Bounds on fluctuations for Mallows random permutations:
Arizona School of Analysis and Mathematical Physics

Shannon Starr

University of Rochester

March 14, 2012

- The length of the longest increasing subsequence of a random Mallows permutation. *J. Theoret. Probab.* 2011 (to appear) joint work with Carl Mueller, UR
- and joint work with Meg Walters, UR, in preparation.
What is a Mallows random permutation?

Given $q \in (0, \infty)$,

$$\mu_n(q) = q I_n(\pi) P_n(q),$$

where the number of inversions $I_n(\pi) = \sum 1 \leq i < j \leq n \{\pi_i > \pi_j\}$.

Fact: $P_n(q)$ is the "Poincaré polynomial".

$$P_n(q) = n \prod_{k=1}^{\infty} (1 - q^k)^{1-q^k} = \lfloor n \rfloor! \text{q-factorial}.$$
What is a Mallows random permutation?

\[\pi = (3, 4, 6, 2, 5, 1) \]

Given \(q \in (0, \infty) \),

\[\mu_{n,q}(\{\pi\}) = \frac{q^{l_n(\pi)}}{P_n(q)}, \]

where the number of inversions

\[l_n(\pi) = \sum_{1 \leq i < j \leq n} 1\{\pi_i > \pi_j\}. \]
What is a Mallows random permutation?

\[\pi = (3, 4, 6, 2, 5, 1) \]

Given \(q \in (0, \infty) \),

\[\mu_{n,q}(\{\pi\}) = \frac{q^{I_n(\pi)}}{P_n(q)}, \]

where the number of inversions

\[I_n(\pi) = \sum_{1 \leq i < j \leq n} 1\{\pi_i > \pi_j\}. \]

Fact: \(P_n(q) \) is the “Poincaré polynomial”

\[P_n(q) = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right) \]
What is a Mallows random permutation?

\[\pi = (3, 4, 6, 2, 5, 1) \]

Given \(q \in (0, \infty) \),

\[\mu_{n,q}(\{\pi\}) = \frac{q^{I_n(\pi)}}{P_n(q)}, \]

where the number of inversions

\[I_n(\pi) = \sum_{1 \leq i < j \leq n} 1\{\pi_i > \pi_j\}. \]

Fact: \(P_n(q) \) is the “Poincaré polynomial”

\[P_n(q) = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right) = [n]! \text{ q-factorial} \]
Can define a classical Hamiltonian on S_n:

$$H_n(\pi) = \frac{1}{n} I_n(\pi) = \frac{1}{n} \sum_{1 \leq i < j \leq n} 1\{\pi_i > \pi_j\}.$$

This has the mean-field scaling (like in Ben’s first lecture).
Mean-field scaling

- Can define a classical Hamiltonian on S_n:

$$H_n(\pi) = \frac{1}{n} I_n(\pi) = \frac{1}{n} \sum_{1 \leq i < j \leq n} 1\{\pi_i > \pi_j\}.$$

This has the mean-field scaling (like in Ben’s first lecture).

- The “Poincaré polynomial” of S_n gives the partition function

$$P_n(e^{-\beta/n}) = \sum_{\pi \in S_n} e^{-(\beta/n)I_n} = \sum_{\pi \in S_n} e^{-\beta H_n(\pi)}$$
Can define a classical Hamiltonian on S_n:

$$H_n(\pi) = \frac{1}{n} I_n(\pi) = \frac{1}{n} \sum_{1\leq i<j\leq n} 1\{\pi_i > \pi_j\}.$$

This has the mean-field scaling (like in Ben’s first lecture).

The “Poincaré polynomial” of S_n gives the partition function

$$P_n(e^{-\beta/n}) = \sum_{\pi \in S_n} e^{-\beta/n} I_n = \sum_{\pi \in S_n} e^{-\beta H_n(\pi)}$$

$$P_n(q) = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right)$$
Can define a classical Hamiltonian on S_n:

$$H_n(\pi) = \frac{1}{n} I_n(\pi) = \frac{1}{n} \sum_{1 \leq i < j \leq n} \mathbf{1}_{\{\pi_i > \pi_j\}}.$$

This has the mean-field scaling (like in Ben’s first lecture).

The “Poincaré polynomial” of S_n gives the partition function

$$P_n(e^{-\beta/n}) = \sum_{\pi \in S_n} e^{-\beta/n} I_n = \sum_{\pi \in S_n} e^{-\beta H_n(\pi)}$$

$$P_n(q) = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right)$$

$$P_n(e^{-\beta/n}) = \prod_{k=1}^{n} \left(\frac{1 - e^{-\beta k/n}}{1 - e^{-\beta/n}} \right).$$
The Poincaré polynomial is the q-factorial

$$P_n(q) = [n]! = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right).$$
3/18. *q*-Stirling formula

The Poincaré polynomial is the q-factorial

$$P_n(q) = [n]! = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right).$$

We decided to look at $q = q_n(\beta) = \exp(-\beta/n)$.

$$P_n(q_n(\beta)) = [n]! \bigg|_{q = e^{-\beta/n}}$$
The Poincaré polynomial is the q-factorial

\[P_n(q) = [n]! = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right). \]

We decided to look at $q = q_n(\beta) = \exp(-\beta/n)$.

\[P_n(q_n(\beta)) = [n]! \bigg|_{q=e^{-\beta/n}} \]

\[= \exp \left(\sum_{k=1}^{n} \ln \left(\frac{1 - e^{-\beta k/n}}{1 - e^{-\beta/n}} \right) \right) \]
The Poincaré polynomial is the q-factorial

$$P_n(q) = [n]! = \prod_{k=1}^{n} \left(\frac{1 - q^k}{1 - q} \right).$$

We decided to look at $q = q_n(\beta) = \exp(-\beta/n)$.

$$P_n(q_n(\beta)) = [n]! \bigg|_{q=e^{-\beta/n}}$$

$$= \exp \left(\sum_{k=1}^{n} \ln \left(\frac{1 - e^{-\beta k/n}}{1 - e^{-\beta/n}} \right) \right)$$

$$\sim n! \ e^{nA(\beta)} B(\beta)$$

$$A(\beta) = \int_{0}^{1} \ln \left(\frac{1 - e^{-\beta x}}{\beta x} \right) \, dx, \quad B(\beta) = \sqrt{\frac{e^\beta - 1}{\beta}}.$$
4/18. A weak limit law

Example:

\[\begin{align*}
\pi_1 &= 3 \\
\pi_2 &= 4 \\
\pi_3 &= 6 \\
\pi_4 &= 2 \\
\pi_5 &= 5 \\
\pi_6 &= 1
\end{align*} \]

Empirical measure on \([0, 1]^2\)

\[\hat{\rho}_{n,\pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n, \pi_i/n) \]
Example:

\[
\begin{align*}
\pi_1 &= 3 \\
\pi_2 &= 4 \\
\pi_3 &= 6 \\
\pi_4 &= 2 \\
\pi_5 &= 5 \\
\pi_6 &= 1 \\
\end{align*}
\]

Empirical measure on \([0, 1]^2\)

\[
\hat{\rho}_{n, \pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n, \pi_i/n)
\]

Theorem. For \(\beta \in \mathbb{R}\) fixed, take \(q_n(\beta) = \exp(-\beta/n)\).

There exists a density \(\rho_\beta\) on \([0, 1]^2\) such that, for any continuous function \(\varphi\) on \([0, 1]^2\),

\[
\mu_{n, q_n(\beta)} \left\{ \pi \in S_n : \left| \int \varphi \, d\hat{\rho}_{n, \pi} - \int \varphi \, d\rho_\beta \right| > \epsilon \right\} \to 0 \quad \text{as} \quad n \to \infty,
\]

for each fixed \(\epsilon > 0\).
Denote: \(\mathbf{x} = (x^1, x^2) \in [0, 1]^2 \).

Boltzmann-Gibbs measure on \(([0, 1]^2)^n\):

\[
d\mu_{n, \beta}(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \frac{e^{-\beta H_n(\mathbf{x}_1, \ldots, \mathbf{x}_n)}}{Z_n(\beta)} \, d\mathbf{x}_1 \cdots d\mathbf{x}_n,
\]

\[
H_n(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \frac{1}{n} \sum_{1 \leq i < j \leq n} h(\mathbf{x}_i, \mathbf{x}_j),
\]

\[
h(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{1}\{(x^1_i - x^1_j)(x^2_i - x^2_j) < 0\}.
\]
Denote: \(\mathbf{x} = (x^1, x^2) \in [0, 1]^2 \).

Boltzmann-Gibbs measure on \(([0, 1]^2)^n \):

\[
d\mu_{n, \beta}(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \frac{e^{-\beta H_n(\mathbf{x}_1, \ldots, \mathbf{x}_n)}}{Z_n(\beta)} \, d\mathbf{x}_1 \cdots d\mathbf{x}_n,
\]

\[
H_n(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \frac{1}{n} \sum_{1 \leq i < j \leq n} h(\mathbf{x}_i, \mathbf{x}_j),
\]

\[
h(\mathbf{x}_i, \mathbf{x}_j) = 1\{ (x_i^1 - x_j^1)(x_i^2 - x_j^2) < 0 \}.
\]

Then \(\rho_\beta \) is the unique measure on \([0, 1]^2\) satisfying

\[
\frac{d\rho_\beta(\mathbf{x})}{d\mathbf{x}} = \frac{1}{Z(\beta)} \exp \left(-\beta \int_{[0,1]^2} h(\mathbf{x}, \mathbf{x}') \, d\rho_\beta(\mathbf{x}') \right).
\]
Denote: \(\mathbf{x} = (x^1, x^2) \in [0, 1]^2 \).

Boltzmann-Gibbs measure on \(([0, 1]^2)^n \):

\[
d\mu_{n, \beta}(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \frac{e^{-\beta H_n(\mathbf{x}_1, \ldots, \mathbf{x}_n)}}{Z_n(\beta)} d\mathbf{x}_1 \cdots d\mathbf{x}_n,
\]

\[
H_n(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \frac{1}{n} \sum_{1 \leq i < j \leq n} h(\mathbf{x}_i, \mathbf{x}_j),
\]

\[
h(\mathbf{x}_i, \mathbf{x}_j) = 1\{ (x^1_i - x^1_j)(x^2_i - x^2_j) < 0 \}.
\]

Then \(\rho_\beta \) is the unique measure on \([0, 1]^2\) satisfying

\[
\frac{d\rho_\beta(\mathbf{x})}{d\mathbf{x}} = \frac{1}{Z(\beta)} \exp \left(-\beta \int_{[0,1]^2} h(\mathbf{x}, \mathbf{x}') d\rho_\beta(\mathbf{x}') \right)
\]

\[
= \frac{(\beta/2) \sinh(\beta/2)}{\left(e^{\beta/4} \cosh\left(\frac{\beta}{2} [x - y] \right) - e^{-\beta/4} \cosh\left(\frac{\beta}{2} [x + y - 1] \right) \right)^2}.
\]
For $\pi \in S_n$,

$$L_n(\pi) = \max\{k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k}\}.$$
6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_n$,

$$L_n(\pi) = \max\{k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k}\}.$$
6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_n$,

\[L_n(\pi) = \max\{k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k}\} . \]

\[\pi = (3, 4, 6, 2, 5, 1) \]
For \(\pi \in S_n \),

\[
L_n(\pi) = \max\{k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k}\}.
\]

\(\pi = (3, 4, 6, 2, 5, 1) \)
For $\pi \in S_n$,

$$L_n(\pi) = \max \{ k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k} \}.$$

$\pi = (3, 4, 6, 2, 5, 1)$

Thm. Vershik, Kerov, Logan, Shepp
For $\pi \in S_n$,
\[L_n(\pi) = \max\{k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k}\} . \]

\[\pi = (3, 4, 6, 2, 5, 1) \]

Thm. Vershik, Kerov, Logan, Shepp, Aldous, Diaconis, . . .
6/18. Length of the Longest Increasing Subsequence

For \(\pi \in S_n \),

\[
L_n(\pi) = \max\{k \leq n : \exists i_1 < \cdots < i_k \text{ s.t. } \pi_{i_1} < \cdots < \pi_{i_k}\}.
\]

\[
\pi = (3, 4, 6, 2, 5, 1)
\]

Thm. Vershik, Kerov, Logan, Shepp, Aldous, Diaconis, . . .

For the uniform measure \(\mu_n \) on \(S_n \) (\(\beta = 0 \)),

\[
\lim_{n \to \infty} \mu_n \left\{ \pi : |n^{-1/2}L_n(\pi) - 2| > \epsilon \right\} = 0,
\]

for all \(\epsilon > 0 \).
7/18. Hammersley’s proof: \(n^{-1/2} \mathbb{E} L_n \) converges
Hammersley’s proof: $n^{-1/2} \mathbb{E} L_n$ converges

$\mathbb{E} L_{4n^2} \geq 2 \mathbb{E} L_{n^2}$
7/18. Hammersley’s proof: $n^{-1/2} \mathbb{E} L_n$ converges

Extend the definition of L_n from permutations to point processes

$L(x_1, \ldots, x_n) = \max \{ k : \exists i_1 < \cdots < i_k \text{ s.t. } h(x_{i_j}, x_{i_\ell}) = 0, \forall j, \ell \leq k \}$

Also defined for random point processes.
Hammersley’s proof: \(n^{-1/2} \mathbb{E} L_n \) converges

Extend the definition of \(L_n \) from permutations to point processes

\[
L(x_1, \ldots, x_n) = \max\{k : \exists i_1 < \cdots < i_k \text{ s.t. } h(x_{i_j}, x_{i_\ell}) = 0, \forall j, \ell \leq k\}
\]

Also defined for random point processes.

\[
\mathbb{E}[L_{\text{Poisson}}((x+y)^2)] \geq \mathbb{E}[L_{\text{Poisson}}(x^2)] + \mathbb{E}[L_{\text{Poisson}}(y^2)]
\]

\[
\Rightarrow x^{-1} \mathbb{E}[L_{\text{Poisson}}(x^2)] \text{ converges by Fekete’s theorem.}
\]
Suppose ρ is a measure on $[0, 1]^2$, satisfying

$$\exists C < \infty, \quad \frac{1}{C} \leq \frac{d\rho(x)}{dx} \leq C, \quad \forall x \in [0, 1]^2$$
Suppose ρ is a measure on $[0, 1]^2$, satisfying

$$\exists C < \infty, \quad \frac{1}{C} \leq \frac{d\rho(x)}{dx} \leq C, \quad \forall x \in [0, 1]^2$$

Theorem. (Deuschel, Zeitouni) Let $\rho^n = i.i.d.,$ product measure

$$\forall \epsilon > 0, \quad \lim_{n \to \infty} \rho^n(|n^{-1/2}L(x_1, \ldots, x_n) - I(\rho)| > \epsilon) = 0,$$
Suppose \(\rho \) is a measure on \([0, 1]^2\), satisfying
\[
\exists C < \infty, \quad \frac{1}{C} \leq \frac{d\rho(x)}{dx} \leq C, \quad \forall x \in [0, 1]^2
\]

Theorem. (Deuschel, Zeitouni) Let \(\rho^n = \text{i.i.d., product measure} \)

\[
\forall \epsilon > 0, \quad \lim_{n \to \infty} \rho^n(|n^{-1/2}L(x_1, \ldots, x_n) - I(\rho)| > \epsilon) = 0,
\]

\[
I(\rho) = \max I(\rho, \gamma) \text{ over curves } \gamma: [0, 1] \to [0, 1]^2,
\]

\[
\gamma^1(t), \gamma^2(t) \text{ non-decreasing}
\]
Suppose ρ is a measure on $[0, 1]^2$, satisfying

$$\exists C < \infty, \quad \frac{1}{C} \leq \frac{d\rho(x)}{dx} \leq C, \quad \forall x \in [0, 1]^2$$

Theorem. (Deuschel, Zeitouni) Let $\rho^n = i.i.d., \text{ product measure}$

$$\forall \epsilon > 0, \quad \lim_{n \to \infty} \rho^n(n^{-1/2}L(x_1, \ldots, x_n) - I(\rho)) > \epsilon \quad = 0,$$

$$I(\rho) = \max I(\rho, \gamma) \text{ over curves } \gamma : \ [0, 1] \to \ [0, 1]^2,$$

- $\gamma^1(t), \gamma^2(t) \text{ non-decreasing}$

$$I(\rho, \gamma) = 2 \int_0^1 \left[\frac{d\rho}{dx}(\gamma(t)) \frac{d\gamma^1}{dt} \cdot \frac{d\gamma^2}{dt} \right]^{1/2} dt.$$
8/18. Idea of proof and extension to Mallows

\[I(\rho, \gamma) = 2 \int_0^1 \left[\frac{d\rho}{d\gamma}(\gamma(t)) \frac{d\gamma_1}{dt} \cdot \frac{d\gamma_2}{dt} \right]^{1/2} \, dt \]
\[I(\rho, \gamma) = 2 \int_0^1 \left[\frac{d\rho}{d\mathbf{x}}(\gamma(t)) \frac{d\gamma^1}{dt} \cdot \frac{d\gamma^2}{dt} \right]^{1/2} dt \]
8/18. Idea of proof and extension to Mallows

\[\mathcal{I}(\rho, \gamma) = 2 \int_0^1 \left[\frac{d\rho}{dx}(\gamma(t)) \frac{d\gamma_1}{dt} \cdot \frac{d\gamma_2}{dt} \right]^{1/2} dt \]
8/18. Idea of proof and extension to Mallows

\[I(\rho, \gamma) = 2 \int_0^1 \left[\frac{d\rho}{dx}(\gamma(t)) \frac{d\gamma_1}{dt} \cdot \frac{d\gamma_2}{dt} \right]^{1/2} dt \]

Thm. (Mueller and S) Let \(q_n(\beta) = \exp(-\beta/n) \),

\[\forall \epsilon > 0, \lim_{n \to \infty} \mu_{n,q_n(\beta)} \{|n^{-1/2}L_n(\pi) - \mathcal{L}(\beta)| > \epsilon\} = 0, \]

where

\[\mathcal{L}(\beta) = 2\beta^{-1/2} \sinh^{-1}(\sqrt{e^\beta - 1}). \]
Weak conditional correlations

\[-\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j) \]

\[e^\alpha \]

\[\text{Let boxes } = k^2. \]

\[O(nk^2) \text{ points per box.} \]

\[O(k) \text{ boxes in cross.} \]

\[H_n \text{ has 1}_n \text{ factor.} \]

Exponential interaction for box \(O(1/k) \).

Shannon Starrr

Mallows permutations: AZ School Analysis & Math-Physics
9/18. Weak conditional correlations

Let \(\# \text{ boxes} = k^2 \).

\[
-\frac{\beta}{n} \sum_{i<j} h(x_i,y_i;x_j,y_j)
\]

\[
e^{-\frac{\beta}{n} \sum_{i<j} h(x_i,y_i;x_j,y_j)}
\]

Let \(\# \text{ boxes} = k^2 \).
Weak conditional correlations

Let \(\# \text{ boxes} = k^2 \).

\(O(\frac{n}{k^2}) \) points per box.

\[
-
\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j)
\]

\(e \)
9/18. Weak conditional correlations

\[e^{-\frac{\beta}{n} \sum_{i < j} h(x_i, y_i; x_j, y_j)} \]

Let \# boxes = \(k^2 \).

\[O\left(\frac{n}{k^2}\right) \] points per box.

\[O(k) \] boxes in cross.
9/18. Weak conditional correlations

\[-\frac{\beta}{n} \sum_{i<j} h(x_i,y_i;x_j,y_j)\]

Let \(\# \text{ boxes} = k^2 \).

\(O\left(\frac{n}{k^2}\right) \) points per box.

\(O(k) \) boxes in cross.

\(H_n \) has \(\frac{1}{n} \) factor.

Exponential interaction for box \(O(1/k) \).

Shannon Starrr

Mallows permutations: AZ School Analysis & Math-Physics
“Coupling” two random variables X and Y: finding a common probability space (Ω, \mathcal{F}, P), joint distribution.
“Coupling” two random variables X and Y: finding a common probability space (Ω, \mathcal{F}, P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.
“Coupling” two random variables X and Y: finding a common probability space (Ω, \mathcal{F}, P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

Let U be Bernoulli-2/5 and V be Bernoulli-5/6, independently.

If $V = 1$, let $X = Y = U$.

If $V = 0$, let $X = 1, Y = 0$.
“Coupling” two random variables X and Y: finding a common probability space (Ω, \mathcal{F}, P), joint distribution.

Ex. X is Bernoulli-$1/2$, Y is Bernoulli-$1/3$.
Let U be Bernoulli-$2/5$ and V be Bernoulli-$5/6$, independently.
If $V = 1$, let $X = Y = U$.
If $V = 0$, let $X = 1$, $Y = 0$.

For two random variables, can couple X and Y so that

$$
P(X = Y) = 1 - \|\mu_X - \mu_Y\|_{TV}
$$
“Coupling” two random variables X and Y: finding a common probability space (Ω, \mathcal{F}, P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

Let U be Bernoulli-2/5 and V be Bernoulli-5/6, independently.

If $V = 1$, let $X = Y = U$.

If $V = 0$, let $X = 1$, $Y = 0$.

For two random variables, can couple X and Y so that

$$\mathbb{P}(X = Y) = 1 - \|\mu_X - \mu_Y\|_{TV}$$

$$\|\mu_X - \mu_Y\|_{TV} = \max_A |P(X \in A) - P(Y \in A)| = \frac{1}{2} \int |f_X(x) - f_Y(x)| \, dx$$
- $\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j)$

Let \# boxes = k^2.

$O\left(\frac{n}{k^2}\right)$ points per box.

$O(k)$ boxes in cross.

Exponential term $O(1/k)$ per particle.
\[-\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j)\]

Let \# boxes $= k^2$.

$O\left(\frac{n}{k^2}\right)$ points per box.

$O(k)$ boxes in cross.

Exponential term $O(1/k)$ per particle.

So fraction of points that are not coupled to IID: $O(1/k)$.
Conclusion of proof

- For the empirical measure $\hat{\rho}_{n,\pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n,\pi_i/n)$,

 \[
 \mu_{n,q_n(\beta)} \{ | \int_{[0,1]^2} \varphi \, d\hat{\rho}_{n,\pi} - \int_{[0,1]^2} \varphi \, d\rho_{\beta} | > \epsilon \} \to 0 \text{ for each continuous } \varphi \text{ and each } \epsilon > 0.
 \]
Conclusion of proof

- For the empirical measure \(\hat{\rho}_{n,\pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n,\pi_i/n) \),
 \(\mu_{n,q_n(\beta)} \left\{ \left| \int_{[0,1]^2} \varphi \, d\hat{\rho}_{n,\pi} - \int_{[0,1]^2} \varphi \, d\rho_{\beta} \right| > \epsilon \right\} \rightarrow 0 \) for each continuous \(\varphi \) and each \(\epsilon > 0 \).

- In particular for any finite number \(k^2 \) boxes, the point counts converge in probability.
For the empirical measure $\hat{\rho}_{n,\pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n, \pi_i/n)$,

$$\mu_{n,q_n(\beta)} \left\{ \left| \int_{[0,1]^2} \varphi \, d\hat{\rho}_{n,\pi} - \int_{[0,1]^2} \varphi \, d\rho_\beta \right| > \epsilon \right\} \to 0 \text{ for each continuous } \varphi \text{ and each } \epsilon > 0.$$

In particular for any finite number k^2 boxes, the point counts converge in probability.

Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho = \rho_\beta$ with $O(1/k)$ fraction of particle number fluctuation.
Conclusion of proof

- For the empirical measure $\hat{\rho}_{n,\pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n, \pi_i/n)$, $\mu_{n,q_n(\beta)} \{ | \int_{[0,1]^2} \varphi \, d\hat{\rho}_{n,\pi} - \int_{[0,1]^2} \varphi \, d\rho_{\beta} | > \epsilon \} \rightarrow 0$ for each continuous φ and each $\epsilon > 0$.

- In particular for any finite number k^2 boxes, the point counts converge in probability.

- Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho = \rho_{\beta}$ with $O(1/k)$ fraction of particle number fluctuation.

- Taking $k \rightarrow \infty$ after $n \rightarrow \infty$, and using monotonicity of L show that one can reduce to the Deuschel-Zeitouni optimization problem.
Conclusion of proof

For the empirical measure $\hat{\rho}_{n,\pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n,\pi_i/n)$,

$$\mu_{n,q_n(\beta)} \left\{ \left| \int_{[0,1]^2} \varphi \, d\hat{\rho}_{n,\pi} - \int_{[0,1]^2} \varphi \, d\rho_{\beta} \right| > \epsilon \right\} \to 0 \text{ for each continuous } \varphi \text{ and each } \epsilon > 0.$$

In particular for any finite number k^2 boxes, the point counts converge in probability.

Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho = \rho_{\beta}$ with $O(1/k)$ fraction of particle number fluctuation.

Taking $k \to \infty$ after $n \to \infty$, and using monotonicity of L show that one can reduce to the Deuschel-Zeitouni optimization problem.

Moreover, it is a calculus exercise to see that for $\rho = \rho_{\beta}$, $I(\rho, \gamma)$ is attained at $\gamma = \text{diagonal}$, and gives the formula

$$L(\beta) = 2\beta^{-1/2} \sinh^{-1}(\sqrt{e^\beta - 1}).$$
12/18. Conclusion of proof

For the empirical measure \(\hat{\rho}_{n, \pi} = \frac{1}{n} \sum_{i=1}^{n} \delta(i/n, \pi_i/n) \),
\[\mu_{n, q_n(\beta)} \left\{ \left| \int_{[0,1]^2} \varphi \, d\hat{\rho}_{n, \pi} - \int_{[0,1]^2} \varphi \, d\rho_\beta \right| > \epsilon \right\} \to 0 \] for each continuous \(\varphi \) and each \(\epsilon > 0 \).

In particular for any finite number \(k^2 \) boxes, the point counts converge in probability.

Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with \(\rho = \rho_\beta \) with \(O(1/k) \) fraction of particle number fluctuation.

Taking \(k \to \infty \) after \(n \to \infty \), and using monotonicity of \(L \) show that one can reduce to the Deuschel-Zeitouni optimization problem.

Moreover, it is a calculus exercise to see that for \(\rho = \rho_\beta \),
\[\mathcal{I}(\rho, \gamma) \] is attained at \(\gamma = \text{diagonal} \), and gives the formula
\[\mathcal{L}(\beta) = 2\beta^{-1/2} \sinh^{-1}(\sqrt{e^\beta - 1}) \, . \]

After a reparametrization \(\rho_\beta(x'(x), y'(y)) \propto (1 - \beta xy)^{-2} \).
13/18. Bounds on the fluctuations

Let \(\# \text{ boxes} = k^2 \).

\(O\left(\frac{n}{k^2}\right) \) points per box.

\(O(k) \) boxes in cross.

Coupling failure rate \(O(1/k) \).

\[-\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j) \]

\[e \]
Bounds on the fluctuations

\[-\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j) \]

Let \(\# \) boxes = \(k^2 \).

\(O\left(\frac{n}{k^2}\right) \) points per box.

\(O(k) \) boxes in cross.

Coupling failure rate \(O(1/k) \).

Normal fluctuation per box \(O(n^{1/2}/k) \). Fraction of total \(O(k/n^{1/2}) \).
13/18. Bounds on the fluctuations

\[-\frac{\beta}{n} \sum_{i<j} h(x_i, y_i; x_j, y_j)\]

Let \# boxes = \(k^2\).

\(O\left(\frac{n}{k^2}\right)\) points per box.

\(O(k)\) boxes in cross.

Coupling failure rate \(O(1/k)\).

Normal fluctuation per box \(O(n^{1/2}/k)\). Fraction of total \(O(k/n^{1/2})\)

\(k = O(n^{1/4})\)
14/18. Bounds on the counts

Four-square problem:

\[
P_q \left(\begin{array}{cc}
 n_{11} & n_{12} \\
 n_{21} & n_{22}
\end{array} \right) = P_1 \left(\begin{array}{cc}
 n_{11} & n_{12} \\
 n_{21} & n_{22}
\end{array} \right) \cdot W_q \left(\begin{array}{cc}
 n_{11} & n_{12} \\
 n_{21} & n_{22}
\end{array} \right)
\]

\[
q^{n_{12}n_{21}} \frac{(n_{11} + n_{12})!(n_{11} + n_{21})!(n_{12} + n_{22})!(n_{21} + n_{22})!}{(n_{11})!(n_{12})!(n_{21})!(n_{22})!(n_{11} + n_{12} + n_{21} + n_{22})!}
\]

where \(\{n\}! = [n]!/n! \).
Large deviations for 4-square

Stirling formula → relative entropy:

\[
\frac{1}{n} \ln \mathbb{P}_1 \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} = \frac{1}{n} \ln \left(\frac{n!}{\prod_{i,j=1}^{2} n_{ij}!} \right) \to - \sum_{i,j=1}^{2} \rho_{ij} \ln \left(\frac{\rho_{ij}}{|\Lambda_{ij}|} \right)
\]

for \(n \to \infty \), with \(n_{ij}/n \to \rho_{ij} \), where \(|\Lambda_{ij}| = \text{area of sub-square } \Lambda_{ij} \).
Stirling formula \rightarrow relative entropy:

\[
\frac{1}{n} \ln \mathbb{P}_1 \left(\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \right) = \frac{1}{n} \ln \left(\frac{n!}{\prod_{i,j=1}^{2} n_{ij}!} \right) \rightarrow - \sum_{i,j=1}^{2} \rho_{ij} \ln \left(\frac{\rho_{ij}}{|\Lambda_{ij}|} \right)
\]

for $n \rightarrow \infty$, with $n_{ij}/n \rightarrow \rho_{ij}$, where $|\Lambda_{ij}| = $ area of sub-square Λ_{ij}.

\underline{q-Stirling formula:}

\[
\frac{1}{n} \ln \{n\}!_{q=\exp(-\beta/n)} \rightarrow A(\beta) = \int_{0}^{1} \ln \left(\frac{1 - e^{-\beta x}}{\beta x} \right) \, dx .
\]
Stirling formula → relative entropy:

\[
\frac{1}{n} \ln \mathbb{P}_1 \left(\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \right) = \frac{1}{n} \ln \left(\frac{n!}{\prod_{i,j=1}^2 n_{ij}!} \right) \rightarrow - \sum_{i,j=1}^2 \rho_{ij} \ln \left(\frac{\rho_{ij}}{|\Lambda_{ij}|} \right)
\]

for \(n \to \infty \), with \(n_{ij}/n \to \rho_{ij} \), where \(|\Lambda_{ij}| = \text{area of sub-square } \Lambda_{ij} \).

\underline{q-Stirling formula:}

\[
\frac{1}{n} \ln \{n\}! \bigg|_{q=\exp(-\beta/n)} \rightarrow A(\beta) = \int_0^1 \ln \left(\frac{1 - e^{-\beta x}}{\beta x} \right) \, dx.
\]

\[
\frac{1}{n} \ln \{n_{ij}\}! \bigg|_{q=\exp(-\beta/n)} \rightarrow \rho_{ij} A(\beta \rho_{ij}).
\]
Large deviations for 4-square

Stirling formula → relative entropy:

\[\frac{1}{n} \ln \mathbb{P}_1 \left(\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \right) = \frac{1}{n} \ln \left(\frac{n!}{\prod_{i,j=1}^{2} n_{ij}!} \right) \rightarrow - \sum_{i,j=1}^{2} \rho_{ij} \ln \left(\frac{\rho_{ij}}{|\Lambda_{ij}|} \right) \]

for \(n \rightarrow \infty \), with \(n_{ij}/n \rightarrow \rho_{ij} \), where \(|\Lambda_{ij}| = \text{area of sub-square } \Lambda_{ij} \).

q-Stirling formula:

\[\frac{1}{n} \ln\{n\}! \bigg|_{q=\exp(-\beta/n)} \rightarrow A(\beta) = \int_{0}^{1} \ln \left(\frac{1 - e^{-\beta x}}{\beta x} \right) \, dx. \]

\[\frac{1}{n} \ln\{n_{ij}\}! \bigg|_{q=\exp(-\beta/n)} \rightarrow \rho_{ij} A(\beta \rho_{ij}). \]

\[e^{\beta \left(\begin{array}{cc} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{array} \right)} = \lim_{n \rightarrow \infty} \frac{1}{n} \ln \mathcal{W}_{q_n}(\beta) \left(\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \right) \]
Stirling formula \rightarrow relative entropy:

$$\frac{1}{n} \ln \mathbb{P}_1 \left(\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \right) = \frac{1}{n} \ln \left(\frac{n!}{\prod_{i,j=1}^{2} n_{ij}!} \right) \rightarrow - \sum_{i,j=1}^{2} \rho_{ij} \ln \left(\frac{\rho_{ij}}{|\Lambda_{ij}|} \right)$$

for $n \rightarrow \infty$, with $n_{ij}/n \rightarrow \rho_{ij}$, where $|\Lambda_{ij}| = $ area of sub-square Λ_{ij}.

q-Stirling formula:

$$\frac{1}{n} \ln \{n\}!_{q=\exp(-\beta/n)} \rightarrow A(\beta) = \int_{0}^{1} \ln \left(\frac{1 - e^{-\beta x}}{\beta x} \right) \, dx.$$

$$\frac{1}{n} \ln \{n_{ij}\}!_{q=\exp(-\beta/n)} \rightarrow \rho_{ij} A(\beta \rho_{ij}).$$

$$e_{\beta} \left(\begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} \right) = \lim_{n \rightarrow \infty, n_{ij}/n \rightarrow \rho_{ij}} \frac{1}{n} \ln W_{q_n(\beta)} \left(\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \right) \ s + e_{\beta} \text{ concave}$$
To get a CLT for square counts have to do a 9-square problem.
To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling:

\[N_n = n \pm O(n^{3/4} \sqrt{\log n}) \] with high probability.
To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling:
\[N_n = n \pm O\left(n^{3/4} \sqrt{\log n}\right) \text{ with high probability.} \]

For the Deuschel-Zeitouni model can get easy bounds:
\[L_n - \mathbb{E}L_n = O\left(n^{1/4}\right), \text{ with high probability.} \]
To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling:
\[N_n = n \pm O(n^{3/4}\sqrt{\log n}) \] with high probability.

For the Deuschel-Zeitouni model can get easy bounds:
\[L_n - \mathbb{E}L_n = O(n^{1/4}) \], with high probability.

Problem. Actually while it is true \(n^{-1/2} \mathbb{E}L_n \to I(\rho) \), we do not know how fast!
To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling:

\[N_n = n \pm O(n^{3/4} \sqrt{\log n}) \] with high probability.

For the Deuschel-Zeitouni model can get easy bounds:

\[L_n - \mathbb{E}L_n = O(n^{1/4}) \], with high probability.

Problem. Actually while it is true \(n^{-1/2} \mathbb{E}L_n \rightarrow I(\rho) \), we do not know how fast!

We have to compare \(L_n \) in the Mallows measure to \(L_{N_n} \) in the Deuschel-Zeitouni model.
To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling: \(N_n = n \pm O(n^{3/4} \sqrt{\log n}) \) with high probability.

For the Deuschel-Zeitouni model can get easy bounds: \(L_n - \mathbb{E}L_n = O(n^{1/4}) \), with high probability.

Problem. Actually while it is true \(n^{-1/2} \mathbb{E}L_n \to I(\rho) \), we do not know how fast!

We have to compare \(L_n \) in the Mallows measure to \(L_{N_n} \) in the Deuschel-Zeitouni model.

We can either settle for \(O(n^{(3/8)^+}) \) bounds, or we can prove \(O(n^{(1/4)^+}) \) bounds along subsequences.
All we need to do is show that the area on the right hand picture is $O(n^{-1/2})$: each “box” is $O(n^{-1})$ and there are $O(n^{1/2})$ “boxes.”
Aldous and Diaconis proved that on a horizontal slice, the length of the LIS behaves locally like a Poisson point process:

\[\text{Intensity} \sqrt{\frac{1-y}{1-x}} \]

Tread carefully, the Poisson result is only locally, weakly...
Aldous and Diaconis proved that on a horizontal slice, the length of the LIS behaves locally like a Poisson point process:

\[\text{Intensity } \sqrt{\frac{1-y}{1-x}} \]

Tread carefully, the Poisson result is only locally, weakly ...
Aldous and Diaconis proved that on a horizontal slice, the length of the LIS behaves locally like a Poisson point process:

\[
\text{Intensity } \sqrt{\frac{1-y}{1-x}}
\]

\[\text{LIS to NE} \quad \Delta y \quad \text{LIS to SW} \quad \text{Intensity } \sqrt{\frac{y}{x}}\]

Tread carefully, the Poisson result is only locally, weakly . . .

Thanks for your attention!