MATH 125:
 NEW FUNCTIONS FROM OLD FUNCTIONS

FALL 2009

Understanding more general functions by relating them to certain basic functions is an essential skill one should develop in calculus. Once a basic graph is understood, more complicated looking translations, reflections, and stretches are also easily understood.

Translations: Suppose f is a function whose graph is known and let $c>0$ is a constant.
(1) Vertical Shifts:
i) $y=f(x)+c$ shifts the graph of $y=f(x)$ a distance c units upwards.
ii) $y=f(x)-c$ shifts the graph of $y=f(x)$ a distance c units downwards.

Note: Vertical translations (or shifts) do not effect vertical asymptotes, but they will move horizontal asymptotes!
(2) Horizontal Shifts:
i) $y=f(x-c)$ shifts the graph of $y=f(x)$ a distance c units to the right.
ii) $y=f(x+c)$ shifts the graph of $y=f(x)$ a distance c units to the left.

Note: Horizontal translations (or shifts) do not effect horizontal asymptotes, but they will move vertical asymptotes!

Reflections: Suppose f is a function whose graph is known.
i) $y=-f(x)$ reflects the graph of $y=f(x)$ about the x-axis. This kind of reflection will not effect vertical asymptotes, but it may effect horizontal asymptotes.
ii) $y=f(-x)$ reflects the graph of $y=f(x)$ about the y-axis. This kind of reflection will not effect horizontal asymptotes, but it may effect vertical asymptotes.

Stretches: Suppose f is a function whose graph is known and let $c>0$ be a constant.
(1) Vertical Stretching:
i) If $c>1$, then the graph of $y=c f(x)$ will be stretched vertically; the stretching is proportional to c units.
ii) If $0<c<1$, then the graph of $y=c f(x)$ will be shrunk vertically; the shrinking is proportional to c units.

Note: Vertical stretching will effect horizontal asymptotes, but not vertical asymptotes.
(2) Horizontal Stretching:
i) If $c>1$, then the graph of $y=f(c x)$ will be shrunk horizontally; the "old" function values are achieved "faster", at a rate that is proportional to c units.
ii) If $0<c<1$, then the graph of $y=f(c x)$ will be stretched horizontally; the "old" function values are achieved more slowly, at a rate that is proportional to c units.

Note: Horizontal stretching will effect vertical asymptotes, but not horizontal asymptotes.

Warning: It is very important to interpret combinations of translations, reflections, and stretches carefully. In general, given a function f, the graph of f shifted first and then reflected is different from the graph of f reflected first and then shifted!! Here is an example:

Example: Let $y=f(x)=e^{x}$. We will calculate two different functions.
i) In Words: Take f, shift by three units to the right, and then reflect the result about the y-axis.

In Formulas: Let $g(x)=f(x-3)=e^{x-3}$, and then $h(x)=g(-x)=$ e^{-x-3}.

Compare this with the following function.
ii) In Words: Take f, reflect about the y-axis, and then shift the result three units to the right.

In Formulas: Let $g(x)=f(-x)=e^{-x}$, and then $h(x)=g(x-3)=$ $e^{-(x-3)}=e^{-x+3}$.

These two functions are different!

Exercise 1. Let the function f be given by $f(x)=x^{2}$.
Graph the following translations:
i) $y=f(x)+3=x^{2}+3$,
ii) $y=f(x)-4=x^{2}-4$,
iii) $y=f(x-2)=(x-2)^{2}$,
iv) $y=f(x+1)=(x+1)^{2}$.

Graph the following reflections:
i) $y=-f(x)=-x^{2}$,
ii) $y=f(-x)=(-x)^{2}$,

Graph the following combinations:
i) $y=-f(x+3)+2=-(x+3)^{2}+2$,
ii) $y=f(-(x-3))-1=(-x+3)^{2}-1$.

Exercise 2. Let the function g be given by $g(x)=3^{x}$.
Graph the following translations:
i) $y=g(x)+3=3^{x}+3$,
ii) $y=g(x)-4=3^{x}-4$,
iii) $y=g(x-2)=3^{x-2}$,
iv) $y=g(x+1)=3^{x+1}$.

Graph the following reflections:
i) $y=-g(x)=-3^{x}$,
ii) $y=g(-x)=3^{-x}$,

Graph the following combinations:
i) $y=-g(x+3)+2=-3^{x+3}+2$,
ii) $y=g(-(x-3))-1=3^{-x+3}-1$.

