F(x, y)=H_{1}(x) H_{2}(y)$.

Rectangular membrane (continued)

- As before, imposing the boundary conditions leads to a collection of normal modes for the square membrane, which are

$$
\begin{aligned}
u_{m n}(x, y, t)= & {\left[a_{m n} \cos \left(\lambda_{m n} t\right)+b_{m n} \sin \left(\lambda_{m n} t\right)\right] } \\
& \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right),
\end{aligned}
$$

where

$$
\lambda_{m n}=c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}}
$$

and the membrane is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.

- The next step is to impose the initial conditions.

Rectangular membrane (continued)

- Since the wave equation is linear, the solution u can be written as a linear combination (i.e. a superposition) of the normal modes for the given boundary conditions. In other words, we write

$$
\begin{aligned}
u(x, y, t)= & \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} C_{m n} u_{m n}(x, y, t) \\
= & \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\left[A_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n} \sin \left(\lambda_{m n} t\right)\right]\right. \\
& \left.\sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right)\right),
\end{aligned}
$$

where $A_{m n}=C_{m n} a_{m n}$ and $B_{m n}=C_{m n} b_{m n}$.

Rectangular membrane (continued)

- The coefficients $A_{m n}$ and $B_{m n}$ are found by writing the orthogonal expansions of the initial conditions $f(x, y)$ and $g(x, y)$ as double Fourier sine series. The corresponding dot product is defined by

$$
\langle f, g\rangle=\int_{0}^{a} \int_{0}^{b} f(x, y) g(x, y) d y d x
$$

- The presence of nodal lines in the normal modes may lead to the existence of nodal curves in the solution $u(x, y, t)$.
- Experiment with the Rectangular Elastic Membrane MATLAB GUI.

Circular membrane

- For a circular membrane, it is more appropriate to write the Laplacian in polar coordinates, so that $u=u(r, \theta, t)$ solves

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right)
$$

- If the membrane has radius R, the boundary conditions are

$$
u(R, \theta, t)=0, \quad \text { for all } t
$$

- For radially symmetric solutions (i.e. if $u_{\theta}(r, \theta, t)=0$), the method of separation of variables leads to normal modes in terms of Bessel functions. Finding a specific solution amounts to finding an orthogonal expansion of the initial conditions, this time in terms of Fourier-Bessel series.
- Experiment with the Circular Elastic Membrane MATLAB GUI.

4. The one-dimensional heat equation on a finite interval

- The one-dimensional heat equation models the diffusion of heat (or of any diffusing quantity) through a homogeneous one-dimensional material (think for instance of a rod).
- The function $u(x, t)$ measures the temperature of the rod at point x and at time t. It satisfies the heat equation,

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad c^{2} \equiv \text { diffusion coefficient. }
$$

- Typical boundary conditions are of one of the following types,
- Dirichlet: $u(0, t)=u(L, t)=0$ for all $t \geq 0$;
- Neumann: $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=C$ for all $t \geq 0$, where C is a given constant (often, $C=0$);
where we assume that the end points of the rod are at $x=0$ and $x=L$.

Chapter 12: Partial Differential Equations

Definitions and examples
The wave equation
The heat equation

The one-dimensional heat equation on a finite interval
The one-dimensional heat equation on the whole line

The one-dimensional heat equation (continued)

- One can also consider mixed boundary conditions, for instance Dirichlet at $x=0$ and Neumann at $x=L$.
- The initial condition is given in the form

$$
u(x, 0)=f(x)
$$

where f is a known function.

- In this section, we solve the heat equation with Dirichlet boundary conditions. As for the wave equation, we use the method of separation of variables.
- Setting $u(x, t)=F(x) G(t)$ gives

$$
\frac{1}{c^{2} G} \frac{d G}{d t}=\frac{1}{F} \frac{d^{2} F}{d x^{2}}=k
$$

where k is some constant to be determined.

Separation of variables

- As for the wave equation, the boundary conditions can only be satisfied if we impose $k<0$, say $k=-\nu^{2}$.
- The solution to $\frac{d^{2} F}{d x^{2}}=k F=-\nu^{2} F$ is then

$$
F(x)=b_{n} \sin \left(n \frac{\pi x}{L}\right), \quad n=1,2, \cdots
$$

where ν has to satisfy $\nu=n \pi / L$.

- After solving for $G(t)$, we obtain an infinite number of modes,

$$
u_{n}(x, t)=b_{n} \sin \left(n \frac{\pi x}{L}\right) \exp \left[-\left(\frac{c n \pi}{L}\right)^{2} t\right] .
$$

where $n=1,2, \cdots$.

Definitions and examples The wave equation
The heat equation

The one-dimensional heat equation on a finite interval The one-dimensional heat equation on the whole line

Separation of variables (continued)

- Since the heat equation is linear, its general solution in the presence of Dirichlet boundary conditions is given by a linear combination (or superposition) of the modes u_{n}, i.e.

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} C_{n} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty} B_{n} \sin \left(n \frac{\pi x}{L}\right) \exp \left[-\left(\frac{c n \pi}{L}\right)^{2} t\right]
\end{aligned}
$$

where $B_{n}=C_{n} b_{n}$.

- The initial condition reads $f(x)=\sum_{n=1}^{\infty} B_{n} \sin \left(n \frac{\pi x}{L}\right)$, and the coefficients B_{n} can therefore be obtained by finding the half-range sine expansion of $f(x)$.

Separation of variables (continued)

- In other words, we have

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(n \frac{\pi x}{L}\right) d x
$$

- For an insulated rod (i.e. for Neumann boundary conditions with $C=0$), the solution is of the form

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} \cos \left(n \frac{\pi x}{L}\right) \exp \left[-\left(\frac{c n \pi}{L}\right)^{2} t\right]
$$

and the A_{n} are found by writing the half-range cosine expansion of the initial condition $f(x)$.

- Experiment with the One-dimensional Heat Equation MATLAB GUI.

5. The one-dimensional heat equation on the whole line

- To solve the one-dimensional heat equation on the whole line, one first formally takes the Fourier transform of the heat equation,

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \Longrightarrow \frac{d \widehat{u}_{k}}{d t}=-c^{2} k^{2} \widehat{u}_{k}
$$

- The initial condition, $u(x, 0)=f(x)$ reads $\widehat{u}_{k}(0)=\widehat{f}(k)$, and the solution is therefore

$$
u(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{f}(k) \exp \left(-c^{2} k^{2} t\right) \exp (i k x) d k
$$

- We can recognize this integral as the inverse Fourier transform of a product of two Fourier transforms, $\widehat{f}(k)$ and $\widehat{g}(k)$, where $\widehat{g}(k)=\exp \left(-c^{2} k^{2} t\right)$.

Method of convolution

- Since we know that $g(x)=\frac{1}{\sqrt{2 c^{2} t}} \exp \left(-\frac{x^{2}}{4 c^{2} t}\right)$, and since the inverse Fourier transform of a product is the convolution of the inverse transforms times $\frac{1}{\sqrt{2 \pi}}$, we therefore have

$$
u(x, t)=\frac{1}{2 c \sqrt{\pi t}} \int_{-\infty}^{\infty} f(y) \exp \left(-\frac{(x-y)^{2}}{4 c^{2} t}\right) d y
$$

- Example: Solve the heat equation on the whole line with initial condition $u(x, 0)=1$ if $|x|<1$ and $u(x, 0)=0$ otherwise.
- Experiment with the Heat Equation on the Whole Line MATLAB GUI.

