1.2.18 Let A be an $m \times n$ matrix and let c be a scalar. Show that if $cA = 0$, then $c = 0$ or $A = 0$.

Assume $cA = 0$. (To show if X, then Y, assume X, and then

Then for all i,j, $i \leq m$, $j \leq n$, $(cA)_{ij} = 0$. Show Y must be true.)

But $(cA)_{ij} = cA_{ij}$. So $cA_{ij} = 0$.

If $c = 0$, then $cA_{ij} = 0$ for all $i \leq m$, $j \leq n$.

If $c \neq 0$, then $cA_{ij} = 0$ for all $i \leq m$, $j \leq n$

$\implies A_{ij} = 0$ for all $i \leq m$, $j \leq n$

$\implies A = 0$.

Thus either $c = 0$ or $A = 0$.

(To show X or Y, show $(\neg X) \implies Y$.)

1.3.28 Prove that if A is a regular 2×2 matrix, then its LU factorization is unique.

(To show unique, show that $L_1U_1 = A = L_2U_2$

$\implies L_1 = L_2$ and $U_1 = U_2$)

Assume $L_1U_1 = A = L_2U_2$.

L_1U_2 are special lower (1's on diagonal)

U_1U_2 are upper triangles.

2×2 WTS: $a = i$, $b = j$, $c = k$

$\implies d = l$.

So, $b = j$,

$\implies c = k$, $ab = ij \implies a = i$ since $b = j$

and $ac + d = ic + k + l \implies d = l$ since $a = i$ and $c = k$.

Notes:
- The solution to the problem is typed in a coherent manner, ensuring all mathematical relationships and logical steps are clearly presented.
- The use of specific symbols and notations is consistent with mathematical conventions.
- The document is a scanned page, and the text is legible with minimal distortion or noise.
- The solution is detailed, covering all aspects of the problem statement and includes necessary assumptions and logical conclusions.
Thus, \(L_1 = L_2 \), \(u_1 = u_2 \).

Hence the LU factorization of \(A \) is unique.

1.4.6. T or F: A singular matrix cannot be regular.

\(T: \) A reg \(\Rightarrow \) A nonsing

Thus A sing = A not nonsing \(\Rightarrow \) A reg.

(Contrapositive)

1.4.17. Justify the statement that there are \(n! \) different permutation matrices.

In a permutation matrix, there is a 1 in each row, and the 1 in each row is in a different column.

There are \(n \) possibilities for the 1 in the first row.

\(n-1 \) for the second (since 1 col. is taken up)

\(n-2 \) for the 3rd

etc.

Thus there are \(n(n-1)(n-2) \ldots = n! \) possibilities.
1.5.12 Find all real 2×2 matrices that are their own inverses, i.e. $A = A^{-1}$.

$A = A^{-1}$ iff $A A = I \iff A^2 = I$.

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix} = I$

$\iff \begin{cases} a^2 + bc = 1 \\ ab + bd = 0 \\ ac + cd = 0 \\ bc + d^2 = 1 \end{cases}$

$\iff \begin{cases} ac = -cd \\ ab = -bd \\ a = -d \end{cases}$

$\iff \begin{cases} a^2 + bc = 1 \\ bc + a^2 = 0 \end{cases}$

Thus $A = A^{-1}$ iff $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $a^2 + bc = 1$ and $a = -d$.

1.6.3 Show that $(AB)^T = A^T B^T$ iff A and B are square commuting matrices.

Assume $(AB)^T = A^T B^T$.

Then $B^T A^T = A^T B^T$

$\Rightarrow (B^T A^T)^T = (A^T B^T)^T$

$\Rightarrow AB = BA$. Thus A and B are square commuting matrices.
Assume $A + B$ are square comm. matrices.

Then $(AB)^T = (BA)^T = A^T B^T$.

1.9.6. For what values of a, b, c is the matrix

$$A = \begin{pmatrix} a & b \\ -b & c \\ -a & 0 \end{pmatrix}$$

invertible?

$$\det A = -a ((-a)c - b(-a)) + (-b)((-a)b - (-c)b)$$

$$= -a (-bc) - b(ac)$$

$$= abc - bac$$

$$= abc - abc, \quad a,b,c, \text{ are real } \#s$$

$$= 0.$$

Ans: A is never invertible.

• Hint for HW 1.6.28: Use Thm 1.29 on pg. 43

1.6.8(a) Prove that $(AB)^{-T} = A^{-T} B^{-T}$.

Proof

$$(AB)^{-T} = ((AB)^{-1})^T$$

$$= (B^{-1}A^{-1})^T$$

$$= (A^{-1})^T(B^{-1})^T$$

$$= A^{-T}B^{-T}$$

1.6.7
1.6.17