
J.V. Moloney
Arizona Center for Mathematical Sciences and
Optical Sciences Center

Support: AFOSR F49620-02-1-0380; F49620-03-1-0194
FA9550-04-1-0213; FA9550-04-1-0355
NSF DMS0335101
ACMS Research Team

- Moysey Brio (ACMS/Mathematics)
- Miro Kolesik (ACMS/OSC)
- Joerg Hader (ACMS/OSC)
- Armis Zakharian (ACMS/OSC)
- Arash Mafi (ACMS/OSC)
- Walter Hoyer (ACMS/Mathematics)
- Jens Foerstner (ACMS/Mathematics)
- Colm Dineen (ACMS/Mathematics)

- Patrick Kano (Mathematics)
- Krishna Mohan Gundu (ACMS/OSC)
- Marcelo Matus (ACMS/ECE)
- Yong Xie (ACMS/OSC)
- Hongbo Li (ACMS/OSC)

Collaborators:

Stephan Koch (Marburg/OSC) + many more from OSC!!
ACMS Photonics Supercomputing Laboratory

Dual Opteron Workstations

46 CPU AMD Opteron Cluster

2 TB GFS Home

Infiniband

32 CPU Itanium 2 Altix 3700

1 TB XFS Home

2 TB PVFS Scratch Directory

Gigabit Network

Graphic Head

Dual Graphic Head to Prism Graphics

2 TB GFS Home

Graphic Head

Gigabit Network

Dual Graphic Head to Prism Graphics

2 TB PVFS Scratch Directory

Gigabit Network

Dual Graphic Head to Prism Graphics

2 TB PVFS Scratch Directory
Talk Outline

• Femtosecond Atmospheric Light Strings

• Beyond the Nonlinear Schrödinger Equation

• Role of nanostructures in high power SCL design

• Computational Nanophotonics: Issues and Challenges

• Nanophotonics and Plasmonics Applications

• Summary
Maxwell’s Equations

\[
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}; \quad \nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}
\]

\[
\nabla \cdot \vec{D} = 0, \quad \nabla \cdot \vec{B} = 0
\]

Constitutive Relations:

\[
\vec{B} = \mu_0 \vec{H}, \quad \vec{D} = \varepsilon_0 \vec{E} + \vec{P}
\]

Link between E.M and material excitation

Semiconductor passive/active media - rigorous microscopic many-body model
Other material systems - phenomenological models (Lorenz, Drüde, 2-level, .)

Challenges - reliable physical models for ultra-broadband excitations
- numerical algorithms to implement them
Atmospheric Femtosecond Probe

New Scientist, February 19, 2000

The Physics

• White light continuum spectroscopic probe

• Optical breakdown creates narrow plasma filaments - RF emission/lightning control.
Light String Physics

- Nonlinear self-focusing in air – $P_{th} = 7$ GW
- Extreme self-phase modulation - remote white light supercontinuum spectroscopic source.
- Dilute plasma channel generation – THz source, remote LIBS spectroscopy.
- Light string diameters below inner turbulence scale – obscurant penetration
Nonlinear Spatial Replenishment

- Low power, radial symmetry

- Nonlinear spatial replenishment (Mlejnek et al. Optics Letters 1998)
Extended 3D NLS Model

\[\frac{\partial A}{\partial z} = \frac{i}{2k} \nabla_T^2 A - i \frac{k}{2} \frac{\partial^2 A}{\partial t^2} + i(1 - f_R)kn_2 \left| A \right|^2 A - \frac{\sigma}{2} (1 + i \omega \tau) \rho A \]

\[- \frac{\beta^{(N)}}{2} \left| A \right|^{2N-2} A + i f_R kn_2 \int_{-\infty}^{t} R(t') \left| A(t-t') \right|^2 dt' A \]

\[\frac{\partial \rho}{\partial t} = \frac{1}{n_b^2 E_g} \sigma \rho \left| A \right|^2 + \frac{\beta^{(N)}}{Nh \omega} \left| A \right|^{2N} - a \rho^2 \]

- Plasma Drude Model

 Avalanche generation Multi-photon generation Plasma recombination

- Diffraction GVD Kerr Nonlinearity Plasma Absorption/refraction

 Multi-photon absorption Delayed Raman Response
Rigorous Carrier Resolved 3D Propagator

- Captures all relevant physics of vector Maxwell in absence of backward generated field.

- Measured absorption/refractive index spectra over relevant bandwidth can be input directly to code

- Includes extreme self-focusing down to the wavelength of light in the material.
Unidirectional Pulse Propagation Equation

\[\partial_t \vec{D}_f(\vec{k}) = -i\omega(\vec{k}) \vec{D}_f(\vec{k}) + \frac{i}{2} \omega(\vec{k}) \left[\vec{P}_{NL}(\{\vec{D}\}, \vec{k}) - \frac{1}{k^2} \vec{k} \cdot \vec{P}_{NL}(\{\vec{D}\}, \vec{k}) \right] \]

Equation written in spectral domain. Not a PDE in real-space representation.

Nonlinear response coupling
Contribution from self-steepening
\[\text{div } \vec{E} \] - related term
Nonzero due to gradients.

Linear propagation,
Contains space-time focusing “terms”

Nonlinear polarization of medium calculated from material equation (Kerr effect, plasma, ...)

This equation is exact as long as \(D \) is full field

To close the system of equations for numerical simulations, we approximate:

\[\vec{P}_{NL}(\{\vec{D}\}) \approx \vec{P}_{NL}(\{\vec{D}_f\}) \]
Shock regularization in femtosecond pulse propagation

25-fs, 8GW, 775nm light pulse propagating in air (animation records 60cm propagation):
- shock forms after 0.5m in the trailing edge of the pulse
- steep wave-form generates higher-frequency field components

Electric induction
(fully resolved by algorithm)

On-axis intensity
Shock regularization in femtosecond pulse propagation

detail: “shock” portion of the pulse

- Makes possible 3D carrier-resolved propagation over tens of meters!
- Describes fs pulse propagation with focusing to λ
- Other “envelope models” derived in seamless fashion
Periodic Hermitian Eigenproblems in 1d

- k is periodic: $k + 2\pi/a$ equivalent to k
- $\varepsilon(x) = \varepsilon(x+a)$
- Band gap/stop band
- Irreducible Brillouin zone
Slowing Down Light
- engineering material properties!

\[\frac{d\omega}{dk} \rightarrow 0: \text{slow light} \]
(e.g. bandedge lasing)

backwards slope: negative refraction

strong curvature: super-prisms, …
(+ negative refraction)
Optically-Pumped Semiconductor Laser

- OSC Expts. M. Fallahi, Li Fan, Marc Schillgalies

- Heat sinks
- Optional heat spreader
- AR Coating
- MM Pump

\[\lambda/4 \text{ Mirror Stack} \]
\[\text{InGaAs MQW (14-16)} \]

\text{Output}

\text{∼ 5-6 µm!}

\text{Very efficient heat extraction!}

\text{Highly efficient incoherent diode bar to coherent output converter!}
High Power OPSL Chips
Can one achieve > 1kW from a single chip?
Semiconductor Sub-Cavity
Active Mirror

- A. Zakharian, J. Hader (ACMS)

Nanostructured Sub-cavity

Active Mirror Reflectance
VECSEL/OPSL Modeling

- A. Zakharian, M. Kolesik

Optical field spectral domain propagator in the external cavity

Optical field bidirectional Bi_BPM propagator and carrier density rate eqn in active semiconductor sub-cavity

Thermal transport from active region through to heat sink
High Brightness OPSL Design Cycle

- collaboration involving UofA (ACMS/OSC), AFRL
- M. Fallahi, Li Fan, Marc Schillgalies, S.W. Koch, W. Stolz, T. Nelson, R. Bedford

Optimization of MQW Semiconductor Epi Structure

Sub-cavity optimization for pump/signal

Gain Spectra (waffe diagnostic)

3D Thermal Analysis of Optically-Pumped VCSEL

Device growth and processing

Send for growth
Sub-cavity Optimization for Bandedge Lasing

Nontrivial nonlinear optimization problem for pump absorption and signal gain!

Conventional sub-cavity design

Original reflectance spectrum

Band-edge lasing sub-cavity design

Sharper and enhanced BGE reflectance spectrum

Reflectance as seen by external cavity

- RPG-design, 360K
- BGE-design, 330K
- BGE-design, 360K

$\Gamma_{\text{opt}} = 8\, \text{nm}$

$\alpha = 2.5 - 3.5 \times 10^{12}\, \text{cm}^{-2}$, $15\, \text{meV}$
Actively Cooled kW OPLS

- Can dissipate 1 kW of heat with active cooling \(\Rightarrow \) 1kW signal power!

- Active Structure + 60°
- CVD diamond heat spreader
- Copper Mount
- Transparent single crystal diamond heat spreader
- Active Structure blowup
MIT Photonics Micropolis

Simulation Goal: Resolve fine nanoscale features in an otherwise featureless landscape

3D + time Maxwell solvers for time domain analysis
Vector Maxwell Simulators

Maxwell’s Equations:

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} ; \quad \nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \]

\[\nabla \cdot \vec{D} = 0, \quad \nabla \cdot \vec{B} = 0 \]

Constitutive relations:

\[\vec{B} = \mu_0 \vec{H} , \quad \vec{D} = \varepsilon_0 \vec{E} + P \]

Simulation size grows as \(N^3 \) making memory and CPU prohibitive!
Layout of Computational Domain

- PML Layer
- Micro-ring add-drop filter
Example of AMR FDTD discretization for TM-mode in two space dimensions

- A.R. Zakharian, M. Brio

\[
\frac{\partial H_x}{\partial t} = -\frac{\partial E_z}{\partial y}, \quad \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}
\]

\[
\frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}
\]

\[
H^{n+1/2}_{x,i+1/2,j} - H^{n-1/2}_{x,i+1/2,j} = -\frac{\Delta t}{\Delta y} \left(E^n_{z,i+1/2,j+1/2} - E^n_{z,i+1/2,j-1/2} \right)
\]

\[
H^{n+1/2}_{y,i+1/2,j} - H^{n-1/2}_{y,i+1/2,j} = \frac{\Delta t}{\Delta x} \left(E^n_{z,i+1/2,j+1/2} - E^n_{z,i-1/2,j+1/2} \right)
\]

AMR refines the computational domain locally using nested rectangular grid patches. A standard FDTD update is applied to each patch.

At the coarse/fine grid interfaces the solution is interpolated. Dashed lines denote boundaries of the ghost cells around the fine region. Arrows show a sample interpolation from coarse to fine values of the electric field.
Nested Grids on a 3D PBG Structure

- A. Zakharian, C. Dineen

- confined defect mode of a 3D PBG lattice
Resolving a QD in a PBG Lattice

-Jens Foerstner - experiment Gibbs et al.

QD Wavefunction

Coupling QD to High Q Defect Mode

Energy level splitting

4-20 nm

AMR Mesh
PBG+QD Confined/Radiating Modes

Bare PBG Mode from Top

Coupled QD+PBG Energy Transfer

Radiating Pattern
Nested 3-level AMR Resolves SP on 20nm Metal Film

<table>
<thead>
<tr>
<th>z</th>
<th>Nlevels</th>
<th>Runtime ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nm</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>1nm</td>
<td>3</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Scattering from a metal Nanosphere – 3 nested AMR Levels
Nested AMR Mesh for a Plasmon Waveguide

- shows 3 levels of mesh refinement
Summary

Why Computational Photonics?

• Provides a fast track to device design, dramatically reducing wasteful material re-growth, packaging etc

• Interactive simulation laboratory will make many future experiments redundant – computer laboratory on a bench

• Powerful tool to discover new linear and nonlinear optical phenomena on micro- and nano-scales

-Many basic research challenges remain in physics and algorithm development
Lateral ASE and Lasing

- UA, AFRL and Coherent Inc. Collaboration
- Expt data courtesy of Coherent and Robert Bedford (AFRL)