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Abstract. We consider sealed-bid auctions of an item with unknown, but common value
to all bidders, and assume that each bidder has an estimate of theitem’svalue. Formulas are
developed for the expected profit of bidders under various bidding strategies in both first-price
and second-price auctions. We derive unique Nash equilibrium strategies for biddersin both
types of auctions and analyze their effects on both sellers and bidders. It is shown that both first-
price and second-price auctions return less than the item’ s actual value to the seller. However,
thislossis much less for second-price auctions. In particular we see that the Revenue
Equivalence Theorem does not apply to our type of common-value auctions.

Auction Models. Prompted by the huge value of goods, services, and rights that
exchange hands in auctions, a considerable literature on auction theory has been developed. See
Klemperer (1999), Klemperer (2004), and McAfee & McMillan (1987). Much of thiswork has
centered around two distinct auction models, independent-private-value auctions and common-
value auctions. The former has been extensively analyzed, culminating in the Revenue
Equivalence Theorem. Much less seems to be known about the subject of our investigation, the
common-value model. As a specific application of this type of auction, the reader may wish to
consider government auctions of mineral rights on given tracts of land or sea bottom.

Assumptions. Anitem having an unknown, but common value to each of n biddersisto
be sold in a sealed-bid auction. Each bidder, i, fori =1, ¥, n, receives asignal, s, that estimates
the value, v, of theitem. We suppose that all bidders have equal abilities to estimate the value of
the item and that, on average, they are correct. Mathematically, we assume that the i bidder's
signal is an observation of arandom variable § with E(S) = v, and that the §’ s are independent
and identically distributed. Welet R =S - v be the error random variables, and note that each of
theR’s, fori = 1, ¥4, n, has some common distribution, R. Thisis often described by the
statement that the bidders are symmetric. Call R the common signal error random variable, and
note that mg = 0.

Let R have standard deviation, s, and denote its density and distribution functions by fs
and F, respectively. We will often illustrate our work with examples where R is either normal
or uniform. However, unless specifically noted to the contrary, all of our results apply to any
sufficiently smooth continuous distribution.
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The random variables § are assumed to be statistically independent. It is, however, clear
that the bidders estimated values are not independent. Since there is acommon value for the
item being auctioned, knowledge of other bidders signals would generally cause one to revise
his or her estimate of the item’ s value.

Finally, we assume that all bidders are risk neutral and that the payment made by the
winning bidder depends only upon the original set of bids that were submitted.

Setting Up The Model. Bidders and sellers have very different rolesin auctions. The
seller can decide what type of auction will be conducted, possibly including areserve price
below which the item will not be sold. However, he or she has no control over the bidding. A
bidder isfree to determine its own bid, but cannot specify the auction rules. We will consider
our auction model from both the seller’ s and the bidders' perspectives, starting with that of the
bidders.

Although it is common to consider strategy for single bidders, we will expand our
anaysisto include bidding rings. In particular, suppose that the n bidders are partitioned into
Bidding Ring 1 and Bidding Ring 2, with mand n - m members, respectively. Note that in the
analysis of asingle bidder vis-a-vis all others, we have m= 1.

Historical experience (often disastrous) indicatesthat it isfoolish for al bidders to submit
their signals astheir bids. The realization has evolved that signals must be reduced before
bidding. We suppose that all biddersin Ring 1 bid their signals minus an amount ¢, and all
biddersin Ring 2 bid their signals minus afixed amount d. A winning bidder experiences a
positive profit if it pays less than the common value of the item being sold, and experiences a
negative profit (loss) if it pays more than the value. A non-winning bidder has a profit of 0. The
quality of abidding strategy is measured by the expected value of a bidder’ s profit. Thisisa
function of ¢, d, n, m, s, the distribution of R, and the type of auction that is conducted.

Since the ranking of signals, and hence their errors, determines the outcome of an
auction, we introduce notation for order statistics. Let Ey be the K™ largest error in a set of
signals for the n bidders, where E; isthe smallest and E, isthe largest. The expected value of Ex
isgiven by

¥

L(n,s ,k) = Ox
-y

v(k- 1)|r:(ln_ k)l st (X) XFSk' 1(X) ><1_ FS (X))n- k dx.

FIRST-PRICE SEALED-BID AUCTIONS

Basic Bidding Strategies. Each bidder submits a secret bid to the seller. The bidder
with the highest bid wins the item and pays the amount of itsbid. The profit of the winning
bidder is positiveif its signal was lower than the value. That is, itssignal error was negative.
Likewiseits profit is negative if its signal error was positive. Specifically, the winner’s profit is
the negative of itssignal error. Welet Vy(c, d, n, m, s) be the expected value of profit for a
bidder in Ring 1. The subscript 1 isused to denote a first-price seaed-bid auction.

If all bidders submitted their signals as bids, the bidder with the largest signal error would
win and could expect to over pay by L(n, s, n). This quantity, which does not depend upon m, is
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known as the winner’s curse and is denoted by C;(n, s). Since al bidders have an equal chance
of getting the largest error, the probability of winning for any one bidder is 1/n. Thus,

V1(0, 0, n, m, s) =- Cy4(n, s)/n.

This expected loss could be eliminated by the first bidding strategy, where each bidder submits a
bid that isits signal minus Cy(n, s). With this strategy, V1(Ci(n, s), Ci(n, s), n, m, s) =0 and,
on average, the item is sold for its actual value.

Notice that, in afirst-price sealed-bid auction, there is no advantage in bidding more than
the second highest bid. This suggests a second bidding strategy, where each bidder reducesits
signal by Cy(n,s) + L(n, s, n)- L(n, s, n- 1). With this strategy, the winning bidder would
have an expected profit of L(n, s, n) - L(n, s, n- 1). We denote this quantity by B;(n, s) and
call it thewinner’s blessing in afirst-price sealed-bid auction.

V1(Ci(n, s) + By(n, s), Cy(n, s) + By(n, s), n, m, s) =By(n, s)/n

For fixed n, both the curse and blessing are directly proportional to s, with the constants
of proportionality depending upon n.

Cy(n,s) =s *C(n)) B;(n,s ) =n>s ¥Cy(n1)- Cy(n- 11))

The curse and blessing have simple formulas for specific error distributions and numbers
of bidders.

Rnormal: Cy(2,s)=—— and By(2;s ) =22,
normal: Cy(2,s) \/5 and By(2,s) \/5
R uniform on [-\/§>s,\/§>s]: Cl(n,s)=:;+ix\/§>s and Bl(n,s)=ni+1x\/§>s

for al n.

Any knowledgeable bidder can make the above cal culations and predict the expected
resultsif all bidders follow either the first or second bidding strategies. Now we consider
bidding asagame. Isthefirst bidding strategy stable, or would it be better for biddersin Ring 1
to deviate from the plan of subtracting only the winner’s curse? The answer requires away to
evauate Vi(c, d, n, m, s).

Lemma 1. Suppose that, under our common-value model, in afirst-price sealed-bid
auction with n bidders, the m biddersin Ring 1 bid their signals minus an amount ¢ and then - m
biddersin Ring 2 bid their signals minus an amount d. For any distribution of signal errors
having a standard deviation of s, with density fs, and distribution Fs, we have the following
expected value for each Ring 1 bidder.

¥
V4(c,d,n,m,s) =- c‘jx- ) xFM L(x) xfg (x) < " M(x- c+d)dx. (1)
- ¥
Proof. Let the random variables Ry, Ry, ¥4, Ry, be the signal errors of themRing 1

bidders and let Rpv1, Rz, %2, Ry bethe signal errors of then - mRing 2 bidders. If My =
Max(R1, Ry, %2, Ry) and M, = Max(Rm+1, Rme2, ¥4, Ry), then we have the following.
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Fry () = Fs"(%) fug (X) = mxf (X) M 1)
Fm, () = R M(%) fmy (X) = (- m) xfg (x) <7 1(x)
Hence,
¥ é X- c+d i
Vi(c,d,n,ms ) =- %xc\)(x- C) xg(n - m) x éfs (y) <=M 1(y) dygxmxfs (x) <FM1(x) dx
¥ & oy 0

xfg (x) XF™ L(x) dx

- ©) >{an' M(x- c+d)

- ¢) ™ (%) xfg (%) E= M(x- c+d)dx.

¥
= (\jx
- ¥
¥
=- c‘jx
- ¥
This compl etes the derivation of Equation 1.

From the point of view of Ring 1 bidders, we can think of d, n, m, and s asfixed, and
consider expected value as a function of our reduction, c. For very large values of ¢, aRing 1
bidder will make extremely low bids. Hence, it will have avery small probability of winning,
but will, on average, make a large positive profit if it doeswin. We could expect to have V;(c, d,
n, m, s) approach O from the positive side, as ¢ increases without bound. Looking in the other
direction, small (possibly negative) values of ¢ will lead to very high bids, with a strong
probability of winning the auction. However, the high bidswill result in large losses. Itis
reasonable to expect that V;(c, d, n, m, s) will approach - ¥ as ¢ decreases without bound.

It turns out that all plots of Vy(c, d, n, m, s) for any error distribution and fixed d, n, m,
and s have similar shapes. We will illustrate this with a normal error distribution and a
reduction of Cy(n, s) by all Ring 2 bidders.

0.157

0.11

0.05+
v1<c,cl(1o,15),10,1,15> | | . . .

-0.05T
-0.1 1

-0.15—

C

Figurel. Normal Error Distribution.
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Figure 1 shows that there is an optimum signal reduction of approximately 30.6 for Ring
1 bidders. Since, in this example, C1(10, 15) @23.1, we see that the first bidding strategy is not
stable. Acting in itsbest interest, a Ring 1 bidder should subtract much more than C;(10, 15)
fromitssignal.

As a second example, suppose that the errors are normally distributed and that all Ring 2
bidders reduce their signals by C;1(10, 15) + B;(10, 15). Figure 2 shows that the optimal strategy
for Ring 1 bidder’ sisto reduce their signals by approximately 23.6.

12T
09T
0.6T
0.3T

vl<c,c1(1o,15)+51(10,15),10,1,15) - : : | | : .
-0.3T
06T
0.9+
s

Figure2. Normal Error Distribution.

Computation shows that, in this setting, C;(10, 15) + B1(10, 15) @31.1. Hencethe
second bidding strategy is not stable. If Ring 2 bidders remove the winner’s curse plus the
winner’s blessing, then aRing 1 bidder should remove a much smaller amount from its signal.

In general, let S(d, n, m, s), be the reduction in Ring 1 bidders signals that maximizes
their expected value, given that al Ring 2 bidders reduce their signals by d. In our examples,
S(23.1,n, m,s) @30.6 and $(31.1, n, m, s) @23.6.

Equilibrium. Computation shows that large values of d produce S(d, n, m, s) <dand
that small values of d produce S(d, n, m, s) >d. Thisresult holdsfor all error distributions and
al valuesof n, m, and s. Thereisan obvious suggestion of afixed point for S(d, n, m, s). This,
in fact, does occur. A plot of S(d, n, m, s) against d in the setting of our last examplesis shown
in Figure 3.

S4(d,10,1,15)

20

20 24 28 32 36 40
d
Figure 3. Normal Error Distribution.
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A solution of S(d, n, m, s) = d yields a Nash equilibrium bidding strategy. If all
bidders bid their signals reduced by this value, then no group of m bidders can increase their
expected values by altering the strategy.

Theorem 1. Consider our common-value model, for a first-price sealed-bid auction with
n bidders. For any distribution of signal errors having a standard deviation of s, with density fs,
and distribution Fs, there exists aunique value E;(n, m, s) such that S (Ei(n, m,s),n,m,s) =
Ei(n, m, s). Moreover,

¥
nx(nl_m) + OoR" 2(x) xf2(x) dx
Ei(n,ms) = v -¥ . (2
(' 200 X8 () dx
-¥

Proof. Thereisan ingeniousway to find thisfixed point. We denote the partia
derivative of Vi(c, d, n, m, s) with respect to ¢ by Di(c, d, n, m, s),

Di(c,d,nm,s) = % Vi(c,d,n,m,s).

Since S(d, n, m, s) isthe Ring 1 bidders optimal reduction, matching a reduction of d by all
Ring 2 bidders, we have

D1(S(d,n,ms),d,n,ms ) =0.
Atc=5(d, n,m, s), we must havec =d. Hence,
Ds(c,c,n,m,;s ) =0.
Ei(n, m, s) isasolution of this equation for c¢; asafunction of n,m, and s.
From Equation 1 in Lemma 1, we have

Di(c,d,nm;s ) = % Vi(c,d,n,m,s)

¥
= (yx- o™ L(x) xfs (x) xfg (x- c+d)xn- m) &£ M (x- c+d)dx
-¥
¥
+ Ocsm'l(x) xfq (X) B M(x- c+d)dx.
-¥

Setting this expression equal to 0 and replacing d with c yields
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¥ ¥
0= (yx- o EN 2 (%) %2 (X) (N - m) dx + c‘)csn'l(x) xfg (x) dx
- ¥ - ¥

¥ ¥ ¥
= (n- m)x JoRT 2 (0 X () dx- ex(n- m)x G20 XIS dx+ (F ) xfs () oy
-¥ -¥ -¥

¥ ¥
=(n- m)x(‘)<xFS”'2(x) xf2(X) dx - cX(n- m)xOCS”'Z(x) xf2(X) dx+%.
-¥ -¥

Clearly, this has a unique solution for ¢, and hence for E;(n, m, s).

¥
i+(n- m) x CJFa 2(x) <fE(x) dx
Eq(n,ms)=c= f
(n- m)x 20 xf2(x) dx
- ¥
¥
ot OOFT 00X 00 ox
— 7 ¥
O 200 X2 (x) o
- ¥

This establishes Equation 2.

Asan example, we find that E;(10, 1, 15) @26.438008, rounded to six decimal places.
Thisisin good agreement with our graphical result.

The Nash equilibrium reduction is directly proportiona to s, with E;(n, m, s) = s>E;(n,
m, 1). It ispossible to compute exact values for some error distributions, and certain values of n
and m.

R normal: E1(2,J,s)=\/5>s and E1(3,ls)=M>s.
3x/p
(nz- NXN+2xm- 2)
R uniform on [-\/§>s,\/§>s]: Ei(n,ms) = > x/3> foralln
n< - nxm

and m.

The relation between E;(n, m, s) and reductionsin the first and second strategiesis
interesting, but somewhat unclear. It isobviousthat Ci(n, s) < E;(n, m, s) for al distributions
and all valuesof n, m, and s. The connection of E;(n, m, s) and Cy(n, s) + By(n, s) ismore
complicated.
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R Normal: For m=1we have
Ci(n, s) <Ei(n, 1,s8) <Cy(n,s) +Bi(n, s)
foral s andn> 2. A typical plotisshowninFigure4.

40__
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X X X eeo®’ 4t
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+ + + | *
107 ,
0 10 20 30

Figure4. Normal Error Distribution.

For m> 1, we have Cy(n, s) < Ei(n, m,s) < Cy(n, s) + By(n, s) for al s and all
sufficiently largen. A typical plot is shownin Figure5.

757

C1(n,15) + B 4(n,15) 50-

X X X .
E 1(n,4,15)
oo .’xxx%>.<>.<’§>§’.<>f>f>f>ff>ff>f>ff>ff
C1(n,15) el XXX +++++++++++++++++
++ + s+t *

o

0 5 10 15 20 25 30
n

Figure5. Normal Error Distribution.

There does not seem to be any intuitively obvious explanation for the anomalies at small
values of n. Infact, this behavior is aproperty of the normal distribution, which may or may not
occur with other distributions.

R Uniform on [-\/§>s , \/§>s]: Inthiscase, C;(n,s )+ By(n,s) =3 foralln,
andEj(nLs) = \35s for al n. Hence, for al n,

Ei(n, 1,s) =Cy(n, s) + By(n, S).
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It is somewhat surprising that, for auniform error distribution, the Nash equilibrium,
Ei(n, 1, s) is constant with respect to n. The particular value of E;(n, 1, s) also hasan
interesting practical application to auctions. Note that the largest possible signal error is V3.
Hence, awinning bidder that reduced its signal by E;(n, 1, s) is certain to buy theitem at, or
below, its actual value.

Continuing with our example of uniform signal errors, we see that for m> 1,

(nz- nxm+2xm- 2

n2- nxm

>1 for all n. Hence, for dl n,

Ci(n,s) + By(n, s) <Ey(n, m, s).

It appears, but is not yet proven, that, for any error distribution, any m, and any s, E;(n,
m, s) approaches C;(n, s) as n increases without bound.

Equilibrium Bidding Strategy. We will refer to the signal reduction of all bidders by
Ei1(n, m, s) asthe equilibrium bidding strategy. Note that the winning bidder from either ring
has an expected profit of E;(n, m, s) - Ci(n, s). Since al bidders are equally likely to win the
auction, the expected profit for any bidder is (Ei(n, m, s) - Cy(n, s))/n.

Thisis good news for bidders. For normally distributed errors, we find that E;(10, 1, 15)
- C4(10, 15) @B.36, which is approximately 22% of the error standard deviation. The actual
economic significance of this can be better appreciated by realizing that the monetary unit in an
auction may well be millions of dollars.

From the seller’s point of view, the equilibrium bidding strategy is bad news. Confronted
with knowledgeabl e bidders who follow this strategy, the item being auctioned will, on average,
sell for below its actual value. Our analysis reveals two interesting aspects of the auction
process. First, since the winners curse and the equilibrium value are both proportional to s, the
expected difference between the selling price and the actual value is also proportional to s.
Hence, better estimation of the item’ s value by the bidders, resulting in asmaller s, will reduce
the seller’ s expected loss. This establishes a principle that has been found in other auction
models. The seller should divulge any information that he or she has about the value of the
item to be auctioned. Such an action will improve the bidders’ estimates and reduce the seller’s
expected loss.

Numerical work indicates that, for fixed m,

lim (E;(n,ms)- Cy(n,;s))=0,
n® ¥

for dl s, and any error distribution. Thisis certainly the case for uniform distributions, where

2_ - =10
El(n,m,s)-Cl(n,s)zg‘Eh nm+2xm-2_n 1?x\/§>s

2 +
n< - nxm I’l+1g
@& n2. ; 0
P . n2 n+m-1 jx\/§>s.
&n°+n“x1- m)- nxmy
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As aconsequence, aseller’ s expected loss will be reduced if he or she can attract more
bidders. In our example of normally distributed errorswith m=1and s = 15, increasing the
number of bidders from 10 to 35 would cut the seller’ s expected loss in half.

SECOND-PRICE SEALED-BID AUCTIONS

Basic Bidding Strategies. In an attempt to improve the auction mechanism, many
sellers have switched to a second-price sealed-bid model. Inthiscase all bidders submit secret
bids, with the item being sold to the highest bidder, at the price of the second highest bid. We
will consider such auctions in the same setting that we have used for first-price sealed-bid
auctions.

The item being sold has an unknown, but common value to each of n bidders, all of
whose signals have an error distribution of R. Asbefore, we assume that nmk = 0 and use fs and
Fs for the density and distribution functions of R, respectively. Itisstill possible to consider a
partition of the bidders into two bidding rings. However, the complexity of the resulting
equations leads us to analyze only the case of m =1 for single bidders. Unless specifically noted
to the contrary, all of our results apply to any sufficiently smooth continuous distribution.

The winner’s curse and blessing in second-price auctions are defined with order statistics
in amanner that is analogous to first-price auctions.

Cy(n,s)=L(n,s,n- 1) Bx(n,s)=L(n,s,n- 1)- L(n,s,n- 2),forn>2

Asbefore, for afixed n, both the curse and blessing are directly proportional to s, with
the constants of proportionality depending upon n. The formulas for the curse and blessing have
simple forms for specific error distributions and numbers of bidders.

Rnormal: Cy(2,s)=- > and Cy(3s)=0.

Jp

R uniform on [-\/§>s,\/§>6]2 C2(n,s):L

sx\/§>s for all nand
n+1

2
B->(n,s =—x\/§>s for al n>2.
2(n,s) 1

Thefirst bidding strategy, in a second-price auction, isfollowed if each bidder submitsa
bid that isits signal minus C,(n, s). By analogy with first-price auctions, we let V(c, d, n, s) be
the expected value of profit for asingle bidder that results from its signal reduction of c and a
signal reduction of d by all other bidders in a second-price auction. With this strategy, V2(Cx(n,
s), Cx(n, s), n, s) =0 and, on average, the item is sold for its actual value. In the second
bidding strategy, in a second-price auction, isfollowed if each bidder reducesits signal by Cx(n,
s) + By(n, s).

We now consider the expected profit of asingle bidder.

Lemma 2. Suppose that, under our common-value model, in a second-price sealed-bid
auction with n bidders, asingle bidder bidsits signal minus an amount ¢ and the n - 1 other
bidders bid their signals minus an amount d. For any distribution of signal errors having a
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standard deviation of s, with density fs, and distribution Fs, we have the following expected
value for the single bidder.

¥
Va(e,d,ns)=-(n- Dxyx- d)xfs (x) FN2(x)ofL- Fy (x+c-d)]dx (3
- ¥
Proof. Let Ry, Ry, ¥, Ry, My, My, Fs and fs be asin the proof of Lemma 1. We now
have
¥ é ¥ v
Va(c.d,nms)=- )x- d)><§ O's (y)dygx(n- 1) xfg (X)X ?(x) dx
-¥ éx+c-d a
¥
=-(n- Dx AYx- d) xfs () =2 () fL- Fs (x+c- d)]ax,
- ¥

which establishes Equation 3.

Plots of V, are very similar to those of V3. Figures 6 and 7 show some typical examples,
using anormal error distribution.

0.17

0.057

V2(c,C5(10,15),10,15)

-0.05

0.1+

C

Figure 6. Normal Error Distribution.
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v2<c,02(1o,15) + 82(10,15),10,15>

Figure7. Normal Error Distribution.

It is clear that a single bidder has an optimal response to afixed signal reduction by all
other bidders. Figures6 and 7 show that neither the first nor the second bidding strategy is
stable. The single bidder should answer areduction of C,(10, 15) @15.0 with alarger reduction
of approximately 22.8. If all othersreduce their signals by C,(10, 15) + B,(10, 15) @ 20.2, then
the single bidder should reduce by the smaller amount of approximately 4.8.

Equilibrium. We, again, have the suggestion of a Nash equilibrium. Let Sy(d, n, s), be
the reduction in asingle bidder’ s signal that maximizes its expected value, given that all of the
other n- 1 bidders reduce their signals by d.

Theorem 2. Consider our common-value model, for a second-price sealed-bid auction
with n bidders. For any distribution of signal errors having a standard deviation of s, with
density fs, and distribution F, there exists a unique value Ex(n, s) such that S;(Ex(n, s), n, s) =
Ex(n, s). Moreover,

¥
O 2 (%) xf2 () dx
Ep(ns)==% . @
O 200 XL () dx
-¥

Proof. By analogy with the proof of Theorem 1, let

Dy(c,d,n,s) =% Vy(c,d,n,s),

and note that Ex(n, s) must be asolution Of Dx(c, ¢, n,s) =0for c; asafunctionof nand s.
From Equation 3 in Lemma 2, we have
¥
D,(c,d,n,s) :%Vz(c,d,n,s )=(n-1) X(‘jx- d) xfg (x) xR 2(x) xfg (x+c- d)dx.
- ¥
Setting this expression equal to 0 and replacing d with c yields
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¥
0=(n- x (yx- o) <R 2(x) %2 (X) dx
- ¥
¥ ¥

0= (‘)<sz”' 2(x) xfsz(x) dx- cx (\jzsn' 2(x) >qcSZ(X) dx.
-¥ -¥

Itisclear that
¥
R 2(x) xfZ(x) dx
—~n—-¥
Eb(ns)=c= v
OFe 200 %1 () dx
- ¥

is the unique solution for the Nash equilibrium. This completes the derivation of Equation 4.

Asisthe case with Cy(n, s) and By(n, s), the Nash equilibrium reduction, Ex(n, s), is
directly proportional to s. It is possible to compute exact values for some error distributions, and
certain values of n.

S

V3p

R uniform on [-\/§>s,\/§>s]: Ez(n,s)=n_—2x\/§>s for al n.
n

Rnormal: E»(2,s)=0and E»(3s) =

The general relationship between E,(n, s) and reductions in the first and second strategies
isnot yet completely established. However, the connections are clear for our sample
distributions.

R Normal: For n= 2, our formulas show that Cx(2, s) <Ex(2, s). Theplotin Figure 8
indicates that Cx(n, s) < Ex(n, s) < Cy(n, s) + By(n, s) for al n> 2. Since al of these quantities
are proportional to s, the alignment that is shown for s = 15 appliesto al valuesof s.
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Figure8. Normal Error Distribution.

R Uniform on [- V358 ,4/3%8 ]: Our formulas show that Cx(2, s) < Ex(2, s) and that
Ca(n, s) <Ex(n,s) <Cy(n,s) +By(n,s) foral n>2.

Equilibrium Bidding Strategy. We will refer to the signal reduction of all bidders by
Ex(n, s) asthe equilibrium bidding strategy for second-price auctions. With this strategy, any
winning bidder has an expected profit of Ex(n, s) - Cx(n, s). Since all bidders are equally likely
to win the auction, the expected profit for any one bidder is (Ex(n, s) - Ca(n, s))/n. Thisis
favorable to bidders, but not as profitable as is the case with first-price auctions.

R Normal: Wefind that Ex(10, 15) - C,(10, 15) @1.67, which is approximately 11% of
the error standard deviation. However, it isnot nearly as large as was the expected profit for a
winning bidder under the equilibrium bidding strategy for first-price auctions. Recall that the
corresponding expected profit in that case was E;(10, 1, 15) - C4(10, 15) @3.36, which is
approximately 22% of the error standard deviation. As Figure 9 shows, the lower expected
profit for second-price auctions persists for al numbers of bidders, but isrelatively lessfor larger
values of n.
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Obvioudy, aseller will fare better with second-price auctions than with first-price sealed-
bid auctions. He or she can still expect to sell the item for less than its actual value, but the
expected loss will only be approximately half of what it would be under the first-price plan.

R Uniform on [- V358 ,4/3%8 ]: Wefindthat Eo(n,s)- Cy(n,S) =%x\/§>s

nxn

and E;(n,s)- Cy(n,s) = % /3> . Thus, in the case of only 2 bidders, the expected
profit for awinning bidder in second-price auctionsis one-half what it isin first-price auctions.
Asthe number of bidders increases both the absolute and the relative advantage to biddersin
second-price auctions decreases to zero. Asin the normal signal error example, a seller would
prefer second-price auctions for uniformly distibuted signal errors.

Our analysis of second-price auctions yields the same information for sellers as we found
in the first-price case. The seller should divulge any information that he or she has about the
value of the item to be auctioned and should attempt to attract as many bidders as possible.

Revenue Equivalence Theorem. Our results on the expected losses for sellersin first-
and second-price auctions are of particular interest in light of the major Revenue Equivalence
Theorem. See Klemperer (1999) and McAfee & McMillan (1987). Roughly phrased, this
theorem states that, for awide class of auction models, the expected revenue for the seller is
identical under Dutch, English, second-price sealed-bid, and first-price sealed-bid auctions. The
Revenue Equivalence Theorem has been shown to apply to private-value models and to some
common-value models. Our work shows that the Revenue Equivalence Theorem does not hold
for our type of common-value model. In this case thereisadistinct advantage to the seller from
choosing a second-price sealed-bid auction method, rather than afirst-price sealed-bid sale

Simulation. Many of our results wereinitially discovered by extensive computer
simulation. Simulations for several error distributions, and many values of n, m, and s also
provide numerical verification for our conclusions.
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