1. Find the general solution of the following system of differential equations,

$$
\frac{d X}{d t}=B X, \quad \text { where } X(t) \in \mathbb{R}^{3} \text { and } \quad B=\left[\begin{array}{ccc}
-1 & -4 & -4 \\
2 & 4 & 2 \\
0 & 1 & 3
\end{array}\right]
$$

2. Find the general solution of the following system of differential equations,

$$
\frac{d X}{d t}=C X, \quad \text { where } X(t) \in \mathbb{R}^{3} \text { and } \quad C=\left[\begin{array}{ccc}
0 & -2 & -2 \\
3 & 6 & 4 \\
-2 & -3 & -1
\end{array}\right]
$$

3. Give three linearly independent solutions to the system of differential equations defined in question 1 above. Show that these solutions are indeed linearly independent.
4. Give three linearly independent solutions to the system of differential equations defined in question 2 above. Show that these solutions are indeed linearly independent.
5. In each case below, find a 2×2 matrix M whose entries are all non-zero, and which satisfies the given property.
(a) The eigenvalues of M are 3 and 5 .
(b) The eigenvalues of M are -3 and 2 .
(c) The matrix M has an eigenvalue $\lambda=-2$ of multiplicity 2 , but the corresponding (genuine) eigenspace is one-dimensional.
6. Let M be the matrix you found in question 5.(c) above.
(a) Write down the general solution to

$$
\frac{d X}{d t}=M X, \quad X(t) \in \mathbb{R}^{2}
$$

(b) Would you say that the fixed point of this system, $X_{0}=(0,0)^{T}$, is stable or unstable? Justify your answer.
7. For each part below, write down a system of differential equations of the form

$$
\frac{d X}{d t}=M X, \quad X(t) \in \mathbb{R}^{2}
$$

where the 2×2 matrix M has constant coefficients, and which satisfies the given property.
(a) All solutions with initial conditions different from $(0,0)^{T}$ move away from the origin $(0,0)^{T}$. Justify your answer.
(b) There is a non-trivial set of initial conditions such that the solution converge towards the origin, $(0,0)^{T}$, and there is a set of initial conditions such that the solution moves away from the origin. Justify your answer.

