Real Analysis of One Variable

MATH 425

Overview

The field of real numbers

- Field axioms for $(\mathbb{R},+,.)$
- **2** Positivity axioms for $\mathbb{R} \to \text{induce a natural order on } \mathbb{R}$
 - $a > b \iff a b \in \mathcal{P}$
 - $a^2 > 0$, $\forall a \in \mathbb{R}^*$
 - In particular, $1 = 1^2 > 0$
- **3** Completeness axiom \rightarrow non-empty sets bounded above (resp. below) have a supremum (resp. infimum)
 - This is used to define \sqrt{x} for x > 0
 - ullet And to show that $\mathbb{R}\setminus\mathbb{Q}$ is not empty
- The triangle inequality

Subsets of \mathbb{R}

- lacktriangledown is the intersection of all inductive subsets of $\mathbb R$
 - The above is used in proofs by induction
 - As a consequence, one can define functions of the form $x \mapsto x^n$, $x \in \mathbb{R}$ and $n \in \mathbb{N}$, as well as polynomials
- **2** We defined the following subsets of \mathbb{R} : \mathbb{Z} (integers), \mathbb{Q} (rationals) and $\mathbb{R} \setminus \mathbb{Q}$ (irrationals)
- We proved the Archimedean property
- lacktriangle We showed that $\mathbb Q$ and $\mathbb R\setminus\mathbb Q$ are dense in $\mathbb R$
- This allowed us to define the Dirichlet function

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Sequences

- Definitions of convergence and of the limit of a converging sequence
- Properties of limits of sequences: comparison lemma, linearity, product, and quotient properties
- Sequences and sets
 - Every convergent sequence is bounded
 - ullet Density and sequential density applications to $\mathbb Q$ and $\mathbb R\setminus\mathbb Q$
 - Closed sets
 - A monotone sequence converges if and only if it is bounded
 - Every sequence has a monotone subsequence
 - Every bounded sequence has a convergent subsequence
 - Intervals of the form [a, b] are sequentially compact
- A sequence of numbers is convergent if and only if it is Cauchy

Continuity

- **1** $\epsilon \delta$ definitions of continuity and uniform continuity
- Properties of continuous functions
 - Sum, product, quotient, and composition of continuous functions
- Continuity and sequential continuity
 - Sequential definition of uniform continuity
 - Equivalence between continuity and sequential continuity
- A continuous function on a closed bounded interval is uniformly continuous
- Extreme value theorem
- Intermediate value theorem

Continuity (continued)

- Monotonicity and continuity
 - A monotone function is continuous if and only if it maps intervals to intervals
- Continuity of inverse functions
 - If $f:I\to\mathbb{R}$ is strictly monotone and I is an interval, then $f^{-1}:f(I)\to\mathbb{R}$ is continuous
 - We can now define $x \mapsto x^r$, $x \in \mathbb{R}^+$ and $r \in \mathbb{Q}$
- **3** Limits $(\epsilon \delta)$
 - Properties of limits: limit of the sum, product, quotient, and composition of two functions
 - "Sequential" definition of the limit of a function

Differentiation

- 1 The derivative as a limit of a difference quotient
- ② Differentiable function are continuous
- Properties of derivatives (inherited from properties of limits)
 - Product, sum, and quotient rules
 - Chain rule
 - Derivative of inverse function
 - We have an expression for the derivative of $x\mapsto x^r,\ x\in\mathbb{R}$ and $r\in\mathbb{Q}$
- The mean value theorem and its consequences
 - Identity criterion
 - Criterion for strict monotonicity
 - Maximizers and minimizers of a function
- The Cauchy mean value theorem

* Applications

① Assume there exists $F:(0,\infty) \to \mathbb{R}$ such that

$$F'(x) = \frac{1}{x}, \ \forall x > 0 \ \text{and} \ F(1) = 0$$

- Logarithm and its properties
- Exponential as the inverse function of the logarithm
- Properties of the exponential
- ② Assume there exists $f: \mathbb{R} \to \mathbb{R}$ such that $f''(x) + f(x) = 0, \ \forall x \in \mathbb{R}$, with f(0) = 1 and f'(0) = 0
 - Cosine function
 - Sine function
 - Trigonometric identities
 - Tangent function
 - Inverse trigonometric functions

Integration

- Upper and lower Darboux sums and their properties
- Upper and lower integrals and definition of integrability
- The Archimedes-Riemann theorem
 - Condition for integrability in terms of Darboux sums for an Archimedean sequence of meshes
 - Integral as a limit of upper and lower Darboux sums
 - Application: integrability of monotone and piecewise constant functions
- Properties of the Riemann integral
 - Additivity over intervals, monotonicity, linearity

Integration (continued)

- Continuity and integrability
 - A continuous function on a closed bounded interval is integrable
 - The value of the integral does not depend on the value of the function at the end points of the interval of integration
- First fundamental theorem of calculus: integrating derivatives
- Second fundamental theorem of calculus: differentiating integrals
 - If f is bounded and integrable on [a, b], then F such that $F(x) = \int_a^x f$ is continuous on [a, b]
 - We can now calculate antiderivatives
 - We have a chain rule formula for integrals

* Applications

- With the second fundamental theorem, we can now define $ln(x) = \int_1^x \frac{dt}{t}, \ \forall x > 0$
- Methods of integration
 - Integration by parts and substitution
- Oarboux sum convergence theorem
 - If a function is integrable on [a,b], then any sequence of meshes $\{\mathcal{M}_n\}$ such that $\lim_{n\to\infty} \operatorname{gap}(\mathcal{M}_n)=0$ is an Archimedean sequence of meshes for f on [a,b]
- Riemann sum convergence theorem
 - Expresses the integral of an integrable function as the limit of a sequence of Riemann sums whose gap converges to 0
- This can be used to find methods to approximate integrals
 - Left, right, midpoint, trapezoid, and Simpson's rules and associated errors

* Taylor polynomials and Taylor series

- Definition of Taylor polynomials
- 2 Lagrange remainder theorem
 - Application: use polynomials to estimate (bound) functions
- Taylor series
 - Taylor series as series of numbers
 - Pointwise convergence of the Taylor series expansion of a function f, using the Lagrange remainder theorem
 - Taylor series (and more generally power series) are uniformly convergent and can be differentiated term by term, for $|x-x_0| < R$ where R is the radius of convergence of the series
- Taylor series solutions of differential equations
 - Define $\cos(x)$ in terms of its Taylor series, as the solution of f''(x) + f(x) = 0, $\forall x \in \mathbb{R}$, with f(0) = 1 and f'(0) = 0

Sequences of functions

- Pointwise convergence of sequences of functions
- Uniform convergence of sequences of functions
- Properties of uniformly convergent sequences of functions
 - The uniform limit of continuous functions is continuous
 - The uniform limit of integrable functions is integrable
 - Uniformly convergent sequences of differentiable functions
- Cauchy sequences of functions
 - A sequence of functions converges uniformly if and only if it is uniformly Cauchy