Diffusion for a Markov, Divergence-form Generator

Clark Musselman

Department of Mathematics
Michigan State University

Arizona School of Analysis and Mathematical Physics
March 16, 2012
Abstract

We consider the long-time evolution of solutions to a Schrödinger-type wave equation on a lattice with a Markov random generator. We show that solutions to this problem possess a diffusive scaling limit and compute higher moments. Based on joint work with Jeffrey Schenker.
Statement of the Theorem

Theorem

If \(\psi_t \in \ell^2(\mathbb{Z}^d) \) satisfies

\[
\begin{align*}
 i \partial_t \psi_t(x) & = \nabla^\dagger \omega(t) \nabla \psi_t(x) \\
 \psi_0(x) & = \delta_0(x)
\end{align*}
\]

then

\[
\lim_{\eta \to 0^+} \sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} \mathbb{E} \left(|\psi_t/\eta(x)|^2 \right) = e^{-4t \sum_{e_1, e_2} (k \cdot e_1)(k \cdot e_2) D_{e_1, e_2}}.
\]
What do we mean by diffusion?

- Consider the standard heat equation

\[
\begin{align*}
\partial_t u(x, t) &= \Delta u(x, t) & (x, t) \in \mathbb{R}^d \times \mathbb{R}^+ \\
u(x, 0) &= \delta_0(x) & x \in \mathbb{R}^d
\end{align*}
\]

with solution \(u(x, t) = (2\pi t)^{-d/2} e^{-|x|^2/4t} \).

- \(x \mapsto c_t u(x, t) \) is a p.d.f. on \(\mathbb{R}^d \) with \(c_t = \left(\int_{\mathbb{R}^d} u(x, t) \, dt \right)^{-1} \) the normalizing constant.
What do we mean by diffusion?

Consider the standard heat equation

\[
\begin{cases}
 \partial_t u(x, t) = \Delta u(x, t) & (x, t) \in \mathbb{R}^d \times \mathbb{R}^+ \\
 u(x, 0) = \delta_0(x) & x \in \mathbb{R}^d
\end{cases}
\]

with solution \(u(x, t) = (2\pi t)^{-d/2} e^{-|x|^2/4t} \).

\(x \mapsto c_t u(x, t) \) is a p.d.f. on \(\mathbb{R}^d \) with \(c_t = \left(\int_{\mathbb{R}^d} u(x, t) \, dt \right)^{-1} \) the normalizing constant.
What do we mean by diffusion?

The p^{th} moment of position is given by

$$\int_{\mathbb{R}^d} |x|^p c_t u(x, t) \, dx = \frac{c_t \omega_d}{(2\pi t)^{d/2}} \int_0^\infty r^{p+d-1} e^{-\frac{r^2}{4t}} \, dr,$$

where $\omega_d = |\partial B(0, 1)|$ is the surface area of the unit ball in \mathbb{R}^d.

The integrand is maximized when $r \propto \sqrt{t}$ which leads us to define . . .
What do we mean by diffusion?

- The p^{th} moment of position is given by
 \[
 \int_{\mathbb{R}^d} |x|^p \, c_t u(x, t) \, dx = \frac{c_t \omega_d}{(2\pi t)^{d/2}} \int_0^\infty r^{p+d-1} e^{-\frac{r^2}{4t}} \, dr,
 \]
 where $\omega_d = |\partial B(0, 1)|$ is the surface area of the unit ball in \mathbb{R}^d.

- The integrand is maximized when $r \propto \sqrt{t}$ which leads us to define . . .
Definition: Diffusive Scaling

\[
\begin{align*}
 t & \mapsto \frac{1}{\eta} t \\
 x & \mapsto \frac{1}{\sqrt{\eta}} x
\end{align*}
\]

as \(\eta \to 0^+ \)

Question: The problem under consideration is defined on the lattice \(\mathbb{Z}^d \). How do we scale a discrete space?

Answer: Mollify.
Definition: Diffusive Scaling

\[t \mapsto \frac{1}{\eta} t \]

\[x \mapsto \frac{1}{\sqrt{\eta}} x \quad \text{as } \eta \to 0^+ \]

Question: The problem under consideration is defined on the lattice \mathbb{Z}^d. How do we scale a discrete space?

Answer: Mollify.
Definition: Diffusive Scaling

\[t \mapsto \frac{1}{\eta} t \]
\[x \mapsto \frac{1}{\sqrt{\eta}} x \]
as \(\eta \to 0^+ \)

Question: The problem under consideration is defined on the lattice \(\mathbb{Z}^d \). How do we scale a discrete space?

Answer: Mollify.
Characterization of Diffusion for a Discrete Problem

- \(h \in C_c^\infty(\mathbb{R}^d), \int h \, dx = 1, \ h \geq 0 \)

- Under diffusive scaling, if the convolution \(h \ast |\psi_t|^2 \) converges (weakly) to a solution of the heat equation, then we say that the model exhibits *diffusion*.

- A Fourier transform removes the mollifier from our diffusion criterion.

- **Diffusion Criterion:**

\[
\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} |\psi_t/\eta(x)|^2 \to e^{-Dt|k|^2}, \quad k \in \mathbb{T}^d
\]
Characterization of Diffusion for a Discrete Problem

- \(h \in C^\infty_c(\mathbb{R}^d), \int h \, dx = 1, h \geq 0 \)

- Under diffusive scaling, if the convolution \(h \ast |\psi_t|^2 \) converges (weakly) to a solution of the heat equation, then we say that the model exhibits diffusion.

- A Fourier transform removes the mollifier from our diffusion criterion.

- Diffusion Criterion:

\[
\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} |\psi_{t/\eta}(x)|^2 \rightarrow e^{-Dt|k|^2}, \quad k \in \mathbb{T}^d
\]
Characterization of Diffusion for a Discrete Problem

- \(h \in C^\infty_c(\mathbb{R}^d), \int h \, dx = 1, \ h \geq 0 \)
- Under diffusive scaling, if the convolution \(h \ast |\psi_t|^2 \) converges (weakly) to a solution of the heat equation, then we say that the model exhibits diffusion.
- A Fourier transform removes the mollifier from our diffusion criterion.

Diffusion Criterion:

\[
\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} |\psi_t/\eta(x)|^2 \rightarrow e^{-Dt|k|^2}, \quad k \in \mathbb{T}^d
\]
$h \in C^\infty_c(\mathbb{R}^d), \int h \, dx = 1, \, h \geq 0$

Under diffusive scaling, if the convolution $h * |\psi_t|^2$ converges (weakly) to a solution of the heat equation, then we say that the model exhibits diffusion.

A Fourier transform removes the mollifier from our diffusion criterion.

Diffusion Criterion:

$$\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} |\psi_t/\eta(x)|^2 \rightarrow e^{-Dt|k|^2}, \quad k \in \mathbb{T}^d$$
Resolvent Analysis

Key step:
\[\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} \mathbb{E}(|\psi_t/\eta(x)|^2) \]

\[= -\frac{1}{2\pi i} \int_{\Gamma} e^{-t z} \left\langle \delta_0 \otimes 1, \frac{\eta}{i \hat{L} \sqrt{\eta} k + B - \eta z} \delta_0 \otimes 1 \right\rangle \, dz \]

Notes:
- The LHS is (almost) the diffusion criterion.
- The expectation allows us to use a Feynman-Kac-Pillet formula.
- FKP allows us to express the expectation as a matrix element of the semigroup \(e^{-t (i \hat{L} \sqrt{\eta} k + B)} \),
- which can be understood by the holomorphic functional calculus:

\[e^{t (i \hat{L} \sqrt{\eta} k + B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{t z} \frac{1}{i \hat{L} \sqrt{\eta} k + B - z} \, dz \]
Resolvent Analysis

Key step:

\[
\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} \cdot x} \mathbb{E}(|\psi_t/\eta(x)|^2)
\]

\[
= -\frac{1}{2\pi i} \int_{\Gamma} e^{-tz} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}\sqrt{\eta} + B - \eta z} \delta_0 \otimes 1 \right\rangle \, dz
\]

Notes:

- The LHS is (almost) the diffusion criterion.
- The expectation allows us to use a Feynman-Kac-Pillet formula.
- FKP allows us to express the expectation as a matrix element of the semigroup \(e^{-t(i\hat{L}\sqrt{\eta} + B)} \),
- which can be understood by the holomorphic functional calculus:

\[
e^{t(i\hat{L}\sqrt{\eta} + B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i\hat{L}\sqrt{\eta} + B - z} \, dz
\]
Resolvent Analysis

- Key step:
 \[\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} \mathbb{E}(|\psi_t/\eta(x)|^2) \]

 \[= - \frac{1}{2\pi i} \int_{\Gamma} e^{-t z} \left< \delta_0 \otimes 1 , \frac{\eta}{i \hat{L} \sqrt{\eta} k + B - \eta z} \delta_0 \otimes 1 \right> dz \]

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup \(e^{-t(i \hat{L} \sqrt{\eta} k + B)} \),
 - which can be understood by the holomorphic functional calculus:
 \[e^{t(i \hat{L} \sqrt{\eta} k + B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{t z} \frac{1}{i \hat{L} \sqrt{\eta} k + B - z} dz \]
Resolvent Analysis

Key step:
\[
\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta_k} \cdot x} \mathbb{E}(|\psi_{t/\eta}(x)|^2)
\]
\[
= -\frac{1}{2\pi i} \int_{\Gamma} e^{-tz} \left\langle \delta_0 \otimes 1, \frac{\eta}{i \hat{L} \sqrt{\eta_k} + B - \eta z} \delta_0 \otimes 1 \right\rangle \, dz
\]

Notes:
- The LHS is (almost) the diffusion criterion.
- The expectation allows us to use a Feynman-Kac-Pillet formula.
- FKP allows us to express the expectation as a matrix element of the semigroup \(e^{-t(i \hat{L} \sqrt{\eta_k} + B)} \),
- which can be understood by the holomorphic functional calculus:
\[
e^{t(i \hat{L} \sqrt{\eta_k} + B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i \hat{L} \sqrt{\eta_k} + B - z} \, dz
\]
Resolvent Analysis

Key step:
\[\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} \cdot x} \mathbb{E}(\psi_t/\eta(x)^2) = -\frac{1}{2\pi i} \int_\Gamma e^{-tz} \left< \delta_0 \otimes 1, \frac{\eta}{i \hat{L} \sqrt{\eta} k + B - \eta z} \delta_0 \otimes 1 \right> dz \]

Notes:
- The LHS is (almost) the diffusion criterion.
- The expectation allows us to use a Feynman-Kac-Pillet formula.
- FKP allows us to express the expectation as a matrix element of the semigroup \(e^{-t(i \hat{L} \sqrt{\eta} k + B)} \),
- which can be understood by the holomorphic functional calculus:
\[
e^{t(i \hat{L} \sqrt{\eta} k + B)} = \frac{1}{2\pi i} \int_\Gamma e^{tz} \frac{1}{i \hat{L} \sqrt{\eta} k + B - z} dz
\]
Resolvent Analysis

- Key step:
\[
\sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} E(\psi_t/\eta(x))^2) = -\frac{1}{2\pi i} \int_{\Gamma} e^{-tz} \left(\delta_0 \otimes 1, \frac{\eta}{i \hat{L} \sqrt{\eta} k + B - \eta z} \delta_0 \otimes 1 \right) \, dz
\]

- Notes:
 - The LHS is (almost) the diffusion criterion.
 - The expectation allows us to use a Feynman-Kac-Pillet formula.
 - FKP allows us to express the expectation as a matrix element of the semigroup \(e^{-t(i \hat{L} \sqrt{\eta} k + B)} \),
 - which can be understood by the holomorphic functional calculus:
\[
e^{t(i \hat{L} \sqrt{\eta} k + B)} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} \frac{1}{i \hat{L} \sqrt{\eta} k + B - z} \, dz
\]
Resolvent Analysis

- We have reduced the problem to understanding:

\[\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}\sqrt{\eta}k + B - \eta z} \delta_0 \otimes 1 \right\rangle. \]

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator \(D_k \), which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.

- Higher Moments?

\[\lim_{\eta \to 0^+} \sum_{x \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot x} \mathbb{E} \left(|\psi_t/\eta(x)|^2 \right) = e^{-4t \sum_{e_1, e_2} (k \cdot e_1)(k \cdot e_2) D_{e_1, e_2}}, \]

holomorphic for \(k \in B(0, \epsilon) \subset \mathbb{C}^d \)?
We have reduced the problem to understanding:

\[
\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}\sqrt{\eta}k + B - \eta z} \delta_0 \otimes 1 \right\rangle.
\]

From here,

- use projections and the Schur complement formula.
- construct a symmetric operator \(D_k \), which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.

Higher Moments?

\[
\lim_{\eta \to 0^+} \sum_{x \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot x} \mathbb{E} \left(|\psi_t/\eta(x)|^2 \right) = e^{-4t \sum_{e_1, e_2} (k \cdot e_1)(k \cdot e_2) D_{e_1, e_2}},
\]

holomorphic for \(k \in B(0, \epsilon) \subset \mathbb{C}^d \)?
Resolvent Analysis

- We have reduced the problem to understanding:

\[
\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}\sqrt{\eta} k + B - \eta Z} \delta_0 \otimes 1 \right\rangle.
\]

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator \(D_k \), which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.

- Higher Moments?

\[
\lim_{\eta \to 0^+} \sum_{x \in \mathbb{Z}^d} e^{i \sqrt{\eta} k \cdot x} E \left(|\psi_{t/\eta}(x)|^2 \right) = e^{-4t \sum_{e_1, e_2} (k \cdot e_1)(k \cdot e_2) D_{e_1, e_2}}.
\]

holomorphic for \(k \in B(0, \epsilon) \subset \mathbb{C}^d \)?
Resolvent Analysis

- We have reduced the problem to understanding:

\[
\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}\sqrt{\eta}k + B - \eta Z} \delta_0 \otimes 1 \right\rangle.
\]

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator \(D_k \), which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.

Higher Moments?

\[
\lim_{\eta \to 0^+} \sum_{x \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot x} \mathbb{E} \left(|\psi_t/\eta(x)|^2 \right) = e^{-4t \sum_{e_1,e_2} (k \cdot e_1)(k \cdot e_2) D_{e_1,e_2}},
\]

holomorphic for \(k \in \mathcal{B}(0,\epsilon) \subset \mathbb{C}^d \)?
Resolvent Analysis

- We have reduced the problem to understanding:

$$\lim_{\eta \to 0^+} \left\langle \delta_0 \otimes 1, \frac{\eta}{i\hat{L}\sqrt{\eta}k + B - \eta z} \delta_0 \otimes 1 \right\rangle.$$

- From here,
 - use projections and the Schur complement formula.
 - construct a symmetric operator D_k, which is a lower bound for the matrix element in question. Use this to show the limit exists and is of the desired form.

- Higher Moments?

$$\lim_{\eta \to 0^+} \sum_{x \in \mathbb{Z}^d} e^{i\sqrt{\eta}k \cdot x} \mathbb{E} \left(|\psi_t/\eta(x)|^2 \right) = e^{-4t \sum_{e_1, e_2} (k \cdot e_1)(k \cdot e_2) D_{e_1, e_2}},$$

holomorphic for $k \in \mathcal{B}(0, \epsilon) \subset \mathbb{C}^d$?
Thank you!

Thank you!

- **Klaus-Jochen Engel and Rainer Nagel.**
 One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics.

- **Yang Kang and Jeffrey Schenker.**
 Diffusion of wave packets in a markov random potential.
 Journal of Statistical Physics, 134:1005–1022, 1005.

- **Claude-Alain Pillet.**
 Some results on the quantum dynamics of a particle in a markovian potential.
Thank you!

