Problems for Quiz 14
 Math 322. Spring, 2007.

1. Consider the initial value problem (IVP) defined by the partial differential equation (PDE)

$$
\begin{equation*}
u_{t}=u_{x x}-2 u_{x}+u, \quad 0<x<1, \quad t>0 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u(0, t)=0, \quad u(1, t)=0, \tag{2}
\end{equation*}
$$

and initial condition

$$
\begin{equation*}
u(x, 0)=f(x) . \tag{3}
\end{equation*}
$$

You will use the method of separation of variables to find the solution to this problem.
(a) Look for a solution of the PDE of the form $u(x, t)=F(x) G(t)$ and set up the corresponding eigenvalue problems (Hint: You should use the boundary conditions (2) to set up the eigenvalue problem for $F(x)$).
(b) Consider the eigenvalue problem for $F(x)$ that you found in part a). Is it in Sturm-Liouville form? Can you transform it into Sturm-Liouville form? (Hint: Use problem 6 of problem set 5.7 in your text book).
(c) Consider again the eigenvalue problem for $F(x)$. Find the eigenvalues λ_{n} and the corresponding eigenfunctions $F_{n}(x)$.
(d) Find the functions $G_{n}(t)$ corresponding to the eigenvalues λ_{n} that you found in part c) and write down explicit expressions for the solutions $u_{n}(x, t)=F_{n}(x) G_{n}(t)$ of the PDE.
(e) Verify that the functions $u_{n}(x, t)$ that you found in part d) are indeed solutions of the PDE (1).
(f) The solution to the IVP is obtained by the principle of superposition: $u(x, t)=\sum_{n} A_{n} u_{n}(x, t)$ where the constant coefficients A_{n} are chosen to satisfy the initial condition (3). Using your answer to part b) and your knowlege on orthogonal expansions arising from Sturm-Liouville problems, write an explicit expression for the coefficients A_{n} (your formula should involve $f(x)$).
(g) Write the solution to the problem if

$$
f(x)=2 e^{x} \sin (3 \pi x)-e^{x} \sin (7 \pi x) .
$$

2. Consider the boundary value problem (BVP) defined by Laplace's equation

$$
u_{x x}+u_{y y}=0 \quad \text { on the square } \quad 0<x, y<2
$$

subject to the boundary conditions

$$
u(0, y)=0, \quad u(x, 2)=0, \quad u(2, y)=0, \quad u(x, 0)=100 \sin (\pi x / 2)
$$

Solve the BVP using the method of separation of variables.
3. Consider the initial value problem (IVP) defined by partial differential equation (PDE)

$$
u_{t}=u_{x x} \quad 0 \leq x \leq 2, \quad t \geq 0
$$

subject to the boundary conditions

$$
u(0, t)=0, \quad u(2, t)=0
$$

and the initial condition

$$
u(x, 0)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } 1 \leq x \leq 2\end{cases}
$$

Solve the IVP using the method of separation of variables.

