Problems for Quiz 14
 Math 322. Spring, 2007.

1. Consider the initial value problem (IVP) defined by the partial differential equation (PDE)

$$
\begin{equation*}
u_{t}=u_{x x}-2 u_{x}+u, \quad 0<x<1, \quad t>0 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u(0, t)=0, \quad u(1, t)=0 \tag{2}
\end{equation*}
$$

and initial condition

$$
\begin{equation*}
u(x, 0)=f(x) \tag{3}
\end{equation*}
$$

You will use the method of separation of variables to find the solution to this problem.
(a) Look for a solution of the PDE of the form $u(x, t)=F(x) G(t)$ and set up the corresponding eigenvalue problems (Hint: You should use the boundary conditions (2) to set up the eigenvalue problem for $F(x)$).

Sol. Substituting $u(x, t)=F(x) G(t)$ into (1) gives

$$
F(x) \dot{G}(t)=\left(F^{\prime \prime}(x)-2 F^{\prime}(x)+F(x)\right) G(t)
$$

where $^{\prime}=\frac{d}{d x}$ and ${ }^{\cdot}=\frac{d}{d t}$, so

$$
\frac{F^{\prime \prime}(x)-2 F^{\prime}(x)+F(x)}{F(x)}=\frac{\dot{G}(t)}{G(t)}=\lambda
$$

where λ is a constant. Therefore

$$
\begin{align*}
& F^{\prime \prime}(x)-2 F^{\prime}(x)+F(x)=\lambda F(x) \tag{4}\\
& \dot{G}(t)=\lambda G(t) \tag{5}
\end{align*}
$$

The boundary conditions (2) become:

$$
F(0) G(t)=0, \quad F(1) G(t)=0
$$

so we need:

$$
\begin{equation*}
F(0)=0, \quad F(1)=0 \tag{6}
\end{equation*}
$$

Equation (4) and boundary conditions (6) define the eigenvalue problem for $F(x)$.
(b) Consider the eigenvalue problem for $F(x)$ that you found in part a). Is it in Sturm-Liouville form? Can you transform it into Sturm-Liouville form? (Hint: Use problem 6 of problem set 5.7 in your text book).

Sol. The eigenvalue problem for $F(x)$ is given by

$$
F^{\prime \prime}(x)-2 F^{\prime}(x)+F(x)=\lambda F(x)
$$

with boundary conditions

$$
F(0)=0, \quad F(1)=0
$$

Recall that a Sturm-Liouville problem consists of a second order differential equation:

$$
\begin{equation*}
\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=\lambda \sigma(x) y \tag{7}
\end{equation*}
$$

together with boundary conditions of the form

$$
\begin{equation*}
C_{1} y(a)+C_{2} y^{\prime}(a)=0, \quad C_{3} y(b)+C_{4} y^{\prime}(b)=0 \tag{8}
\end{equation*}
$$

Since equation (4) does not have the form of equation (7), the problem for $F(x)$ is NOT in Sturm-Liouville form.
Following problem 6 of problem set 5.7 in the textbook, we multiply equation (4) on both sides by $e^{-2 x}$ to get:

$$
e^{-2 x} F^{\prime \prime}(x)-2 e^{-2 x} F^{\prime}(x)+e^{-2 x} F(x)=\lambda e^{-2 x} F(x)
$$

that can be written as

$$
\begin{equation*}
\left(e^{-2 x} F^{\prime}(x)\right)^{\prime}+e^{-2 x} F(x)=\lambda e^{-2 x} F(x) \tag{9}
\end{equation*}
$$

that has the form given by (7) with $p(x)=q(x)=\sigma(x)=e^{-2 x}$.
The boundary conditions for $F(x)$ given by (6) have the form (8) where $a=0, b=1, C_{1}=C_{3}=1, C_{2}=$ $C_{4}=0$.
So, by considering equation (9) and boundary conditions (6) we are able to write the eigenvalue problem for $F(x)$ as a Sturm-Liouville problem.
(c) Consider again the eigenvalue problem for $F(x)$. Find the eigenvalues λ_{n} and the corresponding eigenfunctions $F_{n}(x)$.

The characteristic polynomial associated to equation (4) is

$$
p(\mu)=\mu^{2}-2 \mu+(1-\lambda)
$$

with roots

$$
\mu=\frac{2 \pm \sqrt{4-4(1-\lambda)}}{2}=1 \pm \sqrt{\lambda}
$$

Therefore, the general solution for $F(x)$ is

$$
F(x)=A e^{(1+\sqrt{\lambda}) x}+B e^{(1-\sqrt{\lambda}) x}
$$

We need to find the values of λ for which the boundary conditions (6) are satisfied.
Enforcing $F(0)=0$ gives $A+B=0$, so we set $B=-A$ to get

$$
\begin{equation*}
F(x)=A\left(e^{(1+\sqrt{\lambda}) x}-e^{(1-\sqrt{\lambda}) x}\right) \tag{10}
\end{equation*}
$$

Enforcing $F(1)=0$ implies (we are interested in $A \neq 0$):

$$
e^{(1+\sqrt{\lambda})}-e^{(1-\sqrt{\lambda})}=0
$$

which can be rewritten as

$$
e^{2 \sqrt{\lambda}}=1
$$

Writing $1=e^{i 2 \pi n}$ we obtain

$$
2 \sqrt{\lambda}=i 2 \pi n
$$

so $\sqrt{\lambda}=i \pi n$ and $\lambda=-(\pi n)^{2}$. Therefore the eigenvalues are $\lambda_{n}=-(\pi n)^{2}$ for $n=1,2, \ldots(0$ is not an eigenvalue as we shall see below).
The eigenfunctions are obtained by substututing $\sqrt{\lambda}=i \pi n$ into (10). We get

$$
\begin{aligned}
F_{n}(x) & =A e^{x}\left(e^{i \pi n x}-e^{-i \pi n x}\right) \\
& =2 i A e^{x} \sin (n \pi x)
\end{aligned}
$$

Recall that eigenfunctions are defined up to multiplication by a scalar factor. We can therefore simply take

$$
F_{n}(x)=e^{x} \sin (n \pi x)
$$

Notice that $F_{0}=0$ so $n=0$ does not define a nonzero eigenfunction. Therefore the eigenvalues are $\lambda_{n}=-(\pi n)^{2}$ for $n=1,2, \ldots$ and the corresponding eigenfunctions are $F_{n}(x)=e^{x} \sin (n \pi x)$.
(d) Find the functions $G_{n}(t)$ corresponding to the eigenvalues λ_{n} that you found in part c) and write down explicit expressions for the solutions $u_{n}(x, t)=F_{n}(x) G_{n}(t)$ of the PDE.

Sol. The general solution to equation (5) is

$$
G(t)=C e^{\lambda t}
$$

for a constant C. Considering the particular values $\lambda_{n}=-(\pi n)^{2}$, we find

$$
G_{n}(t)=C_{n} e^{-(\pi n)^{2} t}
$$

We therefore get the following family of functions as solutions of the PDE (1):

$$
\begin{equation*}
u_{n}(x, t)=C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x) \tag{11}
\end{equation*}
$$

(e) Verify that the functions $u_{n}(x, t)$ that you found in part d) are indeed solutions of the PDE (1).

Sol. Differentiating the expression for $u_{n}(x, t)$ given by equation (11) gives:

$$
\begin{aligned}
\frac{\partial u_{n}}{\partial t} & =-(\pi n)^{2} C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x) \\
\frac{\partial u_{n}}{\partial x} & =C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x)+n \pi C_{n} e^{-(\pi n)^{2} t} e^{x} \cos (n \pi x) \\
\frac{\partial^{2} u_{n}}{\partial x^{2}} & =C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x)+2 n \pi C_{n} e^{-(\pi n)^{2} t} e^{x} \cos (n \pi x)-(n \pi)^{2} C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\partial^{2} u_{n}}{\partial x^{2}}-2 \frac{\partial u_{n}}{\partial x}+u_{n}= & C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x)+2 n \pi C_{n} e^{-(\pi n)^{2} t} e^{x} \cos (n \pi x) \\
& -(n \pi)^{2} C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x)-2 C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x) \\
& -2 n \pi C_{n} e^{-(\pi n)^{2} t} e^{x} \cos (n \pi x)+C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x) \\
= & -(n \pi)^{2} C_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x) \\
= & \frac{\partial u_{n}}{\partial t},
\end{aligned}
$$

so $u_{n}(x, t)$ is indeed a solution of (1).
(f) The solution to the IVP is obtained by the principle of superposition: $u(x, t)=\sum_{n} A_{n} u_{n}(x, t)$ where the constant coefficients A_{n} are chosen to satisfy the initial condition (3). Using your answer to part b) and your knowlege on orthogonal expansions arising from Sturm-Liouville problems, write an explicit expression for the coefficients A_{n} (your formula should involve $f(x)$).

Sol. By the principle of superposition our solution will have the form (the constants C_{n} are absorbed into A_{n}):

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-(\pi n)^{2} t} e^{x} \sin (n \pi x) \tag{12}
\end{equation*}
$$

Setting $t=0$ and enforcing the initial condition $u(x, 0)=f(x)$ gives

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} A_{n} e^{x} \sin (n \pi x) \tag{13}
\end{equation*}
$$

¿From part b) we know that the functions $F_{n}(x)=e^{x} \sin (n \pi x)$ are the eigenfunctions of the SturmLiouville problem defined by equation (9) and the boundary conditions $F(0)=F(1)=0$. So the A_{n} 's are the coefficients in the eigenfunction expansion of $f(x)$. There are two ways of determining the value of these coefficients (both of them come from the idea of orthogonal expansions):
i. For a general Sturm-Liouville problem

$$
\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=\lambda \sigma(x) y
$$

with boundary conditions

$$
C_{1} y(a)+C_{2} y^{\prime}(a)=0, \quad C_{3} y(b)+C_{4} y^{\prime}(b)=0,
$$

any pair of eigenfunctions y_{m}, y_{n}, corresponding to different eigenvalues, λ_{m}, λ_{n}, are orthogonal with respect to the weight function $\sigma(x)$, meaning that

$$
\left\langle y_{m}, y_{n}\right\rangle=\int_{a}^{b} \sigma(x) y_{m}(x) y_{n}(x) d x=0 \quad \text { if } \quad m \neq n
$$

Under reasonable and quite general assumptions on $f(x)$, one can obtain an orthogonal expansion of the form

$$
f(x)=\sum_{n} A_{n} y_{n}(x) .
$$

As a consequence of orthogonality of the eigenfunctions, one has the following formula for the coefficients A_{n} (see formula (4) in section 5.8 of your textbook):

$$
A_{n}=\frac{\left\langle f, y_{n}\right\rangle}{\left\|y_{n}\right\|^{2}}=\frac{\int_{a}^{b} \sigma(x) f(x) y_{n}(x) d x}{\int_{a}^{b} \sigma(x)\left(y_{n}(x)\right)^{2} d x}
$$

In our case, the eigenfunctions are $F_{n}(x)=e^{x} \sin (n \pi x)$, and from part (b) we know that $\sigma(x)=e^{-2 x}$. Hence

$$
A_{n}=\frac{\int_{0}^{1} e^{-2 x} f(x) e^{x} \sin (n \pi x) d x}{\int_{0}^{1} e^{-2 x}\left(e^{x} \sin (n \pi x)\right)^{2} d x}=\frac{\int_{0}^{1} e^{-x} f(x) \sin (n \pi x) d x}{\int_{0}^{1} \sin ^{2}(n \pi x) d x} .
$$

Using the identity $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)$, one computes $\int_{0}^{1} \sin ^{2}(n \pi x) d x=\frac{1}{2}$, so

$$
\begin{equation*}
A_{n}=2 \int_{0}^{1} e^{-x} f(x) \sin (n \pi x) d x \tag{14}
\end{equation*}
$$

ii. One can also obtain this formula for the coefficients A_{n} by noticing that equation (13) can be written as

$$
f(x)=e^{x} \sum_{n=1}^{\infty} A_{n} \sin (n \pi x)
$$

Multiplying both sides of the equation by e^{-x} and calling $g(x)=e^{-x} f(x)$ we write

$$
g(x)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x),
$$

so the A_{n} 's are the coefficients in the sine series expansion of $g(x)$. Therefore the well known formula:

$$
A_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin (n \pi x) d x
$$

holds. In our case, $L=1$ and $g(x)=e^{-x} f(x)$ so

$$
A_{n}=2 \int_{0}^{1} e^{-x} f(x) \sin (n \pi x) d x
$$

that is exactly (14).
(g) Write the solution to the problem if

$$
f(x)=2 e^{x} \sin (3 \pi x)-e^{x} \sin (7 \pi x) .
$$

Sol. One can use the formula (14) to determine the value of A_{n}. However it is much easier to notice that the function $f(x)=2 e^{x} \sin (3 \pi x)-e^{x} \sin (7 \pi x)$ is already expressed as an orthogonal expansion. Equation (13) gives

$$
2 e^{x} \sin (3 \pi x)-e^{x} \sin (7 \pi x)=\sum_{n=1}^{\infty} A_{n} e^{x} \sin (n \pi x)
$$

which implies $A_{3}=2, A_{7}=-1$ and $A_{n}=0$ for any value of n that is not 3 or 7. Hence, formula (12) gives

$$
u(x, t)=2 e^{-9 \pi^{2} t} e^{x} \sin (3 \pi x)-e^{-49 \pi^{2} t} e^{x} \sin (7 \pi x)
$$

2. Consider the boundary value problem (BVP) defined by Laplace's equation

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad \text { on the square } 0<x, y<2 \tag{15}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0, y)=0, \quad u(x, 2)=0, \quad u(2, y)=0, \quad u(x, 0)=100 \sin (\pi x / 2)
$$

Solve the BVP using the method of separation of variables.

Sol. We begin by looking for a solution of the form $u(x, t)=F(x) G(y)$. Substitution into (15) and the usual arguments gives:

$$
\frac{F^{\prime \prime}(x)}{F(x)}=-\frac{G^{\prime \prime}(y)}{G(y)}=k
$$

for some constant k. Therefore

$$
\begin{align*}
F^{\prime \prime}(x) & =k F(x), \tag{16}\\
G^{\prime \prime}(y) & =-k G(y) \tag{17}
\end{align*}
$$

The boundary conditions $u(0, y)=0$ and $u(2, y)=0$ become

$$
0=F(0) G(y) \quad F(2) G(y)
$$

We are interested in $G(y)$ that is not identically zero, so we must require

$$
\begin{equation*}
F(0)=0, \quad F(2)=0 . \tag{18}
\end{equation*}
$$

Equation (16) and boundary conditions (18) define an eigenvalue problem for $F(x)$. The general solution to (16) is

$$
F(x)=A e^{\sqrt{k} x}+B e^{-\sqrt{k} x} .
$$

Enforcing $F(0)=0$ gives $A+B=0$, so we set $B=-A$ to get

$$
\begin{equation*}
F(x)=A\left(e^{\sqrt{k} x}-e^{-\sqrt{k} x}\right) \tag{19}
\end{equation*}
$$

Enforcing $F(2)=0$ implies (we are interested in $A \neq 0$):

$$
e^{2 \sqrt{k}}-e^{-2 \sqrt{k}}=0
$$

which can be rewritten as

$$
e^{4 \sqrt{k}}=1
$$

Writing $1=e^{i 2 \pi n}$ we obtain

$$
4 \sqrt{k}=i 2 \pi n
$$

so $\sqrt{k}=\frac{i \pi n}{2}$ and $k=-\left(\frac{\pi n}{2}\right)^{2}$. Therefore the eigenvalues are $k_{n}=-\left(\frac{\pi n}{2}\right)^{2}$ for $n=1,2, \ldots$ (0 is not an eigenvalue as we shall see below).
The eigenfunctions are obtained by substututing $\sqrt{k}=i \frac{\pi n}{2}$ into (19). We get

$$
\begin{aligned}
F_{n}(x) & =A\left(e^{i\left(\frac{\pi n}{2}\right) x}-e^{-i\left(\frac{\pi n}{2}\right) x}\right) \\
& =2 i A \sin \left(\frac{n \pi x}{2}\right)
\end{aligned}
$$

Recall that eigenfunctions are defined up to multiplication by a scalar factor. We can therefore simply take

$$
F_{n}(x)=\sin \left(\frac{n \pi x}{2}\right) .
$$

Notice that $F_{0}=0$ so $n=0$ does not define a nonzero eigenfunction. Therefore the eigenvalues are $k_{n}=-\frac{(\pi n)^{2}}{2}$ for $n=1,2, \ldots$ and the corresponding eigenfunctions are $F_{n}(x)=\sin \left(\frac{n \pi x}{2}\right)$.
Substitution of $k_{n}=-\frac{(\pi n)^{2}}{2}$ into equation (17) gives

$$
G_{n}^{\prime \prime}(y)=\frac{(\pi n)^{2}}{2} G_{n}(y)
$$

whose general solution is

$$
\begin{equation*}
G_{n}(y)=A_{n} e^{\frac{n \pi y}{2}}+B_{n} e^{-\frac{n \pi y}{2}} \tag{20}
\end{equation*}
$$

Substitution of the boundary condition $u(x, 2)=0$ into the expression $u_{n}(x, y)=F_{n}(x) G_{n}(y)$ gives

$$
0=F_{n}(x) G_{n}(2)
$$

so we require $G_{n}(2)=0$. Enforcing this condition in (20) gives

$$
\begin{equation*}
A_{n} e^{n \pi}+B_{n} e^{-n \pi}=0 \tag{21}
\end{equation*}
$$

This is one linear equation for the unknowns A_{n}, B_{n}. Its solution is of the form

$$
\binom{A_{n}}{B_{n}}=C_{n}\binom{e^{-n \pi}}{-e^{n \pi}}
$$

for a constant C_{n}. One can chose any nonzero value for C_{n} and carry on the analysis. Putting $C_{n}=\frac{1}{2}$ and substituting into (20) gives

$$
\begin{aligned}
G_{n}(y) & =\frac{1}{2}\left(e^{\frac{n \pi y}{2}-n \pi}-e^{-\frac{n \pi y}{2}+n \pi}\right) \\
& =\sinh \left(\frac{n \pi}{2}(y-2)\right)
\end{aligned}
$$

Therefore we find

$$
u_{n}(x, y)=\sin \left(\frac{n \pi x}{2}\right) \sinh \left(\frac{n \pi}{2}(y-2)\right)
$$

Setting $u(x, y)=\sum_{n} A_{n} u_{n}(x, y)$ gives

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{2}\right) \sinh \left(\frac{n \pi}{2}(y-2)\right)
$$

We now enforce the boundary condition at $y=0$. Substituting $y=0$ in the above expression and enforcing $u(x, 0)=100 \sin (\pi x / 2)$ gives:

$$
100 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty}-A_{n} \sin \left(\frac{n \pi x}{2}\right) \sinh (n \pi)
$$

It follows that

$$
A_{1}=-\frac{100}{\sinh (\pi)}, \quad A_{n}=0 \text { for } n \neq 1
$$

Therefore the solution to the problem is

$$
u(x, y)=-\frac{100}{\sinh (\pi)}\left[\sin \left(\frac{\pi x}{2}\right) \sinh \left(\frac{\pi}{2}(y-2)\right)\right]
$$

3. Consider the initial value problem (IVP) defined by partial differential equation (PDE)

$$
u_{t}=u_{x x} \quad 0 \leq x \leq 2, \quad t \geq 0
$$

subject to the boundary conditions

$$
u(0, t)=0, \quad u(2, t)=0
$$

and the initial condition

$$
u(x, 0)= \begin{cases}x, & \text { for } 0<x<1 \\ 2-x, & \text { for } 1<x<2\end{cases}
$$

Solve the IVP using the method of separation of variables.
sol. We start with looking for solution in the form

$$
u(x, t)=F(x) G(t)
$$

Method of separation of variable gives

$$
\frac{F^{\prime \prime}(x)}{F(x)}=\frac{G^{\prime}(t)}{G(t)}=\lambda
$$

i.e.

$$
\begin{align*}
F^{\prime \prime}(x) & =\lambda F(x) \tag{22}\\
G^{\prime}(t) & =\lambda G(t) \tag{23}
\end{align*}
$$

Equation (22) has solution

$$
F(x)=A e^{\sqrt{\lambda} x}+B e^{-\sqrt{\lambda} x}
$$

Enforcing $F(0)=0$ gives $A+B=0$, so we set $B=-A$ to get

$$
\begin{equation*}
F(x)=A\left(e^{\sqrt{\lambda} x}-e^{-\sqrt{\lambda} x}\right) \tag{24}
\end{equation*}
$$

Enforcing $F(2)=0$ implies (we are interested in $A \neq 0$):

$$
e^{2 \sqrt{\lambda}}-e^{-2 \sqrt{\lambda}}=0
$$

which can be rewritten as

$$
e^{4 \sqrt{\lambda}}=1
$$

Writing $1=e^{i 2 \pi n}$ we obtain

$$
4 \sqrt{\lambda}=i 2 \pi n
$$

so $\sqrt{\lambda}=\frac{i \pi n}{2}$ and $\lambda=-\left(\frac{\pi n}{2}\right)^{2}$. Therefore the eigenvalues are $\lambda_{n}=-\left(\frac{\pi n}{2}\right)^{2}$ for $n=1,2, \ldots$.
The eigenfunctions are obtained by substututing $\sqrt{\lambda}=i \frac{\pi n}{2}$ into (19). We get

$$
\begin{aligned}
F_{n}(x) & =A\left(e^{i\left(\frac{\pi n}{2}\right) x}-e^{-i\left(\frac{\pi n}{2}\right) x}\right) \\
& =2 i A \sin \left(\frac{n \pi x}{2}\right)
\end{aligned}
$$

Recall that eigenfunctions are defined up to multiplication by a scalar factor. We can therefore simply take

$$
F_{n}(x)=\sin \left(\frac{n \pi x}{2}\right)
$$

Then equation (23) has solution

$$
G_{n}(t)=e^{-\left(\frac{\pi n}{2}\right)^{2} t}
$$

So,

$$
u_{n}(x, t)=F_{n}(x) G_{n}(t)=e^{-\left(\frac{\pi n}{2}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)
$$

And thus,

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\left(\frac{\pi n}{2}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)
$$

To enforce initial condition, let $t=0$, we have

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{2}\right)
$$

For any initial condition $u(x, 0)=f(x)$ given by the problem, we will have the formula to compute A_{n} as follows

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{2}\right) d x
$$

In this particular problem, $L=2$, so

$$
\begin{aligned}
A_{n} & =\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\int_{0}^{1} x \sin \left(\frac{n \pi x}{2}\right) d x+\int_{1}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x \\
\int_{0}^{1} x \sin \left(\frac{n \pi x}{2}\right) d x & =\left.\frac{-x \cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right|_{0} ^{1}+\int_{0}^{1} \frac{\cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}} d x \\
& =\left.\frac{-x \cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right|_{0} ^{1}+\left.\frac{\sin \left(\frac{n \pi x}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}\right|_{0} ^{1} \\
& =\frac{-\cos \left(\frac{n \pi}{2}\right)}{\frac{n \pi}{2}}+\frac{\sin \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}} \\
& =\left.\frac{-2 \cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right|_{1} ^{2}+\left.\frac{x \cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right|_{1} ^{2}-\int_{1}^{2} \frac{\cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}} d x \\
\int_{1}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x & \left.\left.\frac{-2 \cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right|_{1} ^{2}+\left.\frac{x \cos \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right|_{1} ^{2}-\frac{n \pi x}{2}\right) d x-\int_{1}^{2} x \sin \left(\frac{n \pi x}{2}\right) \\
& =\frac{-2 \cos \left(\frac{n n \pi}{2}\right)}{\frac{n \pi}{2}}+\frac{2 \cos \left(\frac{n \pi}{2}\right)}{\frac{n \pi}{2}}+\frac{2 \cos \left(\frac{2 n \pi}{2}\right)}{\frac{n \pi}{2}-\frac{\cos \left(\frac{n \pi}{2}\right)}{\frac{n \pi}{2}}-\frac{\sin \left(\frac{2 n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}+\frac{\sin \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}}
\end{aligned}
$$

Thus,

$$
A_{n}=\frac{\sin \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}+\frac{\sin \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}=\frac{2 \sin \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}=\frac{8 \sin \left(\frac{n \pi}{2}\right)}{n^{2} \pi^{2}}
$$

