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Abstract.  We consider sealed-bid auctions of an item with unknown, but common value
to all bidders, and assume that each bidder has an estimate of the item’s value.  Formulas are
developed for the expected profit of bidders under various bidding strategies in both first-price
and second-price auctions.  We derive unique Nash equilibrium strategies for bidders in both
types of auctions and analyze their effects on both sellers and bidders.  It is shown that both first-
price and second-price auctions return less than the item’s actual value to the seller.  However,
this loss is much less for second-price auctions.  In particular we see that the Revenue
Equivalence Theorem does not apply to our type of common-value auctions.

Auction Models.  Prompted by the huge value of goods, services, and rights that
exchange hands in auctions, a considerable literature on auction theory has been developed.  See
Klemperer (1999), Klemperer (2004), and McAfee & McMillan (1987).  Much of this work has
centered around two distinct auction models, independent-private-value auctions and common-
value auctions.  The former has been extensively analyzed, culminating in the Revenue
Equivalence Theorem.  Much less seems to be known about the subject of our investigation, the
common-value model.  As a specific application of this type of auction, the reader may wish to
consider government auctions of mineral rights on given tracts of land or sea bottom.

Assumptions.  An item having an unknown, but common value to each of n bidders is to
be sold in a sealed-bid auction.  Each bidder, i, for i = 1, …, n, receives a signal, si, that estimates
the value, v, of the item.  We suppose that all bidders have equal abilities to estimate the value of
the item and that, on average, they are correct.  Mathematically, we assume that the ith bidder’s
signal is an observation of a random variable Si with E(Si) = v, and that the Si’s are independent
and identically distributed.  We let Ri = Si − v be the error random variables, and note that each of
the Ri’s, for i = 1, …, n, has some common distribution, R.  This is often described by the
statement that the bidders are symmetric.  Call R the common signal error random variable, and
note that µR = 0.

Let R have standard deviation, σ, and denote its density and distribution functions by fσ

and Fσ, respectively.  We will often illustrate our work with examples where R is either normal
or uniform.  However, unless specifically noted to the contrary, all of our results apply to any
sufficiently smooth continuous distribution.
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The random variables Si are assumed to be statistically independent.  It is, however, clear
that the bidders’ estimated values are not independent.  Since there is a common value for the
item being auctioned, knowledge of other bidders’ signals would generally cause one to revise
his or her estimate of the item’s value.

Finally, we assume that all bidders are risk neutral and that the payment made by the
winning bidder depends only upon the original set of bids that were submitted.

Setting Up The Model.  Bidders and sellers have very different roles in auctions.  The
seller can decide what type of auction will be conducted, possibly including a reserve price
below which the item will not be sold.  However, he or she has no control over the bidding.  A
bidder is free to determine its own bid, but cannot specify the auction rules.  We will consider
our auction model from both the seller’s and the bidders’ perspectives, starting with that of the
bidders.

Although it is common to consider strategy for single bidders, we will expand our
analysis to include bidding rings.  In particular, suppose that the n bidders are partitioned into
Bidding Ring 1 and Bidding Ring 2, with m and n − m members, respectively.  Note that in the
analysis of a single bidder vis-à-vis all others, we have m = 1.

Historical experience (often disastrous) indicates that it is foolish for all bidders to submit
their signals as their bids.  The realization has evolved that signals must be reduced before
bidding. We suppose that all bidders in Ring 1 bid their signals minus an amount c, and all
bidders in Ring 2 bid their signals minus a fixed amount d.  A winning bidder experiences a
positive profit if it pays less than the common value of the item being sold, and experiences a
negative profit (loss) if it pays more than the value.  A non-winning bidder has a profit of 0.  The
quality of a bidding strategy is measured by the expected value of a bidder’s profit.  This is a
function of c, d, n, m, σ, the distribution of R, and the type of auction that is conducted.

Since the ranking of signals, and hence their errors, determines the outcome of an
auction, we introduce notation for order statistics.  Let Ek be the kth largest error in a set of
signals for the n bidders, where E1 is the smallest and En is the largest.  The expected value of Ek

is given by
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FIRST-PRICE SEALED-BID AUCTIONS

Basic Bidding Strategies.  Each bidder submits a secret bid to the seller.  The bidder
with the highest bid wins the item and pays the amount of its bid.  The profit of the winning
bidder is positive if its signal was lower than the value.  That is, its signal error was negative.
Likewise its profit is negative if its signal error was positive.  Specifically, the winner’s profit is
the negative of its signal error.  We let V1(c, d, n, m, σ) be the expected value of profit for a
bidder in Ring 1.  The subscript 1 is used to denote a first-price sealed-bid auction.

If all bidders submitted their signals as bids, the bidder with the largest signal error would
win and could expect to over pay by L(n, σ, n).  This quantity, which does not depend upon m, is
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known as the winner’s curse and is denoted by C1(n, σ).  Since all bidders have an equal chance
of getting the largest error, the probability of winning for any one bidder is 1/n.  Thus,

V1(0, 0, n, m, σ) = −C1(n, σ)/n.

This expected loss could be eliminated by the first bidding strategy, where each bidder submits a
bid that is its signal minus C1(n, σ).  With this strategy, V1(C1(n, σ), C1(n, σ), n, m, σ) = 0 and,
on average, the item is sold for its actual value.

Notice that, in a first-price sealed-bid auction, there is no advantage in bidding more than
the second highest bid.  This suggests a second bidding strategy, where each bidder reduces its
signal by C1(n, σ) + L(n, σ, n) − L(n, σ, n − 1).  With this strategy, the winning bidder would
have an expected profit of L(n, σ, n) − L(n, σ, n − 1).  We denote this quantity by B1(n, σ) and
call it the winner’s blessing in a first-price sealed-bid auction.

V1(C1(n, σ) + B1(n, σ), C1(n, σ) + B1(n, σ), n, m, σ) = B1(n, σ)/n

For fixed n, both the curse and blessing are directly proportional to σ, with the constants
of proportionality depending upon n.

The curse and blessing have simple formulas for specific error distributions and numbers
of bidders.
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Any knowledgeable bidder can make the above calculations and predict the expected
results if all bidders follow either the first or second bidding strategies.  Now we consider
bidding as a game.  Is the first bidding strategy stable, or would it be better for bidders in Ring 1
to deviate from the plan of subtracting only the winner’s curse?  The answer requires a way to
evaluate V1(c, d, n, m, σ).

Lemma 1.  Suppose that, under our common-value model, in a first-price sealed-bid
auction with n bidders, the m bidders in Ring 1 bid their signals minus an amount c and the n − m
bidders in Ring 2 bid their signals minus an amount d.  For any distribution of signal errors
having a standard deviation of σ, with density fσ, and distribution Fσ, we have the following
expected value for each Ring 1 bidder.
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Proof.  Let the random variables R1, R2, …, Rm be the signal errors of the m Ring 1
bidders and let Rm+1, Rm+2, …, Rn be the signal errors of the n − m Ring 2 bidders.  If M1 =
Max(R1, R2, …, Rm) and M2 = Max(Rm+1, Rm+2, …, Rn), then we have the following.
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This completes the derivation of Equation 1.

From the point of view of Ring 1 bidders, we can think of d, n, m, and σ as fixed, and
consider expected value as a function of our reduction, c.  For very large values of c, a Ring 1
bidder will make extremely low bids.  Hence, it will have a very small probability of winning,
but will, on average, make a large positive profit if it does win.  We could expect to have V1(c, d,
n, m, σ) approach 0 from the positive side, as c increases without bound.  Looking in the other
direction, small (possibly negative) values of c will lead to very high bids, with a strong
probability of winning the auction.  However, the high bids will result in large losses.  It is
reasonable to expect that V1(c, d, n, m, σ) will approach −∞ as c decreases without bound.

It turns out that all plots of V1(c, d, n, m, σ) for any error distribution and fixed d, n, m,
and σ have similar shapes.  We will illustrate this with a normal error distribution and a
reduction of C1(n, σ) by all Ring 2 bidders.

Figure 1.  Normal Error Distribution.
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Figure 1 shows that there is an optimum signal reduction of approximately 30.6 for Ring
1 bidders.  Since, in this example, C1(10, 15) ≅ 23.1,  we see that the first bidding strategy is not
stable.  Acting in its best interest, a Ring 1 bidder should subtract much more than C1(10, 15)
from its signal.

As a second example, suppose that the errors are normally distributed and that all Ring 2
bidders reduce their signals by C1(10, 15) + B1(10, 15).  Figure 2 shows that the optimal strategy
for Ring 1 bidder’s is to reduce their signals by approximately 23.6.

Figure 2.  Normal Error Distribution.

Computation shows that, in this setting, C1(10, 15) + B1(10, 15) ≅ 31.1.  Hence the
second bidding strategy is not stable.  If Ring 2 bidders remove the winner’s curse plus the
winner’s blessing, then a Ring 1 bidder should remove a much smaller amount from its signal.

In general, let S1(d, n, m, σ), be the reduction in Ring 1 bidders' signals that maximizes
their expected value, given that all Ring 2 bidders reduce their signals by d.  In our examples,
S1(23.1, n, m, σ) ≅ 30.6 and S1(31.1, n, m, σ) ≅ 23.6.

Equilibrium.  Computation shows that large values of d produce S1(d, n, m, σ) < d and
that small values of d produce S1(d, n, m, σ) > d.  This result holds for all error distributions and
all values of n, m, and σ.  There is an obvious suggestion of a fixed point for S1(d, n, m, σ).  This,
in fact, does occur.  A plot of S1(d, n, m, σ) against d in the setting of our last examples is shown
in Figure 3.

Figure 3.  Normal Error Distribution.
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A solution of S1(d, n, m, σ) = d yields a Nash equilibrium bidding strategy.  If all
bidders bid their signals reduced by this value, then no group of m bidders can increase their
expected values by altering the strategy.

Theorem 1.  Consider our common-value model, for a first-price sealed-bid auction with
n bidders.   For any distribution of signal errors having a standard deviation of σ, with density fσ,
and distribution Fσ, there exists a unique value E1(n, m, σ) such that S1(E1(n, m, σ), n, m, σ) =
E1(n, m, σ).  Moreover,
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Proof.  There is an ingenious way to find this fixed point.  We denote the partial
derivative of V1(c, d, n, m, σ) with respect to c by D1(c, d, n, m, σ),
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Since S1(d, n, m, σ) is the Ring 1 bidders' optimal reduction, matching a reduction of d by all
Ring 2 bidders, we have

 At c = S1(d, n, m, σ), we must have c = d.  Hence,
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E1(n, m, σ) is a solution of this equation for c; as a function of n, m, and σ.

From Equation 1 in Lemma 1, we have
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Clearly, this has a unique solution for c, and hence for E1(n, m, σ).
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This establishes Equation 2.

As an example, we find that E1(10, 1, 15) ≅ 26.438008, rounded to six decimal places.
This is in good agreement with our graphical result.

The Nash equilibrium reduction is directly proportional to σ, with E1(n, m, σ) = σ⋅E1(n,
m, 1).  It is possible to compute exact values for some error distributions, and certain values of n
and m.
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The relation between E1(n, m, σ) and reductions in the first and second strategies is
interesting, but somewhat unclear.  It is obvious that C1(n, σ) < E1(n, m, σ) for all distributions
and all values of n, m, and σ.  The connection of E1(n, m, σ) and C1(n, σ) + B1(n, σ) is more
complicated.
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R Normal:  For m = 1 we have

C1(n, σ) < E1(n, 1, σ) < C1(n, σ) + B1(n, σ)

for all σ and n > 2.  A typical plot is shown in Figure 4.

Figure 4.  Normal Error Distribution.

For m > 1, we have C1(n, σ) < E1(n, m, σ) < C1(n, σ) + B1(n, σ) for all σ and all
sufficiently large n.  A typical plot is shown in Figure 5.

Figure 5.  Normal Error Distribution.
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It is somewhat surprising that, for a uniform error distribution, the Nash equilibrium,
E1(n, 1, σ) is constant with respect to n.  The particular value of E1(n, 1, σ) also has an

interesting practical application to auctions.  Note that the largest possible signal error is .3 σ⋅
Hence, a winning bidder that reduced its signal by E1(n, 1, σ) is certain to buy the item at, or
below, its actual value.

Continuing with our example of uniform signal errors, we see that for m > 1,
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C1(n, σ) + B1(n, σ) < E1(n, m, σ).

It appears, but is not yet proven, that, for any error distribution, any m, and any σ, E1(n,
m, σ) approaches C1(n, σ) as n increases without bound.

Equilibrium Bidding Strategy.  We will refer to the signal reduction of all bidders by
E1(n, m, σ) as the equilibrium bidding strategy.   Note that the winning bidder from either ring
has an expected profit of E1(n, m, σ) − C1(n, σ).  Since all bidders are equally likely to win the
auction, the expected profit for any bidder is (E1(n, m, σ) − C1(n, σ))/n.

This is good news for bidders.  For normally distributed errors, we find that E1(10, 1, 15)
− C1(10, 15) ≅ 3.36, which is approximately 22% of the error standard deviation.  The actual
economic significance of this can be better appreciated by realizing that the monetary unit in an
auction may well be millions of dollars.

From the seller’s point of view, the equilibrium bidding strategy is bad news.  Confronted
with knowledgeable bidders who follow this strategy, the item being auctioned will, on average,
sell for below its actual value.  Our analysis reveals two interesting aspects of the auction
process.  First, since the winners curse and the equilibrium value are both proportional to σ, the
expected difference between the selling price and the actual value is also proportional to σ.
Hence, better estimation of the item’s value by the bidders, resulting in a smaller σ, will reduce
the seller’s expected loss.  This establishes a principle that has been found in other auction
models.  The seller should divulge any information that he or she has about the value of the
item to be auctioned.  Such an action will improve the bidders’ estimates and reduce the seller’s
expected loss.

Numerical work indicates that, for fixed m,
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As a consequence, a seller’s expected loss will be reduced if he or she can attract more
bidders.  In our example of normally distributed errors with m = 1 and σ = 15, increasing the
number of bidders from 10 to 35 would cut the seller’s expected loss in half.

SECOND-PRICE SEALED-BID AUCTIONS

Basic Bidding Strategies.  In an attempt to improve the auction mechanism, many
sellers have switched to a second-price sealed-bid model.  In this case all bidders submit secret
bids, with the item being sold to the highest bidder, at the price of the second highest bid.  We
will consider such auctions in the same setting that we have used for first-price sealed-bid
auctions.

The item being sold has an unknown, but common value to each of n bidders, all of
whose signals have an error distribution of R.  As before, we  assume that µR = 0 and use fσ and
Fσ for the density and distribution functions of R, respectively.  It is still possible to consider a
partition of the bidders into two bidding rings.  However, the complexity of the resulting
equations leads us to analyze only the case of m = 1 for single bidders.  Unless specifically noted
to the contrary, all of our results apply to any sufficiently smooth continuous distribution.

The winner’s curse and blessing in second-price auctions are defined with order statistics
in a manner that is analogous to first-price auctions.

C2(n, σ) = L(n, σ, n − 1)               B2(n, σ) = L(n, σ, n− 1) − L(n, σ, n − 2), for n >2

As before, for a fixed n, both the curse and blessing are directly proportional to σ, with
the constants of proportionality depending upon n.  The formulas for the curse and blessing have
simple forms for specific error distributions and numbers of bidders.
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The first bidding strategy, in a second-price auction, is followed if each bidder submits a
bid that is its signal minus C2(n, σ).  By analogy with first-price auctions, we let V2(c, d, n, σ) be
the expected value of profit for a single bidder that results from its signal reduction of c and a
signal reduction of d by all other bidders in a second-price auction. With this strategy, V2(C2(n,
σ), C2(n, σ), n, σ) = 0 and, on average, the item is sold for its actual value.  In the second
bidding strategy, in a second-price auction, is followed if each bidder reduces its signal by C2(n,
σ) + B2(n, σ).

We now consider the expected profit of a single bidder.

Lemma 2.  Suppose that, under our common-value model, in a second-price sealed-bid
auction with n bidders, a single bidder bids its signal minus an amount c and the n − 1 other
bidders bid their signals minus an amount d.  For any distribution of signal errors having a
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standard deviation of σ, with density fσ, and distribution Fσ, we have the following expected
value for the single bidder.
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have
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which establishes Equation 3.

Plots of V2 are very similar to those of V1.  Figures 6 and 7 show some typical examples,
using a normal error distribution.

Figure 6.  Normal Error Distribution.
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Figure 7.  Normal Error Distribution.

It is clear that a single bidder has an optimal response to a fixed signal reduction by all
other bidders.  Figures 6 and 7 show that neither the first nor the second bidding strategy is
stable.  The single bidder should answer a reduction of C2(10, 15) ≅ 15.0 with a larger reduction
of approximately 22.8.  If all others reduce their signals by C2(10, 15) + B2(10, 15) ≅  20.2, then
the single bidder should reduce by the smaller amount of approximately 4.8.

Equilibrium.  We, again, have the suggestion of a Nash equilibrium.  Let S2(d, n, σ), be
the reduction in a single bidder’s signal that maximizes its expected value, given that all of the
other n − 1 bidders reduce their signals by d.

Theorem 2.  Consider our common-value model, for a second-price sealed-bid auction
with n bidders.  For any distribution of signal errors having a standard deviation of σ, with
density fσ, and distribution Fσ, there exists a unique value E2(n, σ) such that S2(E2(n, σ), n, σ) =
E2(n, σ).  Moreover,
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Proof.  By analogy with the proof of Theorem 1, let
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and note that E2(n, σ) must be a solution 0f D2(c, c, n, σ) = 0 for c; as a function of n and σ.

From Equation 3 in Lemma 2, we have
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Setting this expression equal to 0 and replacing d with c yields
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is the unique solution for the Nash equilibrium.  This completes the derivation of Equation 4.

As is the case with C2(n, σ) and B2(n, σ), the Nash equilibrium reduction, E2(n, σ), is
directly proportional to σ.  It is possible to compute exact values for some error distributions, and
certain values of n.

R normal:  0),2(2 =σE  and .
3

),3(2 π
σ

σ
⋅

=E

R uniform on ]3,3[ σσσσ ⋅⋅⋅⋅−− :  σσ ⋅⋅
−

= 3
2

),(2 n

n
nE  for all n.

The general relationship between E2(n, σ) and reductions in the first and second strategies
is not yet completely established.  However, the connections are clear for our sample
distributions.

R Normal:  For n = 2, our formulas show that C2(2, σ) < E2(2, σ).  The plot in Figure 8
indicates that C2(n, σ) < E2(n, σ) < C2(n, σ) + B2(n, σ) for all n > 2.  Since all of these quantities
are proportional to σ, the alignment that is shown for σ = 15 applies to all values of σ.
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Figure 8.  Normal Error Distribution.

R Uniform on ]3,3[ σσσσ ⋅⋅⋅⋅−− :  Our formulas show that C2(2, σ) < E2(2, σ) and that
C2(n, σ) < E2(n, σ) < C2(n, σ) + B2(n, σ) for all n > 2.

Equilibrium Bidding Strategy.  We will refer to the signal reduction of all bidders by
E2(n, σ) as the equilibrium bidding strategy for second-price auctions.  With this strategy, any
winning bidder has an expected profit of E2(n, σ) − C2(n, σ).  Since all bidders are equally likely
to win the auction, the expected profit for any one bidder is (E2(n, σ) − C2(n, σ))/n.  This is
favorable to bidders, but not as profitable as is the case with first-price auctions.

R Normal:  We find that E2(10, 15) − C2(10, 15) ≅ 1.67, which is approximately 11% of
the error standard deviation.  However, it is not nearly as large as was the expected profit for a
winning bidder under the equilibrium bidding strategy for first-price auctions.  Recall that the
corresponding expected profit in that case was E1(10, 1, 15) − C1(10, 15) ≅ 3.36, which is
approximately 22% of the error standard deviation.  As Figure 9 shows, the lower expected
profit for second-price auctions persists for all numbers of bidders, but is relatively less for larger
values of n.

Figure 9.  Normal Error Distribution.
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Obviously, a seller will fare better with second-price auctions than with first-price sealed-
bid auctions.  He or she can still expect to sell the item for less than its actual value, but the
expected loss will only be approximately half of what it would be under the first-price plan.

R Uniform on ]3,3[ σσσσ ⋅⋅⋅⋅−− :  We find that σσσ ⋅⋅
+⋅
−⋅

=− 3
)1(

)1(2
),(),( 22 nn
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nCnE

and .3
)1(

2
),(),( 11 σσσ ⋅⋅

+⋅
⋅

=−
nn

n
nCnE   Thus, in the case of only 2 bidders, the expected

profit for a winning bidder in second-price auctions is one-half what it is in first-price auctions.
As the number of bidders increases both the absolute and the relative advantage to bidders in
second-price auctions decreases to zero.  As in the normal signal error example, a seller would
prefer second-price auctions for uniformly distibuted signal errors.

Our analysis of second-price auctions yields the same information for sellers as we found
in the first-price case.  The seller should divulge any information that he or she has about the
value of the item to be auctioned and should attempt to attract as many bidders as possible.

Revenue Equivalence Theorem.  Our results on the expected losses for sellers in first-
and second-price auctions are of particular interest in light of the major Revenue Equivalence
Theorem.  See Klemperer (1999) and McAfee & McMillan (1987).  Roughly phrased, this
theorem states that, for a wide class of auction models, the expected revenue for the seller is
identical under Dutch, English, second-price sealed-bid, and first-price sealed-bid auctions.  The
Revenue Equivalence Theorem has been shown to apply to private-value models and to some
common-value models.  Our work shows that the Revenue Equivalence Theorem does not hold
for our type of common-value model.  In this case there is a distinct advantage to the seller from
choosing a second-price sealed-bid auction method, rather than a first-price sealed-bid sale

Simulation.  Many of our results were initially discovered by extensive computer
simulation.  Simulations for several error distributions, and many values of n, m, and σ also
provide numerical verification for our conclusions.
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