Problem I. Assume the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ converges to $l \in \mathbb{R}$ as $x \to x_0, x_0 \in \mathbb{R}$.

- 1. What is the $\epsilon \delta$ definition of the above statement? Draw a picture that illustrates this definition.
- 2. What is the definition of the above statement in terms of sequences? Draw a picture that illustrates this definition.
- 3. Show that the two definitions are equivalent.

Problem II

- 1. What does it mean for the set $S \subset \mathbb{R}$ to be dense in \mathbb{R} ?
- 2. Is \mathbb{Q} dense in \mathbb{R} ? Why or why not?
- 3. Show that if S is dense in \mathbb{R} , then $\forall x_0 \in \mathbb{R}$, one can find a sequence of points in S that converges to x_0 .
- 4. Give an example of a set S which is not dense in \mathbb{R} .
- 5. Is \mathbb{Q} closed in \mathbb{R} ? Why or why not?

Problem III

- 1. How do you show that a function is uniformly continuous?
- 2. How do you show that a function is not uniformly continuous?
- 3. Give an example of a function which is continuous but not uniformly continuous on \mathbb{R} . Justify your answer.
- 4. Give an example of a non-constant function that is uniformly continuous on \mathbb{R} . Justify your answer.
- 5. Is $x \mapsto \sin(x)$ uniformly continuous on \mathbb{R} ? Why or why not?

Problem IV. Consider the function f that gives the temperature T at a point along the equator as a function of its longitude θ (in degrees, between 0 and 360).

- 1. Explain why it is reasonable to consider that f is continuous. We will also assume that it is not constant, and that it is differentiable on [0, 360].
- 2. Draw a possible graph of f as a function of θ .
- 3. Explain why f must have at least one maximizer and one minimizer.
- 4. If θ_0 is such that $f'(\theta_0) \neq 0$, explain why there is another point along the equator where the temperature is the same as the temperature at θ_0 . Is that point unique? Why or why not?

5. Assume f is increasing on the interval $[\theta_1, \theta_2]$. Explain why this is equivalent to saying that $f'(\theta) \ge 0, \ \forall \theta \in [\theta_1, \theta_2]$.

$\mathbf{Problem}~\mathbf{V}$

- 1. Carefully write down the theorem giving the derivative of the inverse of a function f. Look at the proof given in the book and discussed in class.
- 2. Why is J a neighborhood of $y_0 = f(x_0)$?
- 3. What can go wrong if f is not strictly monotone? Give an example.
- 4. What can go wrong if f is not continuous? Give an example.
- 5. What can go wrong if $f'(x_0)$ vanishes?
- 6. Where is the composition of limits used in the proof?
- 7. Where is the quotient property of limits used in the proof?
- 8. Where is the definition of differentiability of f used in the proof?