9.1. Returning to Example 9.1, set the target distribution to $X \sim \text{Rayleigh}(\sigma)$, now for $\sigma = 2$. Sample R code, modified from the textbook’s website

is

```r
f901 <- function(x, sigma) {
  if (any(x < 0)) return (0)
  stopifnot(sigma > 0)
  return((x / sigma^2) * exp(-x^2 / (2*sigma^2)))
} #end function
```

```r
set.seed(901)
m <- 10000
sigma <- 2 #sigma now set to 2
x <- numeric(m)
x[1] <- rchisq(1, df=1)
k <- 0
u <- runif(m)

for (i in 2:m) {
  xt <- x[i-1]
y <- rchisq(1, df = xt)
  num <- f901(y, sigma) * dchisq(xt, df = y)
  den <- f901(xt, sigma) * dchisq(y, df = xt)
  if (u[i] <= num/den) x[i] <- y else {
    x[i] <- xt
    k <- k+1 #y is rejected
  } #end if/else
}

print(k/m) #rejection rate
```

The rejection rate is given as

[1] 0.5244

(so acceptance is about 48% ⇒ OK mixing). For a burn-in of $b_0 = 2000$ draws, further

R code produces the trace plot:

```r
b0 = 2000 #burn-in
index <- (b0+1):m #chain after burn-in
y1 <- x[index]
plot( y1~index, type="l", main="", ylab="x" )
```

plot follows →
9.1. (cont’d)

Notice the range of the retained chain:

```r
> range(x)
[1]  0.05046647  8.81537099
```

Compare this to a trace plot with $\sigma = 4$ (as in Example 9.1, but extended to visualize the entire post-burn chain) we see a rather similar plot, but not surprisingly, over a much wider range:

```r
> range(x)
[1]  0.2188613  16.2859098
```
9.2. Returning to Example 9.1, continue with the target distribution as \(X \sim \text{Rayleigh}(\sigma) \) with \(\sigma = 4 \), but now employ \(Y \sim \text{Gamma}(X,1) \) as the proposal distribution. Sample R code is

```r
f902 <- function(x, sigma) {
  if (any(x < 0)) return (0)
  stopifnot(sigma > 0)
  return((x / sigma^2) * exp(-x^2 / (2*sigma^2)))
} #end function

set.seed(902)
m <- 10000
sigma <- 4
x <- numeric(m)
x[1] <- rgamma(1, 1, 1)
k <- 0
u <- runif(m)

for (i in 2:m) {
  xt <- x[i-1]
y <- rgamma(1, shape = xt, rate = 1)
num <- f902(y, sigma) * dgamma(xt, shape = y, rate = 1)
den <- f902(xt, sigma) * dgamma(y, shape = xt, rate = 1)
if (u[i] <= num/den) x[i] <- y else {
x[i] <- xt
  k <- k+1     #y is rejected
} #end if/else
} #end for loop

print(k/m)  #rejection rate
```

The rejection rate is given as

```
[1] 0.3118
```

(lower than that with the \(\chi^2 \) proposal, suggesting higher acceptance and inefficient mixing). For a burn-in of \(b_0 = 2000 \) draws, further R code produces the trace plot:

```
The plot appears reasonable, and very much similar to its counterpart (with \( \sigma = 4 \)) in Exercise 9.1
```

plot follows →
9.2. (cont’d)

A histogram of the retained chain, along with the target Rayleigh(4) p.d.f., from the R code

```r
hist( y1, prob=T, main='', xlab='x', ylim=c(0,.155) )
xarg = seq( 0, max(y1), 0.1 )
lines( xarg, f902(xarg, sigma), ylim=c(0,.155) )
```

shows good agreement:
9.3. For a target distribution $X \sim \text{Cauchy}(\theta = 1, \eta = 0)$ consider $Y \sim N(X, \sigma^2)$ as the proposal distribution, since it has the same support as the Cauchy and is easy to sample from. Since the normal is a conditionally symmetric proposal density, this then reduces to the simple Metropolis algorithm. Sample R code similar to that in Exercise 9.1 is

```R
f903 <- function(x, eta=0, theta=1) {
  stopifnot( theta > 0 )
  return( 1 / (pi*theta * (1 + ((x-eta)/theta)^2)) )
} #end function

set.seed(903)
m <- 10000
sigma = 1                 #try sigma = 1 for proposal scale
x <- numeric(m)
x[1] <- rnorm(1,0,sigma)  #initialize with X0~N(0,sigma^2)

k <- 0
u <- runif(m)

for (i in 2:m) {
  xt <- x[i-1]
  y <- rnorm(1, mean = xt, sd = sigma)
  num <- f903(y) * dnorm(xt, mean = y, sd = sigma)
  den <- f903(xt) * dnorm(y, mean = xt, sd = sigma)
  if (u[i] <= num/den) x[i] <- y else {
    x[i] <- xt
    k <- k+1                #y is rejected
  } #end if/else
} #end for loop

print(k/m)                       #rejection rate
```

(One could just use `dcauchy(x)` instead of the constructed function `f903(x)` for the Cauchy p.d.f.) The rejection rate is given as

```
[1] 0.239
```

which is rather low (i.e., higher-than-desired acceptance). Setting the burn-in to $b_o = 1000$ draws, the retained chain is found via

```R
b0 = 1000                        #burn-in
index = (b0+1):m
y1 = x[index]                   #chain after burn-in
```

To compare deciles with the theoretical Cauchy(0,1) p.d.f., sample R code is

```R
p10 = seq(.1,.9, .1)
round( rbind( quantile(y1, p10), qcauchy(p10) ), 3 )
```

which produces not-unreasonable comparisons, but with some discrepancies in the tails:

```
10%  20%  30%  40%  50%  60%  70%  80%  90%
[1,] -2.951 -1.361 -0.704 -0.304 -0.009 0.303 0.675 1.247 2.753
[2,] -3.078 -1.376 -0.727 -0.325  0.000 0.325 0.727 1.376 3.078
```

cont’d
9.3. (cont’d)

The trace plot, from

```r
plot( y1~index, type="l", main="", ylab="x" )
```

shows an unusual instability in the first 1000 or so elements of the retained chain. (It may be better to set the burn-in to \(b_0 = 2000 \).)

Interestingly, a histogram of the retained chain (using \(b_0 = 1000 \), with the target Cauchy(0,1) p.d.f., from the R code

```r
hist( y1, prob=T, main='', xlab='x', ylim=c(0,.35), breaks=50 )
xarg = seq( min(y1), max(y1), 0.1 )
lines( xarg, f903(xarg), ylim=c(0,.35) )
```

shows OK agreement:

plot follows →
Moving to, say, m = 50,000 draws leads to slight, but not satiating improvement (try it!). Living up to its reputation, the Cauchy is a difficult distribution with which to operate.

9.4. The standard Laplace p.d.f. is $f(x) = \frac{1}{2} \exp\{-|x|\}$. Sample R code for a random walk Metropolis sampler, using $Y \sim N(X_t, \sigma^2)$ for the proposal p.d.f. to produce the ‘random walk’ feature, is

```r
f904 <- function(x) { -.5*exp(-abs(x)) }
set.seed(904)

rw.MetropolisL <- function(sigma, x0, m) {
  x <- numeric(m)
  x[1] <- x0
  u <- runif(m)
  k <- 0
  for (i in 2:m) {
    y <- rnorm(1, x[i-1], sigma)
    if (u[i] <= (f904(y) / f904(x[i-1])))
      x[i] <- y  else {
      x[i] <- x[i-1]
      k <- k + 1
      }
  }
  return(list(x=x, k=k))
}
```

```r
density <- function(x) { f904(x) }

plot(density, -15, 15, xlab="x", ylab="Density", main="Laplace Density")
```

![Laplace Density Plot](image)
Mimicking the approach in Example 9.3, set \(m = 2000 \) and vary \(\sigma \) over 0.05, 0.50, 2.0, 16.0. Use an arbitrary initial point of \(X_0 = 25 \). Then, find the corresponding four chains via the sample R code

```r
m <- 2000
sigma <- c(.05, .5, 2, 16)
x0 <- 25
rw1 <- rw.MetropolisL(sigma[1], x0, m)
rw2 <- rw.MetropolisL(sigma[2], x0, m)
rw3 <- rw.MetropolisL(sigma[3], x0, m)
rw4 <- rw.MetropolisL(sigma[4], x0, m)
accept = 1-c(rw1$k/m, rw2$k/m, rw3$k/m, rw4$k/m)  #acceptance rates
round( rbind(sigma, accept), 3)
```

This gives

\[
\begin{array}{cccc}
\sigma & 0.050 & 0.500 & 2.000 & 16.000 \\
accept & 0.982 & 0.844 & 0.516 & 0.096 \\
\end{array}
\]

which are clearly quite disparate. The raw trace plots (without burn-in) are generated via

```r
par(mfrow=c(2,2))                #display 4 graphs together
rw <- cbind(rw1$x, rw2$x, rw3$x, rw4$x)
for (j in 1:4) {
  plot(rw[,j], type="l", xlab=bquote(sigma == .(round(sigma[j],3))),
       ylab="X", ylim=range(rw[,j]))
}   #end for loop
```

The multi-plot graphic follows:
The effect is similar to that seen in Figure 9.3 of Example 9.3; the standard Laplace
p.d.f. has median at $x = 0$ and varies symmetrically from that point. We see the chain
settles around $x = 0$ and also varies symmetrically about it, as seen best when $\sigma = 2$.

9.6. Set the prior on θ to $\theta \sim U(0,1)$ so that $\pi(\theta) = I_{(0,1)}(\theta)$. The multinomial likelihood is

$$f(X|\theta) \propto \prod_i p_i(\theta)^{x_i}/x_i!,$$

where $p_1(\theta) = (2+\theta)/4$, $p_2(\theta) = p_3(\theta) = (1-\theta)/4$, and $p_4(\theta) = \theta/4$.

Combining these via Bayes’ Rule produces the posterior

$$f(\theta|X) = \pi(\theta)f(X|\theta)/f(X) \propto (2+\theta)^{x_1}(1-\theta)^{x_2+x_3}\theta^{x_4}.$$

Notice that posterior specification to proportionality is all that is needed here, since any
constants in $f(\theta|X)$ will cancel in the construction of $r(\theta_t, Y)$ in the McMC sampler.

For the proposal density, we usually desire a p.d.f. $g(y|\theta)$ defined over a space the same
as that for θ; here this is $0 < y < 1$. The simple choice of $g(y|\theta) = I_{(0,1)}(y)$, i.e., a uniform
proposal independent of θ, corresponds to an independence sampler. However,
independence samplers are not typically recommended. Instead, try a beta p.d.f.
proposal with expected value equal to θ. Different possibilities exist; one is

$Y|\theta_t \sim \beta(\theta_t/\{1-\theta_t\}, 1)$, where $E[Y|\theta_t] = [\theta_t/\{1-\theta_t\}]/[1 + (\theta_t/\{1-\theta_t\})] = \theta_t$. (For $0 < \theta < 1$, this is a right-skewed, decreasing p.d.f.) Sample R code for an McMC sampler from
$f(\theta|X)$ (with portions modified from https://github.com/mariarizzo/SCR/blob/master/SCR-1e/SCR1e-code/SCRch9.R) is then

```r
f906 <- function( th,x ) {
  if (th<0 || th>1 ) return (0)
}  #end function

xdata = c( 125, 18, 20, 34 )      #observed multinom. data
m = 10000
set.seed(906)

th = numeric(m)
th[1] = runif(1)        #initialize: sample from prior on theta
k = 0
u = runif(m)

##employ skewed beta proposal density
for (t in 2:m) {
  xt = th[t-1]
  alph = xt/(1-xt)
  y <- rbeta(1, shape1=alph, shape2=1  )
  numer = f906( y,xdata ) * dbeta( xt, y/(1-y), 1)
  denom = f906( xt,xdata ) * dbeta( y, alph, 1)

  if ( u[t] <= numer/denom )
    th[t] = y else {
    th[t] = th[t-1]
    k = k + 1
  }        #end if/else
}                  #end for loop
```
Using this code, the posterior sample of 10,000 points resides in the vector \(\mathbf{th} \); its raw trace plot is found via

\[
\text{plot(th, type="l", ylim=range(th),}
\text{ xlab=bquote(theta), ylab="posterior")}
\]

This produces

![Trace plot](image)

which appears somewhat variable, but not otherwise unacceptable. A burn-in of perhaps \(b_0 = 2000 \) will likely suffice. The consequent histogram, found via

\[
\text{hist(th[2001:m], prob=T, breaks="Scott",}
\text{ xlab=bquote(theta), ylab='posterior', main="")}
\]

shows a generally unimodal, slightly left-skewed sample.

(histogram follows →)
9.6. (cont’d)

The associated posterior mean (a Bayesian estimate) of \(\theta \), and the corresponding posterior ‘cell’ probabilities are found via

\[
\text{theta.hat = mean(th[2001:m])} \\
\]

\[
[1] 0.623192 \\
\]

and

\[
\text{c(0.5 + theta.hat/4, (1 - theta.hat)/4, (1 - theta.hat)/4, theta.hat/4) #p.hat vector} \\
\]

\[
[1] 0.655798 0.094202 0.094202 0.155798 \\
\]

respectively.

9.7. Sample \textbf{R} code for a Gibbs sampler for bivariate normal with zero means, unit variances, and \(\rho = 0.9 \):

\[
m = 10000 \\
b0 = 1000 \\
\text{set.seed(907)} \\
\]

(code continues →)
9.7. (Gibbs sampler R code, cont’d)

```r
rho = 0.9
mu1 = mu2 = 0
sigma1 = sigma2 = 1
s1 = sqrt(1-rho^2)*sigma1
s2 = sqrt(1-rho^2)*sigma2

X = matrix( 0, nrow=m, ncol=2 )


####generate the chain

X[1, ] <- c(mu1, mu2)            #initialize
for (i in 2:m) {
  x2 <- X[i-1, 2]
  m1 <- mu1 + rho * (x2 - mu2) * sigma1/sigma2
  X[i, 1] <- rnorm(1, m1, s1)
  x1 <- X[i, 1]
  m2 <- mu2 + rho * (x1 - mu1) * sigma2/sigma1
  X[i, 2] <- rnorm(1, m2, s2)
}

x <- X[(b0+1):m, 1]
Y <- X[(b0+1):m, 2]

With this, plot Y against x:

plot( Y~x ); abline( h=0, v=0 )

producing a typical elliptical scatter with high positive correlation, as expected:
```

[Graph image]
9.7. (cont’d)
Residuals from the fit can be plotted against fitted values and checked for normality via a quantile-quantile plot:

```r
resid = resid( lm(Y~x) )
par(mfrow=c(1,2))
plot( resid~fitted(lm(Y~x)), xlab='fitted value' ); abline( h=0 )
qqnorm( resid ); qqline( resid )
```

producing reasonable graphics for comparison to a normal distribution.

9.8. Sample R code for a Gibbs sampler for the given binomial/beta construction with \(a = 2 \), \(b = 3 \), and at \(n = 10 \):

```r
Gibbs908 = function(m, a, b, n){
  X = matrix(0, nrow=m, ncol=2)
  y = (0.5*n + a)/(n + a + b) #initialize y with \( E[Y | n/2] \)
  x = floor( n*y ) #initialize x with \( E[X | Y] \)
  X[1,] = c( x,y ) #initialize matrix
  for (t in 2:m) {
    y = X[t-1, 2]
    X[t, 1] = rbinom( 1, size=n, y) #x|y~bin(n,y)
    x = X[t, 1]
    X[t, 2] = rbeta( 1, x+a, n-x+b ) #y|x~beta(x+a,n-x+b)
  }
  return( X ) #end for loop
}           #end function
```

(code continues →)
9.8. (Gibbs sampler R code, cont’d)

```r
set.seed(908)
m = 10000  # size of chain
b0 = 1000   # burn-in
a = 2
b = 3
n = 10

XYGibbs = Gibbs908(m, a, b, n)
aftburn = b0+1

To study the sampled chain, we can:
(a) plot the sampled joint distribution (notice the discrete nature of x)

plot( XYGibbs[aftburn:m,], xlab='x', ylab='y' )

(b) plot the sampled marginal posterior distribution of y

hist( XYGibbs[aftburn:m,2], prob=T, breaks='scott', main='', xlab='y' )
```

(plot follows →)
9.8. (cont’d)
Sampled posterior for y is unimodal with a right skew:

(c) find the sampled (discrete) marginal distribution of x and also plot the marginal posterior distribution

```r
xGibbs = XYGibbs[aftburn:m,1]
fx.hat = table( xGibbs )/length( xGibbs )
round( fx.hat,3 )
xGibbs
   0   1   2   3   4   5   6   7   8   9  10
0.066 0.108 0.140 0.135 0.143 0.134 0.107 0.077 0.048 0.031 0.012

barplot(fx.hat, space=0, ylim=c(0, 0.15), xlab="x", ylab='marginal posterior', main='')
abline( h=0 )
```

(plot follows →)
9.8. (cont’d)
Sampled posterior for x is unimodal and also skews slightly to the right:

![Graph showing posterior distribution]

9.9. Returning to Example 9.8, load the functions `Gelman.Rubin()` and `normal.chain()` as given on p. 268. Then, mimic the analysis in the example:

```r
set.seed(909)
sigma = 0.2

k <- 4         # number of chains to generate
n <- 15000     # length of chains
b <- 1000      # burn-in length
x0 <- c(-10, -5, 5, 10)

# generate the chains
X <- matrix(0, nrow=k, ncol=n)
for (i in 1:k)
  X[i, ] <- normal.chain(sigma, n, x0[i])
```

(code continues →)
9.9. (Gelman-Rubin convergence R code, cont’d)

\[
\begin{align*}
\texttt{psi} & \leftarrow \texttt{t(apply(X, 1, cumsum))} \\
\texttt{for} \ (i \ \texttt{in} \ 1:\texttt{ncol(psi)}) \\
\quad \texttt{psi}[i,] & \leftarrow \texttt{psi}[i,] \ / \ (1:\texttt{ncol(psi)})
\end{align*}
\]

\texttt{print(Gelman.Rubin(psi))}

We find \(\hat{R} \) (for our choice of seed) is

\[
\begin{align*}
[1] & \quad 1.109622
\end{align*}
\]