# Real Analysis of One Variable 

MATH 425/525

Fall 2011 - Overview
(1) Field axioms for $(\mathbb{R},+,$.
(2) Positivity axioms for $\mathbb{R} \rightarrow$ induce a natural order on $\mathbb{R}$

- $a>b \Longleftrightarrow a-b \in \mathcal{P}$
- $a^{2}>0, \forall a \in \mathbb{R}^{*}$
- In particular, $1=1^{2}>0$
(3) Completeness axiom $\rightarrow$ non-empty sets bounded above (resp. below) have a supremum (resp. infimum)
- This is used to define $\sqrt{x}$ for $x>0$
- And to show that $\mathbb{R} \backslash \mathbb{Q}$ is not empty
(9) The triangle inequality
(1) $\mathbb{N}$ is the intersection of all inductive subsets of $\mathbb{R}$
- The above is used in proofs by induction
- One can define functions of the form $x \mapsto x^{n}, x \in \mathbb{R}$ and $n \in \mathbb{N}$, as well as polynomials
(2) We defined the following subsets of $\mathbb{R}$ : $\mathbb{Z}$ (integers), $\mathbb{Q}$ (rationals) and $\mathbb{R} \backslash \mathbb{Q}$ (irrationals)
(3) We proved the Archimedean property
(9) We showed that $\mathbb{Q}$ and $\mathbb{R} \backslash \mathbb{Q}$ are dense in $\mathbb{R}$
(5) We can now define the Dirichlet function

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

(1) Definitions of convergence and of the limit of a converging sequence
(2) Properties of limits of sequences: comparison lemma, linearity, product, and quotient properties
(3) Sequences and sets

- Every convergent sequence is bounded
- Sequential density of a set
- Closed sets
- A monotone sequence converges if and only if it is bounded
- Every sequence has a monotone subsequence
- Every bounded sequence has a convergent subsequence
- Intervals of the form $[a, b]$ are sequentially compact
(9) A sequence of numbers is convergent if and only if it is Cauchy


## Continuity

(1) Definitions of continuity and uniform continuity $(\epsilon-\delta)$
(2) Properties of continuous functions

- Sum, product, quotient, and composition of continuous functions
(3) Continuity and sequential continuity
- Sequential definition of uniform continuity
- Equivalence between continuity and sequential continuity
(9) A continuous function on a closed bounded interval is uniformly continuous
(5) Extreme value theorem
(0) Intermediate value theorem


## Continuity (continued)

(1) Monotonicity and continuity

- A monotone function is continuous if and only if it maps intervals to intervals
(2) Continuity of inverse functions
- If $f: I \rightarrow \mathbb{R}$ is strictly monotone and $I$ is an interval, then $f^{-1}: f(I) \rightarrow \mathbb{R}$ is continuous
- We can now define $x \mapsto x^{r}, x \in \mathbb{R}$ and $r \in \mathbb{Q}$
(3) Limits $(\epsilon-\delta)$
- Properties of limits: limit of the sum, product, quotient, and composition of two functions
- "Sequential" definition of the limit of a function


## Differentiation

(1) Derivative as a limit of a difference quotient
(2) Differentiable function are continuous
(3) Properties of derivatives (inherited from properties of limits)

- Product, sum, and quotient rules
- Chain rule
- Derivative of inverse function
- We have an expression for the derivative of $x \mapsto x^{r}, x \in \mathbb{R}$ and $r \in \mathbb{Q}$
(9) The mean value theorem and its consequences
- Identity criterion
- Criterion for strict monotonicity
- Maximizers and minimizers of a function
(6) The Cauchy mean value theorem


## Applications

(1) Assume there exists $F:(0, \infty) \rightarrow \mathbb{R}$ such that $F^{\prime}(x)=\frac{1}{x}, \forall x>0$ and $F(1)=0$

- Logarithm and its properties
- Exponential as the inverse function of the logarithm
- Properties of the exponential
(2) Assume there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime \prime}(x)+f(x)=0, \forall x \in \mathbb{R}$, with $f(0)=1$ and $f^{\prime}(0)=0$
- Cosine function
- Sine function
- Trigonometric identities
- Tangent function
- Inverse trigonometric functions


## Integration

(1) Upper and lower Darboux sums and their properties
(2) Upper and lower integrals and definition of integrability
(3) The Archimedes-Riemann theorem

- Condition for integrability in terms of Darboux sums for an Archimedean sequence of meshes
- Integral as a limit of upper and lower Darboux sums
- Application: integrability of monotone and piecewise constant functions
(9) Properties of the Riemann integral
- Additivity over intervals, monotonicity, linearity


## Integration (continued)

(1) Continuity and integrability

- A continuous function on a closed bounded interval is integrable
- The value of the integral does not depend on the value of the function at the end points of the interval of integration
- Example: it is possible for a function to be continuous on $(a, b)$ and not have a limit as $x \rightarrow a$ or $x \rightarrow b$.
(2) First fundamental theorem of calculus: integrating derivatives
(3) Second fundamental theorem of calculus: differentiating integrals
- If $f$ is integrable on $[a, b]$, then $F$ such that $F(x)=\int_{a}^{x} f$ is continuous on [a, $b$ ]
- We can now calculate antiderivatives
- Chain rule for integrals


## Applications

(1) With the second fundamental theorem, we can now define $\ln (x)=\int_{1}^{x} \frac{d t}{t}, \forall x>0$
(2) Methods of integration

- Integration by parts and substitution
(3) Riemann sum convergence theorem
- Expresses the integral of an integrable function as the limit of a sequence of Riemann sums whose gap converges to 0
(9) This can be used to find methods to approximate integrals
- Left, right, midpoint, trapezoid, and Simpson's rules and associated errors


## Taylor polynomials and Taylor series

(1) Definition of Taylor polynomials
(2) Lagrange remainder theorem

- Application: use polynomials to estimate (bound) functions
(3) Taylor series
- Taylor series as series of numbers
- Pointwise convergence of the Taylor series expansion of a function $f$, using the Lagrange remainder theorem
- (*) Taylor series (and more generally power series) are uniformly convergent and can be differentiated term by term, for $\left|x-x_{0}\right|<R$ where $R$ is the radius of convergence of the series
(1) Taylor series solutions of differential equations (*)
- Define $\cos (x)$ in terms of its Taylor series, as the solution of $f^{\prime \prime}(x)+f(x)=0, \forall x \in \mathbb{R}$, with $f(0)=1$ and $f^{\prime}(0)=0$


## Sequences of functions

(1) Pointwise convergence of sequences of functions
(2) Uniform convergence of sequences of functions
(3) Properties of uniformly convergent sequences of functions

- The uniform limit of continuous functions is continuous
- The uniform limit of integrable functions is integrable
- Uniformly convergent sequences of differentiable functions
(2) Cauchy sequences of functions
- A sequence of functions converges uniformly if and only if it is uniformly Cauchy

