Chapter 8 NOTES
Quantitative and Qualitative
Predictors for MLR
§8.1: Polynomial Regression

Mentioned in passing in §6.1, we now study polynomial regression in more detail.

This is technically a special form of MLR, since it has more than one β_k parameter.

Simplest case: 2nd-order/single predictor model:

$$Y_i = \beta_0 + \beta_1(X_i - \bar{X}) + \beta_2(X_i - \bar{X})^2 + \varepsilon_i$$

$(i = 1,\ldots,n)$ with $\varepsilon_i \sim \text{i.i.d.} \text{N}(0,\sigma^2)$.
Polynomial Regression (cont’d)

For simplicity, write $x_i = (X_i - \bar{X})$:

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$$

(Why? Centering usually reduces multicollinearity with 2nd-order, and higher, predictors. Just do it.)

This **quadratic regression** can be a useful approximation to data that deviate from strict linearity. See Fig. 8.1 →
Quadratic Regression

FIGURE 8.1
Examples of Second-Order Polynomial Response Functions.

\[E[Y] = 52 + 8x - 2x^2 \]

(a)

\[E[Y] = 18 - 8x + 2x^2 \]

(b)
Cubic Regression

(Fig. 8.2. Examples of 3rd-order, cubic regression polynomials.)

\[E(Y) = 22.45 + 1.45x + .15x^2 + .35x^3 \]

\[E(Y) = 16.3 - 1.45x - .15x^2 - .35x^3 \]
2nd-Order Response Surface
(Fig. 8.3. Examples of 2nd-order response surface, as in §6.1.)
Testing Polynomial Models

- Sequential testing: for testing purposes, we start with the highest-order term and work down the order (‘up the ladder’).

- Suppose $E(Y_i) = \beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \beta_{111} x_i^3$
 - **First** test $H_0: \beta_{111} = 0$ via partial F-test and $SSR(x_3|x_1,x_2)$. If signif., STOP and conclude cubic polynomial is significant.
 - If $H_0: \beta_{111} = 0$ is NOT signif., drop β_{111} and go ‘up ladder’ to test $H_0: \beta_{11} = 0$ via $SSR(x_2|x_1)$.
Polynomial Regression (cont’d)

- \(E\{Y_i\} = \beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \beta_{111} x_i^3 \) (cont’d)
 - If \(H_0: \beta_{11} = 0 \) is signif., STOP and conclude quadratic polynomial is significant.
 - If \(H_0: \beta_{11} = 0 \) is NOT signif., drop \(\beta_{11} \) and go ‘up ladder’ to test \(H_0: \beta_1 = 0 \) via SSR(\(x_1 \)).
 - If \(H_0: \beta_1 = 0 \) is signif., STOP and conclude simple linear model is significant. Etc.

- Once sequential testing is complete, we usually go back and fit the final model in terms of the orig. \(X_k \)’s to get cleaner \(b_k \)’s and std. errors.
Example: Power Cell Data (CH08TA01)

Power Cell Data example: \(Y = \{ \text{\# cycles} \} \)
and we have 2 predictors (\(X_1 = \) charge rate & \(X_2 = \) temp.); see Table 8.1. Consider a 2nd-order “response surface” MLR:

\[
> Y = c(150, 86, 49, \ldots, 279, 235, 224) \\
> X_1 = c(0.6, 1.0, 1.4, \ldots, 0.6, 1.0, 1.4) \\
> X_2 = c(\ \text{rep}(10,3), \ \text{rep}(20,5), \ \text{rep}(30,3)) \\
> x_1 = (X_1 - \text{mean}(X_1))/0.4 \\
> x_2 = (X_2 - \text{mean}(X_2))/\text{min}(X_2) \\
> x_1^2 = x_1 \times x_1 \\
> x_2^2 = x_2 \times x_2 \\
> x_1x_2 = x_1 \times x_2
\]
Selection of X_1 and X_2 was controlled.
⇒ note the zero/near-zero correlations among the (transformed) x-variables:

```r
> cor( cbind(x1, x2, x1sq, x2sq, x1x2) )

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x1sq</th>
<th>x2sq</th>
<th>x1x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1.00e+00</td>
<td>0.00e+00</td>
<td>-4.04e-16</td>
<td>-1.99e-17</td>
<td>0.00e+00</td>
</tr>
<tr>
<td>x2</td>
<td>0.00e+00</td>
<td>1.00e+00</td>
<td>0.00e+00</td>
<td>0.00e+00</td>
<td>-9.06e-17</td>
</tr>
<tr>
<td>x1sq</td>
<td>-4.04e-16</td>
<td>0.00e+00</td>
<td>1.00e+00</td>
<td>2.67e-01</td>
<td>0.00e+00</td>
</tr>
<tr>
<td>x2sq</td>
<td>-1.99e-17</td>
<td>0.00e+00</td>
<td>2.67e-01</td>
<td>1.00e+00</td>
<td>0.00e+00</td>
</tr>
<tr>
<td>x1x2</td>
<td>0.00e+00</td>
<td>-9.06e-17</td>
<td>0.00e+00</td>
<td>0.00e+00</td>
<td>1.00e+00</td>
</tr>
</tbody>
</table>
```
Compare this to (non-trivial) correlations among orig. X_k's, etc:

```r
> cor( cbind(X1, X2, X1sq, X2sq, X1X2) )
```

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X1sq</th>
<th>X2sq</th>
<th>X1X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1.00e+00</td>
<td>0.000</td>
<td>0.9910</td>
<td>-4.2e-18</td>
<td>0.605</td>
</tr>
<tr>
<td>X2</td>
<td>0.00e+00</td>
<td>1.000</td>
<td>0.0000</td>
<td>0.09861</td>
<td>0.757</td>
</tr>
<tr>
<td>X1sq</td>
<td>9.91e-01</td>
<td>0.000</td>
<td>1.0000</td>
<td>0.00592</td>
<td>0.600</td>
</tr>
<tr>
<td>X2sq</td>
<td>-4.16e-18</td>
<td>0.986</td>
<td>0.0059</td>
<td>1.0e+00</td>
<td>0.746</td>
</tr>
<tr>
<td>X1X2</td>
<td>6.05e-01</td>
<td>0.757</td>
<td>0.5999</td>
<td>7.5e-01</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Power Cell Data (CH08TA01) (cont’d)

Full 2nd-order model fit with transfrm’d x’s:

```r
> summary( lm(Y ~ x1 + x2 + x1sq + x2sq + x1x2) )
Call:
lm(formula = Y ~ x1 + x2 + x1sq + x2sq + x1x2)
Coefficients:
             Estimate Std.Error  t value  Pr(>|t|)
(Intercept)   162.84      16.6    9.81  0.00019
x1           -55.83      13.2   -4.22  0.00829
x2            75.50      13.2    5.71  0.00230
x1sq           27.39     20.3    1.35  0.23586
x2sq          -10.61     20.3   -0.52  0.62435
x1x2           11.50     16.2    0.71  0.50918
```
Residual analysis shows no serious issues:

```r
> plot( resid(CH08TA01.lm) ~ fitted(CH08TA01.lm) )
> abline( h=0 )
> qqnorm( resid(CH08TA01.lm) )
```
Lack of Fit test. Only joint replication is at $x_1=x_2=0$, so need to set up the factor term carefully in R:

```r
> LOFfactor = factor(c(seq(-4,-1), rep(0,3), seq(1,4))
> anova( CH08TA01.lm, lm(Y ~ LOFfactor) )
> anova( CH08TA01.lm, lm(Y ~ LOFfactor) )
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Expression</th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>$Y \sim x_1 + x_2 + x_1sq + x_2sq + x_1x_2$</td>
<td>1</td>
<td>5240.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>$Y \sim$ LOFfactor</td>
<td>2</td>
<td>1404.7</td>
<td>3</td>
<td>3835.8</td>
<td>1.82</td>
<td>0.374</td>
</tr>
</tbody>
</table>

LOF stat. is $F^* = 1.82 (P = 0.374)$. No signif. lack of fit.
Partial F-test of 2nd-order terms
(H₀: β₁₁ = β₂₂ = β₁₂ = 0):

```r
> anova( lm(Y ~ x1+x2), CH08TA01.lm )
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model 1: Y ~ x1 + x2</th>
<th>Model 2: Y ~ x1 + x2 + x1sq + x2sq + x1x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res.Df</td>
<td>RSS</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Partial 3 df F-statistic is $F^* = 0.78$ ($P = 0.553$).
No signif. deviation from 0 seen in 2nd-order terms.
Fit reduced 1st-order model:

```r
> summary( lm(Y ~ x1+x2) )
```

Call:

`lm(formula = Y ~ x1 + x2)`

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 172.00 | 9.3543 | 18.3872 | 7.88e-08 |
| x1 | -55.83 | 12.6658 | -4.4082 | 0.002262 |
| x2 | 75.50 | 12.6658 | 5.9609 | 0.000338 |

Multiple R-squared: 0.87294
Adjusted R-squared: 0.84118
F-stat.: 27.482 on 2 and 8 DF, p-val.: 0.00026
Bonferroni-adjusted simultaneous confidence intervals on 1st-order β-parameters (using original X-variables):

```r
> g = length(coef(lm(Y ~ X1+X2))) - 1
> confint(lm(Y ~ X1+X2),
          level = 1-(.10/g))

X1          -212.6020565 -66.564610
X2             4.6292511  10.470749
```

(cf. Textbook p. 305)
Interaction Terms

- Interaction cross-product terms can be included in any MLR to allow for interactions between the X_k-variables.

- E.g., $E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$

- The cross-product creates a departure from additivity in the mean response. If $\beta_3 = 0$, the mean response is strictly additive in X_1 and X_2.
Interaction Terms (cont’d)

- Notice that the usual interpretation for the β_k parameters is muddied here.
 - What does it mean to increase X_1 by +1 unit while holding X_1X_2 fixed?!?

- Alt. interpretation: cross-product terms allow for ‘synergistic’ or ‘antagonistic’ interactions between the X_k-variables.

- It’s a special kind of departure from additivity: synergy occurs for $\beta_3 > 0$, antagonism for $\beta_3 < 0$.
Figure 8.8

Graphics for (a) additive, (b) synergistic, or (c) antagonistic response surfaces.
Interaction Caveats

Need to be careful with interactions.

- If they exist and they are ignored, very poor inferences on $E\{Y\}$ will result.

- On the other hand, adding a ‘kitchen sink’ of all possible interactions can overwhelm the MLR.

 - With 3 X_k-variables there are 3 possible pairwise interactions (not incl. the tri-way!)

 - With 8 X_k-variables there are 28 possible pairwise interactions (not incl. multi-ways!)

 - Things get unwieldy fast...
To the 3 original \(X_k\)-variables now include all pairwise interactions.

Center each \(X\)-variable (about its mean) first to assuage problems with multi-collinearity: \(x_{ik} = X_{ik} - \bar{X}_k\) \((k = 1, 2, 3)\)

MLR now has six predictor terms and \(p=7\) \(\beta\)-parameters: \(E\{Y\} = \beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_3 + \beta_4x_1x_2 + \beta_5x_1x_3 + \beta_6x_2x_3\)
Body Fat Data (CH07TA01) (cont’d)

- R can fit interaction terms using a special * operator:
 e.g., \(x_1 \times x_2 \) fits \(x_1 \) and \(x_2 \) and \(x_1 : x_2 \) all with just 1 term.

- For the Body Fat data, construct centered \(x \)-variables as \(x_1 = X_1 - \text{mean}(X_1) \), etc. Then call

\[
> \text{anova}(\text{lm}(Y \sim x_1 + x_2 + x_3), \\
\text{lm}(Y \sim x_1 \times x_2 + x_1 \times x_3 + x_2 \times x_3))
\]

Output follows →
Output from partial F-test of all pairwise interactions:

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Y ~ x1 + x2 + x3</th>
<th>Y ~ x1 * x2 + x1 * x3 + x2 * x3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res.Df</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>RSS</td>
<td>98.405</td>
<td>87.690</td>
</tr>
<tr>
<td>Df</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sum of Sq</td>
<td></td>
<td>10.715</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.5295</td>
</tr>
<tr>
<td>Pr(>F)</td>
<td></td>
<td>0.6699</td>
</tr>
</tbody>
</table>

Partial 3 df F-statistic is $F^* = 0.53$ ($P = 0.670$).
No signif. pairwise interactions are seen.
Body Fat Data (CH07TA01) (cont’d)

Can also include tri-way interactions:

```r
> anova( lm(Y ~ x1+x2+x3), lm(Y ~ x1*x2*x3) )
```

Analysis of Variance Table

Model 1: \(Y \sim x1 + x2 + x3 \)
Model 2: \(Y \sim x1 \times x2 \times x3 \)

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.405</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85.571</td>
<td>4</td>
<td>12.834</td>
<td>0.4499</td>
<td>0.7707</td>
</tr>
</tbody>
</table>

4 d.f. partial F-statistic is \(F^* = 0.45 \) (\(P = 0.771 \)).

\(\Rightarrow \) no signif. pairwise or tri-way interactions.
Qualitative Predictors

- We’ve seen cases where the X-variable was either 0 or 1 (called a binary indicator). If this indicated a qualitative state (say, 1 = ♂ or 0 = ♀) then the numbering is arbitrary. The predictor is actually qualitative, not quantitative.

- (Still 0 vs. 1 is usually as good a pseudo-quantification as any.)

- Question: What happens when binary indicators are combined with true quantitative predictors?
Example: Insur. Innov’n Data

- Suppose we study
 \(Y = \) Insurance method adoption time (mos.) in insurance companies, with
 \(X_1 = \) size of firm (quantitative)
 \(X_2 = \) type of firm: 1 = stock, 0 otherwise
 \(X_3 = \) type of firm: 1 = mutual, 0 otherwise

- Design matrix is (n = 4):

\[
X = \begin{bmatrix}
1 & X_{11} & 1 & 0 \\
1 & X_{21} & 1 & 0 \\
1 & X_{31} & 0 & 1 \\
1 & X_{41} & 0 & 1 \\
\end{bmatrix}
\]
Design Matrix Problem

- But wait, there’s a problem with this design matrix X. Notice that $X_0 = X_2 + X_3$ so the predictors are not linearly independent: $\text{rank}(X'X) = 3 < 4 = p$. (See p. 314.)
 - The MLR will fail!

- Solution is (usually) to eliminate X_3 and model $E\{Y\} = \beta_0 + \beta_1X_1 + \beta_2X_2$.

- Model interpretation here is actually sorta’ intriguing →
Two Straight Lines

For $E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$, with X_1 quantitative and X_2 a 0-1 indicator, consider:

- When $X_2 = 0$ (mutual firm), $E\{Y\} = \beta_0 + \beta_1 X_1$, an SLR on X_1 with slope β_1 and Y-intercept β_0.
- When $X_2 = 1$ (stock firm), $E\{Y\} = (\beta_0 + \beta_2) + \beta_1 X_1$, an SLR on X_1 with same slope β_1 but new Y-intercept $(\beta_0 + \beta_2)$.

So we have two parallel straight lines—each with same σ^2—one for stock firms ($X_2 = 1$) and one for mutual firms ($X_2 = 0$).
FIGURE 8.11
Illustration of Meaning of Regression Coefficients for Regression Model (8.33) with Indicator Variable X_2—Insurance Innovation Example.
Tests in Equal-Slopes ANCOVA

For this equal-slopes ANCOVA model, some obvious hypotheses are

- (first) $H_0: \beta_2 = 0$
 (i.e., no diff. between type \Rightarrow lines are same)

- (next) $H_0: \beta_1 = 0$
 (i.e., no effect of size \Rightarrow lines are flat)

Data are in Table 8.2; n = 20.

R code/analysis follows \rightarrow
Insur. Innov’n Data (CH08TA02)

Y = Insurance method adoption time
X1 = size of firm
X2 = type of firm (mutual vs. stock)

> Y = c(17, 26, ..., 30, 14)
> X1 = c(151, 92, ..., 124, 246)
> X2 = c(rep(0,10), rep(1,10))

Scatterplot using

> plot(Y ~ X1, pch=1+(18*X2))

(next slide →) shows two separate scatterlines, one for each type of firm.
Plot shows dual linear relationship, indexed by type of firm.
Equal-slopes ANCOVA in R:

```r
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> summary( CH08TA02.lm )
```

Call:
`lm(formula = Y ~ X1 + X2)`

Coefficients:
```
            Estimate Std. Error  t value  Pr(>|t|)
(Intercept)  33.87407   1.81386    18.675  9.15e-13
X1          -0.10174    0.00889   -11.443  2.07e-09
X2           8.05547    1.45911     5.521  3.74e-05
```

Multiple R-squared: 0.8951, Adjusted R-squared: 0.8827
F-statistic: 72.5 on 2 and 17 DF, p-value: 4.77e-09
ANOVA table (with sequential SSRs):

```r
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> anova( CH08TA02.lm )
```

Analysis of Variance Table
Response: Y

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1</td>
<td>1188.17</td>
<td>1188.17</td>
<td>114.51</td>
<td>5.68e-09</td>
</tr>
<tr>
<td>X2</td>
<td>1</td>
<td>316.25</td>
<td>316.25</td>
<td>30.48</td>
<td>3.74e-05</td>
</tr>
<tr>
<td>Resid.</td>
<td>17</td>
<td>176.39</td>
<td>10.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partial $F^* = 30.48$ for X_2 ($P = 3.7 \times 10^{-5}$), so the two ‘types’ are signif. different (cf. Table 8.3).
Pointwise conf. intervals from ANCOVA:

\[
> \text{CH08TA02.lm = lm(Y \sim X1 + X2)} \\
> \text{confint(CH08TA02.lm)}
\]

\[
\begin{align*}
2.5 \% & \quad 97.5 \% \\
(\text{Intercept}) & \quad 30.0471625 \quad 37.70097553 \\
X1 & \quad -0.1205009 \quad -0.08298329 \\
X2 & \quad 4.9770253 \quad 11.13391314
\end{align*}
\]

So, e.g., if interest is in effect of type of firm \((X_2)\), we see stock firms take between

\[
4.98 \leq \beta_2 \leq 11.13
\]

months longer to adopt the innovation.
Scatterplot with separate, equal-slope lines overlaid (cf. Fig. 8.12)
Multiple-Level ANCOVA

If more than 2 levels are represented by the qualitative factor, just include more (parallel) lines: one line for each level of the factor. See, e.g., Fig. 8.13
Unequal-Slopes ANCOVA

How to incorporate differential slopes in a (two-factor/two-level) ANCOVA?

Easy! Just add an X_1X_2 interaction term:
\[E\{Y\} = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_1X_2. \]

- When $X_2 = 0$, $E\{Y\} = \beta_0 + \beta_1X_1$, an SLR on X_1 with slope β_1 and Y-intercept β_0.
- When $X_2 = 1$, $E\{Y\} = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1$, an SLR on X_1 with new slope $(\beta_1 + \beta_3)$ and new Y-intercept $(\beta_0 + \beta_2)$.
Unequal-Slopes ANCOVA

For instance, with the Insur. Innov’n Data (CH08TA02), Fig. 8.14 conceptualizes the unequal-slopes model →

Stock Firms Response Function:
\[E\{Y\} = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1 \]

Mutual Firms Response Function:
\[E\{Y\} = \beta_0 + \beta_1 X_1 \]
Unequal-slopes ANCOVA in R, via interaction term and * operator:

```R
> summary( lm(Y ~ X1*X2) )
```

Call:
```
lm(formula = Y ~ X1 * X2)
```

Coefficients:

```
                    Estimate  Std. Error     t value    Pr(>|t|)
(Intercept)       33.8383695  2.4406498   13.8640 2.47e-10
X1               -0.1015306  0.0130525    -7.7790 7.97e-07
X2                8.1312501  3.6540517     2.2250   0.0408
X1:X2           -0.0004171  0.0183312    -0.0229  9.82e-01
```

Multiple R-squared: 0.8951, Adjusted R-squared: 0.8754
F-statistic: 45.49 on 3 and 16 DF, p-value: 4.68e-08
ANOVA table (with sequential SSRs) for unequal-slopes ANCOVA model:

> anova(lm(Y ~ X1*X2))

Analysis of Variance Table
Response: Y

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1</td>
<td>1188.17</td>
<td>1188.17</td>
<td>107.7819</td>
<td>1.63e-08</td>
</tr>
<tr>
<td>X2</td>
<td>1</td>
<td>316.25</td>
<td>316.25</td>
<td>28.6875</td>
<td>6.43e-05</td>
</tr>
<tr>
<td>X1:X2</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.9821</td>
</tr>
<tr>
<td>Resid.</td>
<td>16</td>
<td>176.38</td>
<td>11.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X1*X2 interaction P-value > .05, so no signif. departure from equal slopes is indicated (cf. Table 8.4)
§8.6: Multi-Factor ANCOVA

- The ANCOVA model can be extended to more than one quantitative X-variable.
- The concepts are essentially unchanged, just in a higher-dimensional space: the hyperplanes are all parallel and the qualitative predictor changes locations of the hyper-intercepts.
- Sounds trickier, but not really that different and not much harder to program.
Only Qualitative Predictors

- What if all the predictor variables are qualitative (0-1) indicators?

- In effect, the model structure is more circumspect, since we are now just comparing the mean responses across the levels of each qualitative factor.

- This is known as ANOVA modeling, and is studied in STAT 571B.
§8.7: Comparing Multiple Regression Curves

- Let’s do a fully coordinated example of how to compare two regression functions.
- **Example:** Production Line Data (CH08TA05) with
 - \(Y = \) Soap Production ‘Scrap’
 - \(X_1 = \) Product’n Line Speed
 - \(X_2 = \) Line Indicator (Line 1 vs. Line 2)

- Start with a scatterplot →
Sec. 8.7: Product’n Line Data (CH08TA05) Scatterplot

Plot shows dual linear relationship, indexed by prod’n line.
Unequal-slopes ANCOVA in R, via interaction term and * operator:

```r
> summary( lm(Y ~ X1*X2) )
```

Call:
```
lm(formula = Y ~ X1 * X2)
```

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 7.57446 | 20.86970 | 0.363 | 0.71996 |
| X1 | 1.32205 | 0.09262 | 14.273 | 6.45e-13 |
| X2 | 90.39086 | 28.34573 | 3.189 | 0.00409 |
| X1:X2 | -0.17666 | 0.12884 | -1.371 | 0.18355 |

Multiple R-squ.: 0.9447, Adjusted R-squ.: 0.9375
F-statistic: 130.9 on 3 and 23 DF, p-val.: 1.34e-14
Product’n Line Data (CH08TA05) (cont’d)

Per-line residual plots (cf. Fig. 8.17):

(a) Production Line 1

(b) Production Line 2
Brown-Forsythe test for equal σ^2 between the two product’n lines shows insignif. $P = 0.53$:

```r
> library( lawstat )
> BF.h.test = levene.test( resid( CH08TA05.lm ),
    group=X2, location="median" )
```

modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median data: e_i

Test Statistic $= 0.4047$, p-value $= 0.5304$

```r
> sqrt( BF.h.test$statistic )
```

Test Statistic

0.6361795

#BF t*-stat. (cf. p.333)
ANOVA table (with sequential SSRs) for unequal-slopes model:

>`anova(lm(Y ~ X1*X2))`

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1</td>
<td>149661</td>
<td>149661</td>
<td>347.5548</td>
<td>2.224e-15</td>
</tr>
<tr>
<td>X2</td>
<td>1</td>
<td>18694</td>
<td>18694</td>
<td>43.4129</td>
<td>1.009e-06</td>
</tr>
<tr>
<td>X1:X2</td>
<td>1</td>
<td>810</td>
<td>810</td>
<td>1.8802</td>
<td>0.1835</td>
</tr>
<tr>
<td>Residuals</td>
<td>23</td>
<td>9904</td>
<td>431</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(cf. Table 8.6)
ANOVA partial F-test for identity of lines ($H_0: \beta_2=\beta_3=0$):

> `anova(lm(Y ~ X1), lm(Y ~ X1*X2))`

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Y ~ X1</td>
<td>1</td>
<td>25</td>
<td>29407.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2: Y ~ X1 * X2</td>
<td>2</td>
<td>23</td>
<td>9904.1</td>
<td>2</td>
<td>19504</td>
<td>22.646</td>
</tr>
</tbody>
</table>

2 d.f. partial $F^* = 22.65$ ($P = 3.7 \times 10^{-6}$), so two lines are significantly different (somehow).
ANOVA partial F-test for identity of slopes ($H_o: \beta_3 = 0$):

\[
> \text{anova(} \text{lm}(Y \sim X1+X2), \text{ lm}(Y \sim X1*X2)) \text{ }
\]

<table>
<thead>
<tr>
<th></th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Y ~ X1 + X2</td>
<td>1</td>
<td>24</td>
<td>10713.7</td>
<td>1</td>
<td>1.8802</td>
<td>0.1835</td>
</tr>
<tr>
<td>Model 2: Y ~ X1 * X2</td>
<td>2</td>
<td>23</td>
<td>9904.1</td>
<td>1</td>
<td>809.62</td>
<td>0.1835</td>
</tr>
</tbody>
</table>

1 d.f. partial $F^* = 1.88$ ($P = 0.1835$), so two lines have insignificantly different slopes.

(NB: Should adjust the 2 inferences on β_2 and β_3 for multiplicity.)