
Problems for Quiz 14
Math 322. Spring, 2007.

1. Consider the initial value problem (IVP) defined by the partial differential equation (PDE)

ut = uxx − 2ux + u, 0 < x < 1, t > 0 (1)

with boundary conditions
u(0, t) = 0, u(1, t) = 0, (2)

and initial condition
u(x, 0) = f(x). (3)

You will use the method of separation of variables to find the solution to this problem.

(a) Look for a solution of the PDE of the form u(x, t) = F (x)G(t) and set up the corresponding eigenvalue
problems (Hint: You should use the boundary conditions (2) to set up the eigenvalue problem for F (x)).

Sol. Substituting u(x, t) = F (x)G(t) into (1) gives

F (x)Ġ(t) = (F ′′(x)− 2F ′(x) + F (x))G(t)

where ′ = d
dx and ˙ = d

dt , so

F ′′(x)− 2F ′(x) + F (x)
F (x)

=
Ġ(t)
G(t)

= λ,

where λ is a constant. Therefore

F ′′(x)− 2F ′(x) + F (x) = λF (x), (4)
Ġ(t) = λG(t). (5)

The boundary conditions (2) become:

F (0)G(t) = 0, F (1)G(t) = 0,

so we need:
F (0) = 0, F (1) = 0. (6)

Equation (4) and boundary conditions (6) define the eigenvalue problem for F (x).

(b) Consider the eigenvalue problem for F (x) that you found in part a). Is it in Sturm-Liouville form? Can
you transform it into Sturm-Liouville form? (Hint: Use problem 6 of problem set 5.7 in your text book).

Sol. The eigenvalue problem for F (x) is given by

F ′′(x)− 2F ′(x) + F (x) = λF (x)

with boundary conditions
F (0) = 0, F (1) = 0.

Recall that a Sturm-Liouville problem consists of a second order differential equation:

(p(x)y′)′ + q(x)y = λσ(x)y (7)

together with boundary conditions of the form

C1y(a) + C2y
′(a) = 0, C3y(b) + C4y

′(b) = 0. (8)



MATH 322. SOLUTIONS TO QUIZ 14 PROBLEMS. ———————————————————————————— 2

Since equation (4) does not have the form of equation (7), the problem for F (x) is NOT in Sturm-Liouville
form.
Following problem 6 of problem set 5.7 in the textbook, we multiply equation (4) on both sides by e−2x to
get:

e−2xF ′′(x)− 2e−2xF ′(x) + e−2xF (x) = λe−2xF (x)

that can be written as
(e−2xF ′(x))′ + e−2xF (x) = λe−2xF (x), (9)

that has the form given by (7) with p(x) = q(x) = σ(x) = e−2x.
The boundary conditions for F (x) given by (6) have the form (8) where a = 0, b = 1, C1 = C3 = 1, C2 =
C4 = 0.
So, by considering equation (9) and boundary conditions (6) we are able to write the eigenvalue problem
for F (x) as a Sturm-Liouville problem.

(c) Consider again the eigenvalue problem for F (x). Find the eigenvalues λn and the corresponding eigen-
functions Fn(x).

The characteristic polynomial associated to equation (4) is

p(µ) = µ2 − 2µ + (1− λ)

with roots

µ =
2±

√
4− 4(1− λ)

2
= 1±

√
λ.

Therefore, the general solution for F (x) is

F (x) = Ae(1+
√

λ)x + Be(1−
√

λ)x

We need to find the values of λ for which the boundary conditions (6) are satisfied.
Enforcing F (0) = 0 gives A + B = 0, so we set B = −A to get

F (x) = A(e(1+
√

λ)x − e(1−
√

λ)x). (10)

Enforcing F (1) = 0 implies (we are interested in A 6= 0):

e(1+
√

λ) − e(1−
√

λ) = 0,

which can be rewritten as
e2
√

λ = 1.

Writing 1 = ei2πn we obtain
2
√

λ = i2πn

so
√

λ = iπn and λ = −(πn)2. Therefore the eigenvalues are λn = −(πn)2 for n = 1, 2, . . . (0 is not an
eigenvalue as we shall see below).
The eigenfunctions are obtained by substututing

√
λ = iπn into (10). We get

Fn(x) = Aex(eiπnx − e−iπnx)
= 2iAex sin(nπx).

Recall that eigenfunctions are defined up to multiplication by a scalar factor. We can therefore simply take

Fn(x) = ex sin(nπx).

Notice that F0 = 0 so n = 0 does not define a nonzero eigenfunction. Therefore the eigenvalues are
λn = −(πn)2 for n = 1, 2, . . . and the corresponding eigenfunctions are Fn(x) = ex sin(nπx).
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(d) Find the functions Gn(t) corresponding to the eigenvalues λn that you found in part c) and write down
explicit expressions for the solutions un(x, t) = Fn(x)Gn(t) of the PDE.

Sol. The general solution to equation (5) is

G(t) = Ceλt,

for a constant C. Considering the particular values λn = −(πn)2, we find

Gn(t) = Cne−(πn)2t.

We therefore get the following family of functions as solutions of the PDE (1):

un(x, t) = Cne−(πn)2tex sin(nπx). (11)

(e) Verify that the functions un(x, t) that you found in part d) are indeed solutions of the PDE (1).

Sol. Differentiating the expression for un(x, t) given by equation (11) gives:

∂un

∂t
= −(πn)2Cne−(πn)2tex sin(nπx)

∂un

∂x
= Cne−(πn)2tex sin(nπx) + nπCne−(πn)2tex cos(nπx)

∂2un

∂x2
= Cne−(πn)2tex sin(nπx) + 2nπCne−(πn)2tex cos(nπx)− (nπ)2Cne−(πn)2tex sin(nπx)

Therefore

∂2un

∂x2
− 2

∂un

∂x
+ un = Cne−(πn)2tex sin(nπx) + 2nπCne−(πn)2tex cos(nπx)

−(nπ)2Cne−(πn)2tex sin(nπx)− 2Cne−(πn)2tex sin(nπx)

−2nπCne−(πn)2tex cos(nπx) + Cne−(πn)2tex sin(nπx)

= −(nπ)2Cne−(πn)2tex sin(nπx)

=
∂un

∂t
,

so un(x, t) is indeed a solution of (1).

(f) The solution to the IVP is obtained by the principle of superposition: u(x, t) =
∑

n Anun(x, t) where
the constant coefficients An are chosen to satisfy the initial condition (3). Using your answer to part b)
and your knowlege on orthogonal expansions arising from Sturm-Liouville problems, write an explicit
expression for the coefficients An (your formula should involve f(x)).

Sol. By the principle of superposition our solution will have the form (the constants Cn are absorbed into
An):

u(x, t) =
∞∑

n=1

Ane−(πn)2tex sin(nπx) (12)

Setting t = 0 and enforcing the initial condition u(x, 0) = f(x) gives

f(x) =
∞∑

n=1

Anex sin(nπx) (13)

¿From part b) we know that the functions Fn(x) = ex sin(nπx) are the eigenfunctions of the Sturm-
Liouville problem defined by equation (9) and the boundary conditions F (0) = F (1) = 0. So the An’s
are the coefficients in the eigenfunction expansion of f(x). There are two ways of determining the value
of these coefficients (both of them come from the idea of orthogonal expansions):
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i. For a general Sturm-Liouville problem

(p(x)y′)′ + q(x)y = λσ(x)y,

with boundary conditions

C1y(a) + C2y
′(a) = 0, C3y(b) + C4y

′(b) = 0,

any pair of eigenfunctions ym, yn, corresponding to different eigenvalues, λm, λn, are orthogonal with
respect to the weight function σ(x), meaning that

〈ym, yn〉 =
∫ b

a
σ(x)ym(x)yn(x)dx = 0 if m 6= n.

Under reasonable and quite general assumptions on f(x), one can obtain an orthogonal expansion of
the form

f(x) =
∑

n

Anyn(x).

As a consequence of orthogonality of the eigenfunctions, one has the following formula for the coef-
ficients An (see formula (4) in section 5.8 of your textbook):

An =
〈f, yn〉
||yn||2

=

∫ b
a σ(x)f(x)yn(x)dx∫ b
a σ(x)(yn(x))2dx

.

In our case, the eigenfunctions are Fn(x) = ex sin(nπx), and from part (b) we know that σ(x) = e−2x.
Hence

An =

∫ 1
0 e−2xf(x)ex sin(nπx)dx∫ 1
0 e−2x(ex sin(nπx))2dx

=

∫ 1
0 e−xf(x) sin(nπx)dx∫ 1

0 sin2(nπx)dx
.

Using the identity sin2 θ = 1
2 −

1
2 cos(2θ), one computes

∫ 1
0 sin2(nπx)dx = 1

2 , so

An = 2
∫ 1

0
e−xf(x) sin(nπx)dx. (14)

ii. One can also obtain this formula for the coefficients An by noticing that equation (13) can be written
as

f(x) = ex
∞∑

n=1

An sin(nπx).

Multiplying both sides of the equation by e−x and calling g(x) = e−xf(x) we write

g(x) =
∞∑

n=1

An sin(nπx),

so the An’s are the coefficients in the sine series expansion of g(x). Therefore the well known formula:

An =
2
L

∫ L

0
g(x) sin(nπx)dx

holds. In our case, L = 1 and g(x) = e−xf(x) so

An = 2
∫ 1

0
e−xf(x) sin(nπx)dx

that is exactly (14).



MATH 322. SOLUTIONS TO QUIZ 14 PROBLEMS. ———————————————————————————— 5

(g) Write the solution to the problem if

f(x) = 2ex sin(3πx)− ex sin(7πx).

Sol. One can use the formula (14) to determine the value of An. However it is much easier to notice that the
function f(x) = 2ex sin(3πx) − ex sin(7πx) is already expressed as an orthogonal expansion. Equation
(13) gives

2ex sin(3πx)− ex sin(7πx) =
∞∑

n=1

Anex sin(nπx)

which implies A3 = 2, A7 = −1 and An = 0 for any value of n that is not 3 or 7. Hence, formula (12)
gives

u(x, t) = 2e−9π2tex sin(3πx)− e−49π2tex sin(7πx).
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2. Consider the boundary value problem (BVP) defined by Laplace’s equation

uxx + uyy = 0 on the square 0 < x, y < 2 (15)

subject to the boundary conditions

u(0, y) = 0, u(x, 2) = 0, u(2, y) = 0, u(x, 0) = 100 sin(πx/2).

Solve the BVP using the method of separation of variables.

Sol. We begin by looking for a solution of the form u(x, t) = F (x)G(y). Substitution into (15) and the usual
arguments gives:

F ′′(x)
F (x)

= −G′′(y)
G(y)

= k

for some constant k. Therefore

F ′′(x) = kF (x), (16)
G′′(y) = −kG(y). (17)

The boundary conditions u(0, y) = 0 and u(2, y) = 0 become

0 = F (0)G(y) F (2)G(y).

We are interested in G(y) that is not identically zero, so we must require

F (0) = 0, F (2) = 0. (18)

Equation (16) and boundary conditions (18) define an eigenvalue problem for F (x). The general solution to (16)
is

F (x) = Ae
√

kx + Be−
√

kx.

Enforcing F (0) = 0 gives A + B = 0, so we set B = −A to get

F (x) = A(e
√

kx − e−
√

kx). (19)

Enforcing F (2) = 0 implies (we are interested in A 6= 0):

e2
√

k − e−2
√

k = 0

which can be rewritten as
e4
√

k = 1.

Writing 1 = ei2πn we obtain
4
√

k = i2πn

so
√

k = iπn
2 and k = −(πn

2 )2. Therefore the eigenvalues are kn = −(πn
2 )2 for n = 1, 2, . . . (0 is not an

eigenvalue as we shall see below).

The eigenfunctions are obtained by substututing
√

k = iπn
2 into (19). We get

Fn(x) = A
(
ei(πn

2
)x − e−i(πn

2
)x

)
= 2iA sin

(nπx

2

)
.

Recall that eigenfunctions are defined up to multiplication by a scalar factor. We can therefore simply take

Fn(x) = sin
(nπx

2

)
.
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Notice that F0 = 0 so n = 0 does not define a nonzero eigenfunction. Therefore the eigenvalues are kn = − (πn)2

2
for n = 1, 2, . . . and the corresponding eigenfunctions are Fn(x) = sin

(
nπx
2

)
.

Substitution of kn = − (πn)2

2 into equation (17) gives

G′′
n(y) =

(πn)2

2
Gn(y),

whose general solution is
Gn(y) = Ane

nπy
2 + Bne−

nπy
2 . (20)

Substitution of the boundary condition u(x, 2) = 0 into the expression un(x, y) = Fn(x)Gn(y) gives

0 = Fn(x)Gn(2)

so we require Gn(2) = 0. Enforcing this condition in (20) gives

Anenπ + Bne−nπ = 0. (21)

This is one linear equation for the unknowns An, Bn. Its solution is of the form(
An

Bn

)
= Cn

(
e−nπ

−enπ

)
,

for a constant Cn. One can chose any nonzero value for Cn and carry on the analysis. Putting Cn = 1
2 and

substituting into (20) gives

Gn(y) =
1
2

(
e

nπy
2
−nπ − e−

nπy
2

+nπ
)

= sinh
(nπ

2
(y − 2)

)
.

Therefore we find
un(x, y) = sin

(nπx

2

)
sinh

(nπ

2
(y − 2)

)
.

Setting u(x, y) =
∑

n Anun(x, y) gives

u(x, y) =
∞∑

n=1

An sin
(nπx

2

)
sinh

(nπ

2
(y − 2)

)
.

We now enforce the boundary condition at y = 0. Substituting y = 0 in the above expression and enforcing
u(x, 0) = 100 sin(πx/2) gives:

100 sin
(πx

2

)
=

∞∑
n=1

−An sin
(nπx

2

)
sinh (nπ) .

It follows that
A1 = − 100

sinh(π)
, An = 0 for n 6= 1.

Therefore the solution to the problem is

u(x, y) = − 100
sinh(π)

[
sin

(πx

2

)
sinh

(π

2
(y − 2)

)]
.
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3. Consider the initial value problem (IVP) defined by partial differential equation (PDE)

ut = uxx 0 ≤ x ≤ 2, t ≥ 0

subject to the boundary conditions
u(0, t) = 0, u(2, t) = 0

and the initial condition

u(x, 0) =
{

x, for 0 < x < 1;
2− x, for 1 < x < 2

Solve the IVP using the method of separation of variables.

sol. We start with looking for solution in the form

u(x, t) = F (x)G(t)

Method of separation of variable gives
F ′′(x)
F (x)

=
G′(t)
G(t)

= λ

i.e.
F ′′(x) = λF (x) (22)

G′(t) = λG(t) (23)

Equation (22) has solution
F (x) = Ae

√
λx + Be−

√
λx.

Enforcing F (0) = 0 gives A + B = 0, so we set B = −A to get

F (x) = A(e
√

λx − e−
√

λx). (24)

Enforcing F (2) = 0 implies (we are interested in A 6= 0):

e2
√

λ − e−2
√

λ = 0

which can be rewritten as
e4
√

λ = 1.

Writing 1 = ei2πn we obtain
4
√

λ = i2πn

so
√

λ = iπn
2 and λ = −(πn

2 )2. Therefore the eigenvalues are λn = −(πn
2 )2 for n = 1, 2, . . . .

The eigenfunctions are obtained by substututing
√

λ = iπn
2 into (19). We get

Fn(x) = A
(
ei(πn

2
)x − e−i(πn

2
)x

)
= 2iA sin

(nπx

2

)
.

Recall that eigenfunctions are defined up to multiplication by a scalar factor. We can therefore simply take

Fn(x) = sin
(nπx

2

)
.

Then equation (23) has solution
Gn(t) = e−(πn

2
)2t.

So,
un(x, t) = Fn(x)Gn(t) = e−(πn

2
)2t sin

(nπx

2

)
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And thus,

u(x, t) =
∞∑

n=1

Bne−(πn
2

)2t sin
(nπx

2

)
.

To enforce initial condition, let t = 0, we have

u(x, 0) =
∞∑

n=1

An sin
(nπx

2

)
.

For any initial condition u(x, 0) = f(x) given by the problem, we will have the formula to compute An as
follows

An =
2
L

∫ L

0
f(x) sin

(nπx

2

)
dx.

In this particular problem, L = 2, so

An =
2
2

∫ 2

0
f(x) sin

(nπx

2

)
dx

=
∫ 1

0
x sin

(nπx

2

)
dx +

∫ 2

1
(2− x) sin

(nπx

2

)
dx∫ 1

0
x sin

(nπx

2

)
dx =

−x cos
(

nπx
2

)
nπ
2

|10 +
∫ 1

0

cos
(

nπx
2

)
nπ
2

dx

=
−x cos

(
nπx
2

)
nπ
2

|10 +
sin

(
nπx
2

)
(nπ

2 )2
|10

=
− cos

(
nπ
2

)
nπ
2

+
sin

(
nπ
2

)
(nπ

2 )2∫ 2

1
(2− x) sin

(nπx

2

)
dx =

∫ 2

1
2 sin

(nπx

2

)
dx−

∫ 2

1
x sin

(nπx

2

)
dx

=
−2 cos

(
nπx
2

)
nπ
2

|21 +
x cos

(
nπx
2

)
nπ
2

|21 −
∫ 2

1

cos
(

nπx
2

)
nπ
2

dx

=
−2 cos

(
nπx
2

)
nπ
2

|21 +
x cos

(
nπx
2

)
nπ
2

|21 −
sin

(
nπx
2

)
(nπ

2 )2
|21

=
−2 cos

(
2nπ
2

)
nπ
2

+
2 cos

(
nπ
2

)
nπ
2

+
2 cos

(
2nπ
2

)
nπ
2

−
cos

(
nπ
2

)
nπ
2

−
sin

(
2nπ
2

)
(nπ

2 )2
+

sin
(

nπ
2

)
(nπ

2 )2

Thus,

An =
sin

(
nπ
2

)
(nπ

2 )2
+

sin
(

nπ
2

)
(nπ

2 )2
=

2 sin
(

nπ
2

)
(nπ

2 )2
=

8 sin
(

nπ
2

)
n2π2


