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Preliminaries

Mathematical applications typically involve one or more equations to be solved for unknown

quantities. Often applications involve rates of change, and therefore lead to equations con-

taining derivatives. Such equations are called differential equations.

A student’s first encounter with differential equations is usually in a calculus course

where anti-derivatives (or indefinite integrals) are studied. For example, consider the prob-

lem of finding the anti-derivative of 2 This problem can be formulated as follows: find a

function  = () whose derivative is 2, or in other words find a function  = () that
satisfies the equation

0 = 2 (0.1)

(Here we have used the notation 0 for the derivative of  with respect to . We will

also occasionally use the notation .) Equation (0.1) is a differential equation for the

unknown function  = (). Notice what it means to “solve” this equation: find a function
 = () that, when substituted into both sides of the equation, makes the left hand side
identically equal to the right hand side That is to say, a solution is a function which upon

substitution into the equation reduces the equation to a mathematical identity in  Also

notice it is not accurate to speak of the solution of this differential equation. This is because

it has many solutions, namely () = 33+ where  is any constant (the so-called “constant
of integration”).

It is not always as easy to find formulas for solutions of a differential equation as it is for

the equation (0.1). For example, consider the differential equation

0 =  (0.2)

This equation is fundamentally different from (0.1) because the unknown function  appears

on the right hand side. This equation cannot be solved by an anti-differentiation of the right

hand side, because the right hand side is not a known function of . Later we will learn how

to solve this equation, but for now notice that () =  is a solution, i.e., a substitution

of  for  into the left and the right hand sides of the equation yields the same result

(namely ) Similarly, () =  is a solution of this equation for any constant  (including

 = 0). Notice, however, that () =  +  is not a solution (unless  = 0). To see this,
we calculate 0() =  and note that it is not equal to () =  +  (unless  = 0). This
shows that constants of integration do not always appear additively in formulas for solutions

of differential equations.

As another example consider the differential equation

0 = 2 (0.3)

ix
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The function () = 1 (1− ) is a solution of this equation, so long as  6= 1, because the
derivative 0 = 1 (1− )2 is identical to 2 for  6= 1. We say this function is a solution on
the interval −∞    1 or on the interval 1    +∞ (or on any interval not containing

 = 1). Similarly, for a constant , the function () = 1 (− ) is a solution on any interval
that does not contain  = . Notice each solution obtained by assigning a numerical value

to  has a different singular point  =  and hence is associated with a different interval of

existence. (Incidentally, the constant function  ≡ 0 is also a solution which is not included
in the formula () = 1 (− ).)
A solution of a differential equation is associated with an interval of existence. The

solutions () = 1 (− ) of equation (0.3) show there is not necessarily a common interval
of existence for all solutions of a differential equation. This example also illustrates that the

differential equation itself might give little or no clue about the intervals of existence of its

solutions.

For differential equations (0.1), (0.2), and (0.3) it is possible, as we have seen, to write

down formulas for solutions. For other equations, it is not possible to calculate solution

formulas. In the latter case, we must use other methods to study equations and their

solutions. In this book we will study some types of equations for which we can derive

solution formulas, but we will also study many methods of analysis that do not require

solution formulas. These methods are of particular importance since it is not possible to

calculate solution formulas for the differential equations that arise in many, if not most,

scientific and engineering applications.

The equations (0.1), (0.2), and (0.3) are examples of a general class of ordinary differential

equations of the form

0 = ( )

Here all terms in the equation not involving the derivative have been placed on the right hand

side. In general both the independent variable  and the dependent variable  can appear on

the right hand side. Letters or symbols representing unspecified numerical constants called

coefficients or parameters might also appear. Here are some further examples:

0 = 2 + 2

0 = −2
0 =  where  is a constant

0 = 
³
1− 



´
 where   0   0 are constants.

It is important to recognize those letters and symbols that represent independent variables,

those that represent dependent variables, and those that represent coefficients or parameters.

The independent variable is, of course, the variable with respect to which the derivative

is being taken. In the above equations we use the letter  for the independent variable; this

will be done throughout the book. This choice is motivated by the many applications in which

the independent variable represents time. (Other letters can, of course, be used.)

On the other hand, throughout the book we use a variety of letters for the dependent

variable (sometimes referred to as the state variable). In applications, a letter suggestive

of the meaning of the variable in that application is usually chosen. For example, we will

encounter differential equations involving symbols such as 0 0 0  0 and  0 for the



xi

derivatives of the dependent variables  ,   , and  with respect to . If it is necessary

to emphasize the role of the independent variable  we sometimes write derivatives as


















Applications often involve several differential equations for several unknown functions,

i.e. a system of differential equations. Some examples are

0 = 

0 = − sin

0 = −1− 2

0 = 1− (1 + 2) 

0 = 

0 = − 


− 




0 = 
³
1− 



´
− 

0 = − + 

0 = 

0 = −− 
¡
2 − 1¢  

In each of these examples there are two differential equations for two unknown functions 

and  All other letters represent coefficients (or parameters).

A solution of a system of two equations is a pair of functions  = ()  = (). For
example, the pair () = 22 () = −2 is a solution of the system

0 = 5+ 6

0 = + 4

To see this, we note that 0 = 42 is identical to

5+ 6 = 5
¡
22

¢
+ 6

¡−2¢ = 42
(i.e., the first equation is satisfied for all ) and also that 0 = −22 is identical to

+ 4 =
¡
22

¢
+ 4

¡−2¢ = −22
(i.e., the second equation is also satisfied for all ). The reader can check that () =
37 () = 7 is another solution pair of this same system.



xii PRELIMINARIES

Applications also arise in which higher order derivatives appear in the equation. Here

are some examples of higher order differential equations:

00 +  = 0

00 + 0 +  =  sin

000 + 300 + 30 + 2 = 0

1
00 + (1 + 2)− 2 = 0

2
00 − 2+ 2 = 0.

The order of a differential equation is that of the highest order derivative appearing in the

equation. Thus, the equation 0 =  is a first order equation. The first two equations above

are second order and the third equation is third order. The last pair of equations constitute

a second order system of equations.

Solutions of higher order equations must reduce the equation(s) to identities upon sub-

stitution. For example, () = sin  is a solution of the second order equation 00 +  = 0 for
all  (as is () = cos ). The exponential function () = −2 is a solution of the third order
equation 000 + 300 + 30 + 2 = 0 for all .
Any higher order equation (or system of higher order equations) can be associated with

an equivalent system of first order equations. The following example illustrates the most

common way to convert a higher order equation to an equivalent first order system. The

function () = sin  is a solution (for all ) of the second order equation

00 +  = 0 (0.4)

Define  to be the derivative of , i.e.,  = 0. Then () = cos  and the pair () = sin ,
() = cos  solves the first order system

0 =  (0.5)

0 = −
This shows how a particular solution of the second order equation (0.4) can be used to

construct a solution of the first order system (0.5).

More generally, suppose  = () is any solution of the second order equation (0.4), i.e.,
00() + () = 0. Define  = 0(). The calculations

0() = ()

0() = 00() = −()
show the pair (), 0() solves the system (0.5). This shows that any solution of the second
order equation (0.4) gives rise to a solution pair for the first order system (0.5). Is the

converse true? Can a solution of the first order system (0.5) be used to obtain a solution

of the second order equation (0.4)? If so, then we could say that the second order equation

(0.4) is “equivalent” to the first order system (0.5) in the sense that solving one is the same

as solving the other.
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Suppose  = (),  = () is a solution pair of the first order system (0.5). Then

0 = 

0 = − (0.6)

We need to show how we can obtain a solution of the second order equation (0.4) from the

solution pair of the system. The way to do this is simply to choose the first component  of

the solution pair. We can show that the first component  = () satisfies the second order
equation by differentiating both sides of the first equation in the system (0.6), to obtain

00() = 0(), and then use the second equation in the system to obtain 00() = − () or
in other words 00 +  = 0.
The procedure we used to derive the system (0.5) equivalent to the equation (0.4) is not

peculiar to that second order equation For example, by the same method, we can show that

the second order equation

00 + sin = 0

is equivalent to the first order system

0 = 

0 = − sin
In general, we can show (by a similar procedure) that any second order differential equation

of the general form

00 = (  0)

is equivalent to the first order system

0 = 

0 = (  )

An extension of the method also applies to equations of order higher than two. For

example, we can obtain an equivalent first order system for the third order equation

000 + 300 + 30 + 2 = 0

by defining two new dependent variables

 = 0,  = 00.

As above, we can show solutions of this equation give rise to solutions of the system

0 = 

0 = 

0 = −2− 3 − 3
and vice versa.

A further extension of the method can be used for higher order systems as well. For

example, consider the second order system

00 + 2−  = 0
200 − 0 +  = 0
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for two unknowns  and We apply the procedure twice, once on each equation, by defining

two new dependent variables

 = 0  = 0

and obtaining the equivalent first order system of four equations

0 = 

0 = −2+ 

0 = 

0 = 1
2
 − 1

2


The ability to convert higher order equations to a first order system is required by many

(if not most) computer programs available for the study of differential equations.

One way to classify differential equations is by their order. Another way to classify equa-

tions is based on the notion of “linearity”. A differential equation is linear if the dependent

variable and all of its derivatives appear linearly. Thus, in a linear first order equation, both

 and 0 appear linearly. This means

0 = 3+ 1
20 −  = 2 + sin 

0 = + 

0 =



+ ln 

are all linear (first order) differential equations. Note that the independent variable plays no

role in the definition of linearity. For example, the second equation is linear even though the

independent variable  appears in a nonlinear way (in the sin  term). We can write each of
these equations in the form

0 = ()+ ()

for appropriate coefficients () and (). By definition, an equation is linear if it has this
form (or can be rewritten in this form).

The equations

0 = 2 − 1
0 = + 

(0)2 = − 4
0 = 

³
1− 



´


are nonlinear. The first and fourth equations are nonlinear because of the term 2. The

second equation is nonlinear because of the term 0 and the third equation is nonlinear
because of the term (0)2 (not because of the term ).

A second or higher order equation is linear if the dependent variable and all of its deriv-

atives appear linearly in the equation. The second order equations

00 +  = 0

00 + 0 +  = sin 

00 + (sin ) = 0
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are linear because , 0 and 00 appear linearly. The equations

00 + (1− )0 +  = 0

00 + sin = 0

are nonlinear (the first because of the term 0 and the second because of the term sin).
Systems of equations are linear if (and only if) all of the equations are linear in all of

the dependent variables and their derivatives. Thus,

0 = 

0 = −

0 = −+ 

0 = − 2
are linear systems and

0 =
¡
1− − 1

2

¢


0 =
¡
1− 1

2
 − 

¢


0 = ( − ) − 1


+



0 =
¡

+
− 
¢


are nonlinear systems (because of the terms 2, , and 2 in the first system and the term

 (+ ) in the second).

0.1 Exercises

What are the orders of the following equations? Explain your answers.

Exercise 0.1 20 + 3 = 0

Exercise 0.2 30 − 22 = 0

Exercise 0.3  (0)2 + 3 = 0

Exercise 0.4 3 (00)3 − 25 (0)2 = 0

Exercise 0.5 0300 − 712 = 0

Exercise 0.6 0 + 22 + 000 = 2

Exercise 0.7 0 + 12 = ln 

Exercise 0.8 0(00)2 − 5123 = 2

Exercise 0.9  =  + (0)2

Exercise 0.10 00 +  sin = 0
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Exercise 0.11 20 + 3 =  cos 

Exercise 0.12 0 = ()+ ()

Exercise 0.13 20 + 000 + (00)3 − 4 = 0

Exercise 0.14 (000)2 + (00)5 + 3(0)7 − sin = 0

Which of the following are solutions and which are not solutions of the equation 0+3 =
0? Explain your answers.

Exercise 0.15 −3

Exercise 0.16 3

Exercise 0.17 −−3

Exercise 0.18 3−

Which of the following are solutions and which are not solutions of the equation 0−2 =
0? Explain your answers.

Exercise 0.19 2

Exercise 0.20 2−2

Exercise 0.21 −72

Exercise 0.22 1 + 
2

Which of the functions below are solutions and which are not solutions of the equation

20 + 353 = 0? Explain your answers.

Exercise 0.23 −32

Exercise 0.24 −

Exercise 0.25 (− 1)−32

Exercise 0.26 (1− )−32

Exercise 0.27 32

Exercise 0.28 −(+ 3)−32

Exercise 0.29 (− 2)−23

Exercise 0.30 (− )−32 (where  is any constant)
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Which of the functions below are solutions and which are not solutions of the equation

00 − 50 + 6 = 0? Explain your answers.

Exercise 0.31 −2

Exercise 0.32 2

Exercise 0.33 3

Exercise 0.34 −3

Exercise 0.35 52

Exercise 0.36 −73

Exercise 0.37 2 + 3

Exercise 0.38 1
2 + 2

3 for constants 1 and 2

In the Exercises 0.39-0.43 determine which of the functions are solutions of the given

differential equation and which are not.

Exercise 0.39 For the equation 0 + 5 = 0 :
(a)  = −5 (b)  = 3−5 (c)  = 5−3

Exercise 0.40 For the equation 0 = 2 :
(a)  = 3 (b)  = −32 (c)  = 2

Exercise 0.41 For the equation 0 + 2 = 0 :
(a)  = −1 (b)  = 2−1 (c)  = (− 2)−1

Exercise 0.42 For the equation 0 = +  :
(a)  =  (b)  =  (c)  =  + 

Exercise 0.43 For the equation 00 + 0 = 0.
(a)  = ln  (b)  = 1 (c)  = 

Which of the following are solutions and which are not solutions of the equation 000 −
400 − 40 + 16 = 0 ? Explain your answers.

Exercise 0.44  = 4

Exercise 0.45  = −24

Exercise 0.46  = 4 where  is any constant

Exercise 0.47  = 2
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Exercise 0.48  = −22

Exercise 0.49  = 1
4 + 2

2 + 3
−2 for any constants 1 2, 3

Exercise 0.50  = 42

Which of the following are solutions and which are not solutions of the equation 00 +
0 − 2 = 0 ? Explain your answers.

Exercise 0.51  = 

Exercise 0.52  = −2

Exercise 0.53  = −2

Exercise 0.54  =  + 2−2

Exercise 0.55 Do  = 4 and  = −24 form a solution pair for the two equations 0 =
2−  0 = −6+ ?

Exercise 0.56 Do  = 3 sin 5 and  = 3 cos 5 form a solution pair for the equations

0 = 3+ 5 0 = −5+ 3?

Which of the following are solution pairs of the system below? Which are not solution

pairs? Explain your answers.
0 = 4+ 3
0 = −2− 

Exercise 0.57  =   = −

Exercise 0.58  = −  = 

Exercise 0.59  =   = 

Exercise 0.60  = −  = −

Exercise 0.61  = 32  = −22

Exercise 0.62  = 2  = −2

Exercise 0.63  =  + 32  = − − 22

Exercise 0.64  = −2 + 62  = 2 − 42

Exercise 0.65  = 1
 + 32

2  = −1 − 222 for constants 1 and 2
Exercise 0.66 For each function that is a solution in Exercise 0.15-0.18 identify the interval

on which it is a solution.
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Exercise 0.67 For each function that is a solution in Exercise 0.23-0.30 identify the interval

on which it is a solution.

Convert the equations below to equivalent first order systems.

Exercise 0.68 00 + 0 − 3 = 0

Exercise 0.69 00 − 60 + 4 = 0

Exercise 0.70 300 − 60 + 122 = 1

Exercise 0.71 500 + 100 = 5

Exercise 0.72 2000 − 600 + 40 +  = −3

Exercise 0.73 000 + 200 − 0 +  = 1

Exercise 0.74 00 + 20 + 4 = cos 

Exercise 0.75 200 + 30 + 9 = 0

Exercise 0.76 200 + (0)2 + cos = 0

Exercise 0.77 00 + (0)2 + 12 = 

Exercise 0.78 00 = −20 − +  00 = −0 + 2− 

Exercise 0.79 000 + 00 − 20 + 7 = 

Exercise 0.80 Convert the second order system

200 − 0 + 20 + 4− 8 = 0
00 + 20 − 0 − + 3 = sin 

to an equivalent first order system.

Exercise 0.81 Convert the second order system

00 − 50 − 60 + −  = 0

300 − 60 − 0 + 12+ 3 = 21−3

to an equivalent first order system.

Which of the following first order equations are linear? If an equation is nonlinear, explain

why.

Exercise 0.82 0 = 2+ 1

Exercise 0.83 30 + 4 = 12
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Exercise 0.84 0 = 2 − 1
Exercise 0.85 0 = 2− 1
Exercise 0.86 20 = 

Exercise 0.87 0 =  sin 

Exercise 0.88 0 =  sin

Exercise 0.89 0 = 

Which of the following second order equations are linear? If an equation is nonlinear,

explain why. ( is a constant.)

Exercise 0.90 00 + 0 +  = 0

Exercise 0.91 00 + 0 +  = 0

Exercise 0.92 200 + 0 +  = 1

Exercise 0.93 200 + 0 +  = 1

Exercise 0.94 00 + (1− ) = 0

Exercise 0.95 00 + (1− ) = 

Exercise 0.96 00 + − = sin 

Exercise 0.97 00 + − = sin 

Which of the following systems are linear? If a system is nonlinear, explain why.

Exercise 0.98

½
0 = + 

0 = − 

Exercise 0.99

½
0 = (1− )− 

0 = − + 

Exercise 0.100

½
0 = − 

0 = 

Exercise 0.101

⎧⎨⎩ 0 = + 

0 = + 

where    are constants

Which of the following equations (or systems of equations) are linear?

Exercise 0.102 0 = ( − ) where  and  are constants
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Exercise 0.103 0 = ( − ) where  = () is a decreasing function of 

Exercise 0.104 00+ () = 0 where  = () is a function of  satisfying  ()   0
(for all ).

Exercise 0.105 00 + 0 +  =  sin where     and  are positive constants

Exercise 0.106 00 +  sin = 0 where  and  are positive constants

Exercise 0.107

½
0 + 0 = + 

0 − 0 = 2+ 

Exercise 0.108

½
0 = ln()
0 = 

Exercise 0.109

½
0 =  sin 
00 = + 

Exercise 0.110

½
0 − 2 =  + cos 
 − 2 = 0 − 1

Determine whether the following equations can be rewritten as linear equations or not.

Exercise 0.111 0 = ln (2)

Exercise 0.112 0 =
½
(2 − 1)  (− 1) if  6= 1
2 if  = 1
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Chapter 1

First Order Equations

1.1 Introduction.

In this Chapter we consider first order differential equations of the form

0 = ( )

A fundamental question concerns the existence of solutions to such an equation. Under what

conditions (i.e., for what kind of expressions ( )) can we be assured that solutions exist?
Another question concerns the number of solutions. We know from calculus that integration

problems have infinitely many solutions and, therefore, we anticipate that this is also true

for a first order differential equation. On the other hand, in applications there are often

requirements (in addition to the differential equation) that serve to select one of solutions.

For a first order differential equation the most common requirement is that the solution ()
equal a specified value 0 for a specified value of  that is to say, that (0) = 0 for a

given 0 and 0. A fundamental mathematical question is whether the resulting initial value

problem

0 = ( ) (0) = 0

has a solution. In this chapter we learn conditions which, when placed on ( ), guarantee
that this initial value problem has one and only one solution (i.e., has a “unique” solution).

As pointed out in the Chapter , we will sometimes in this course use different letters for

the unknown (or state variable) . We will, however, consistently use the letter  for the

independent variable.

For specialized equations (i.e., for ( ) with special properties) one can calculate for-
mulas for solutions. We study some examples in Chapters 2 and 3. However, for most

differential equations it is not possible to find solution formulas. For that reason, this course

will not emphasis those equations for which methods for calculating solution formulas are

available. One exception, however, will be the case of so-called linear differential equations

(by which is meant  ( ) is a linear function of ), which we study in some detail in Chap-
ters 2. Instead, the course will focus on methods of analysis that reveal various properties

of solutions (e.g., monotonicity, asymptotic behavior as → +∞, and others ) or that pro-
vide useful approximations to solutions. We will look at many different kinds of solution

approximations, including graphic and numeric approximations (for which a computer will

1
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be an important tool), analytic formulas that approximate solutions, and methods based on

approximating the differential equation itself.

Necessary for any methods of analysis is, of course, the knowledge that the differential

equation and its initial value problems have solutions.

1.2 The Fundamental Existence and Uniqueness The-

orem

We begin with a definition.

Definition 1.1 A solution of a differential equation 0 = ( ) on an interval     

is a function  = () that is differentiable and that reduces the equation to an identity on
the interval, i.e.,

0() ≡ ( ())

for all values of  from the interval.1 The interval      may be the whole real line, in

which case we say the function is a solution for all .

For the differential equation

0 = 2 (1.1)

we have ( ) = 2. The function () = 33 + 1 is a solution of this equation for all 
because 0() = 2 equals ( ()) = 2 for all .

More generally, the unknown  might appear in ( ). For example, for the equation
0 =  we have ( ) = . The function () = 

22 is a solution of this equation for all 

because 0() = 
22 and ( ()) = () = 

22 are identical for all .

From calculus we know the differential equation (1.1) has infinitely many solutions and

the set of all solutions is given by the formula

 () =
1

3
3 +  (1.2)

where  is an arbitrary constant. This is an example of a “general solution” of a differential

equation.

Definition 1.2 The collection or set of all solutions of the differential equation 0 = ( )
is called the general solution (or the solution set).

An initial condition (0) = 0 selects a particular solution from the general solution. For

example, suppose we require that a solution of the equation (1.1) satisfy the initial condition

(0) = 1. From the general solution (1.2) we obtain (0) =  and therefore this initial

condition is satisfied by choosing (and only by choosing)  = 1. That is to say, there is a
unique solution of the initial value problem

0 = 2 (0) = 1

1As a mathematical function ( ) has a domain of  and  values. It is assumed, in this definition, that
all values of  taken from the interval      and the corresponding values of () (i.e., the range of the
function ()) lie in the domain of  . Otherwise ( ()) makes no sense.
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namely,  () = 33 + 1.
In an initial value problem the “initial” time need not be 0 = 0. For example, we can

use the general solution (1.2) to find the unique solution of the initial value problem

0 = 2 (2) = −1
From the general solution (1.2) we obtain

(2) =
8

3
+ 

To satisfy the initial condition  (2) = −1 we solve
8

3
+  = −1

for  = −113 and thereby obtain the solution formula

() =
1

3
3 − 11

3


In fact, we can solve the general initial value problem

0 = 2 (0) = 0

using the general solution (1.2) by setting

(0) =
1

3
30 + 

equal to the desired initial value 0 and solving for

 = 0 − 1
3
30

This results in the unique solution

() =
1

3
3 + 0 − 1

3
30

Example 1.1 A differential equation for the velocity  = () of a falling object subject to
the force of gravity and air resistance is

0 =  − 0 (1.3)

where in which the unknown dependent (state) variable is  =  () and

( ) =  − 0

Here the coefficients (or parameters)  and 0 appearing in the equation are constants (the

acceleration due to gravity and the per unit mass coefficient of friction respectively). The

differentiable function

() = − +


0
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is an example of a solution for all . To prove this one substitutes this alleged solution into

both sides of the differential equation, performs the indicated operations, and see whether or

not the results on the right and left are identical. Specifically,

0() = −0−0

and

( ()) =  − 0
¡
− + 0

¢
= −0−0

are indeed identical for all .

In a similar fashion, the reader can verify that the function

() = − +


0
(1.4)

is solution for all  for any constant . Specifically,

0() = −0−0

and

( ()) =  − 0

µ
− +



0

¶
= −0−0

are identical for all .

Verifying that a function, even one with an arbitrary constant  as in the Example above,

does not prove that the formula is the general solution. The problem is: how does one know

whether or not there are other solutions, ones not represented by the formula? This requires

further analysis. (In Chapter 2 it is shown that the formula (1.4) is in fact the general

solution of the differential equation (1.3).)

Example 1.2 The solution of the differential equation (1.3) that satisfies the initial condi-

tion (0) = 0 (which describes an object that is initially dropped) is found from the solution

formula (1.4) by solving

(0) = +


0
= 0

for

 = − 

0


This yields the following solution formula

() = − 

0
− +



0


Verifying that a solution formula satisfies an initial value problem does not, in and of

itself, does not prove that it is the only solution of the initial value problem. An important

question is: when is the solution of an initial value problem unique?

In applications solutions are not always defined for all . Here is an example.



1.2. THE FUNDAMENTAL EXISTENCE AND UNIQUENESS THEOREM 5

Example 1.3 An equation describing the growth of the world’s human population () in
billions as a function of time  (in years) is

0 = 2 (1.5)

where the coefficient   0 is a positive constant estimated from data. The function

() =
1

1− 
(1.6)

is defined and differentiable on both of the intervals   1 and   1. (The denom-
inator vanishes at  = 1.) To prove that this formula is a solution (on either one of
these intervals) we substitute it into both sides of the differential equation, perform the in-

dicated operations, and check that the right side is identical to the left side on the interval.

Specifically,

0() = 
1

(1− )2

and

( ()) = 

µ
1

1− 

¶2
= 

1

(1− )2

are identically equal for all   1 and for all   1.
The solution (1.6) satisfies the initial value problem

0 = 2  (0) = 1

on the interval   1 (The reason it does not satisfy this initial value problem on the

interval   1 is that the initial value 0 = 0 for  does not belong to this interval.) Is it
the only solution? And do other initial value problems  (0) = 0 have solutions?

An initial value problem

0 = ( ) (0) = 0 (1.7)

does not necessarily have a solution and, when it does, it does not always have just one

solution (i.e. a “unique” solution). Examples appear below. It all depends on  ( ) and
on 0 and 0. Only if  ( ) has some special properties will (1.7) have a unique solution.
Theorem 1.1 provides some easily usable criteria for the existence and uniqueness of a

solution to the initial value problem (1.7). One of the criteria involves the derivative of

 ( ) with respect to  which we denote by

( )




Those readers who have had a multi-variable course know this as the “partial derivative” of

 with respect to . In multi-variable calculus it is denoted instead by

( )
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Theorem 1.1 (Fundamental Existence and Uniqueness Theorem) Suppose

(a) ( ) and  ( )  are continuous in  and continuous in  on intervals

     and     ,

(b) the initial conditions lie in these intervals:   0     0  .

Then the initial value problem (1.7) has a solution on an interval     

containing 0. Moreover, there is no other solution of the initial value problem

on this interval.

Remark 1. This theorem is called a “local” existence and uniqueness theorem because it

guarantees existence and uniqueness only on some interval around the initial time 0. The

theorem gives no information about the size of this interval, which might be infinite or finite

(even quite small).

Remark 2. Sometimes we refer to the criteria in Theorem 1.1 this way:  ( ) is “contin-
uously differentiable in  at  = 0 and  = 0”.

Remark 3. To apply Theorem 1.1 one can, of course, compute the derivative ( )
in order to investigate its continuity at the initial point. One can, however, often avoid this

calculation by relying on known theorems from calculus about continuous and differentiable

functions. For example, recall that polynomials in  are continuous at all values of  and

polynomials in  are continuous at all values of  Moreover, derivatives of polynomials are

polynomials. So, any differential equation (1.7) in which  ( ) is a polynomial in  and 

(for example, if  ( ) = 2+2 ) will satisfy the criteria of Theorem 1.1 for any initial value

problem. One can also make use of theorems from calculus about products, quotients and

composites of continuously differentiable functions. For example, in this way we see that

 ( ) =
1

1 + 2
sin
¡
22

¢
satisfies the criteria of Theorem 1.1 for any initial value problem. (This is because sine

is continuously differentiable for all values of is arguments and because of the chain and

quotient results.)

Remark 4. Do not make the mistake of deducing something from Theorem 1.1 when the

criteria of continuously differentiability of  ( ) fail to hold for an initial value problem.
When the assumptions of a theorem do not hold, all one can say is that the theorem is not

applicable and nothing at all can be deduced from it.

Remark 5. If  ( ) does not depend on  then the continuity requirements with respect

to  that are needed to apply Theorem 1.1 are satisfied.

Example 1.4 For the initial value problem

0 =  (0) =
1

2


the function

( ) = 
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and its derivative
( )


= 

are continuous for all  and  (and therefore, certainly for  near 0 = 12 and  near

0 = 0). (Also see Remark 3.) Therefore, by Theorem 1.1 this initial value problem has a

unique solution on some interval      containing 0 = 0.
From the formula

() =
1

2

22

for the solution (check this!) we see that the solution is in fact defined for all , i.e., on the

interval −∞    +∞. This fact not obtainable from Theorem 1.1.)

Example 1.5 An initial value problem describing the growth of a population in a periodically

fluctuating environment is

0 = 

µ
1− 

 +  sin 

¶
 (0) = 0

where 0 is the initial population size and the coefficients   and  are positive constants

(with   ). Since the denominator never vanishes the function

( ) = 

µ
− 2

 +  sin 

¶
and its derivative with respect to 

( )


= 

µ
1− 2 

 +  sin 

¶
are continuous for all  and . Therefore, the initial value problem has a unique solution on

an interval containing 0 = 0. No algebraic formula is available for the general solution of
this equation, nor for the solution of initial value problems.

If one or both of the conditions on ( ) in the existence and uniqueness Theorem 1.1

fail to hold, then one can draw no conclusions from this theorem (Remark 4). In particular,

in this circumstance one cannot conclude that there is no solution. For example, for the

initial value problem

0 = 323 (0) = 0 (1.8)

the function

( ) = 323

fails to satisfy the conditions in Theorem 1.1 because the derivative

( )


= 2−13

is not continuous at the initial 0 = 0 of interest (it is not even defined there). Therefore,
nothing is deducible from Theorem 1.1. In particular, one cannot deduce Theorem 1.1 that
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the initial value problem (1.8) has no solution. In fact, it does have a solution! Here’s a

formula for a solution on the interval −∞    +∞ (check it!):

 () = 3.

(For an example of an initial value problem that has no solution see Exercise 1.42.)

The initial value problem (1.8) also serves to illustrate another point, namely, that initial

value problems might not have unique solutions (i.e., have more than one solution). Here

are two solutions to the initial value problem (1.8)2:

 () = 3 and  () = 0.

Note that this does not contradict Theorem 1.1 because, as we’ve shown, the theorem does

not apply to this initial value problem.

Remark 6. Here’s an interesting, non-obvious fact (which we make no attempt to prove). If

an initial value problem (1.7) has two solutions, then it has infinitely many solutions. Thus,

an initial value problem (1.7) has either 0, 1 or infinitely many solutions.

The Fundamental Existence and Uniqueness Theorem 1.1 provides criteria under which

an initial value problem has a solution on some interval containing the initial point  = 0.

The maximal interval of the solution is the largest interval containing 0 on which it solves

the differential equation. Theorem 1.1 gives no information about the maximal interval of a

solution. In fact, without a solution formula it is usually difficult to determine the maximal

interval (directly from  ( ) and the initial condition). For example, the function ( )
can satisfy the criteria of Theorem 1.1 for all values of  and  and yet solutions of initial

problems might not be defined for all ! Here is an example.

Example 1.6 Consider the initial value problem

0 = 22 (0) = 1

By Remark 3 above (applied to the function ( ) = 22) we know that Theorem 1.1 applies
to any initial value problem for this differential equation. Theorem 1.1 implies there exists a

unique solution on some interval containing 0 = 0. Here’s a solution formula (check it!):

() =
1

1− 2


This formula shows that the maximal existence interval of this solution is −1    1 See
Figure 1.1.

2Any constant number (such as 0) can be used to define a constant function. Such a function has a zero
derivative, of course, and it has a horizontal straight line graph.
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Figure 1.1

The importance of the interval of existence of a solution can some-

times be overlooked, with erroneous results. Here is an example.

Example 1.7 Some popular computer programs that find solu-

tion formulas of initial value problems give the () = sin  for the
solution of the initial value problem

0 =
√
1− 2 (0) = 0

without indicating the solution interval. The (unfortunate) impli-

cation of the computer generated answer (since sin  is defined for
all ) is that  () = sin  is a solution for all . However, this is
false. Recall the definition of a solution. Substituting sin  into
both sides of the differential equation we obtain

0() = cos  and ( ()) =
p
1− sin2  =

√
cos2 

Recalling that for a real number  √
2 = ||

we see that these two expressions for 0 () and  (  ()) are identical only on intervals for
which cos  ≥ 0 The largest such interval that contains the initial condition 0 = 0 is the
interval −2    2 On this interval  () = sin  is a solution formula for the initial
value problem. However,  () = sin  is not a solution on any larger interval containing
0 = 0 and certainly not for all . (NOTE: it turns out, perhaps unexpectedly, that the
interval −2    2 is not the maximal interval of the solution of the initial value
problem! See Exercise 1.43.)

1.3 Approximation of Solutions

Formulas for solutions of differential equations are not in general available. For this reason

we need other methods for studying equations and their solutions. For some applications

it is sufficient to obtain approximations to solutions. For example, roughly sketched graphs

of solutions are sometimes adequate. In other applications, more accurate graphs or even

numerical approximations are necessary. One can also obtain algebraic formulas for approx-

imations to solutions. In this section we study some graphical and numerical approximation

methods. Analytic approximation methods are studied in Chapter 3. We begin with a

procedure for making sketches of solution graphs.

1.3.1 Slope Fields

From algebra and calculus we learn that graphs are a useful way to study functions. The

derivative of a function is the slope of its graph. A differential equation therefore tells us

something about the slopes of the graphs of its solutions.

Specifically, if the graph of a solution  = () of

0 = ( ) (1.9)
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passes through a point ( ), then the slope 0() of its graph at this point equals ( ())
In other words, in the ( )-plane each point ( ) in the domain of  is associated with a
slope equal to the number ( ).

For example, in the ( )-plane the graph of a solution of 0 = 2+2 that passes through

the point ( ) = (1 1) necessarily has slope 12+12 = 2 at this point. Similarly, the solution
whose graph passes through the point (−2 13) must have slope (−2)2 + (13)2 = 379 at
this point.

The association of a slope ( ) with each point ( ) in the ( )-plane defines the
slope field of the differential equation (1.9). Solutions of differential equation must “fit” its

slope field. This means at each point on a solution’s graph the slope (of the tangent) must

equal the slope associated with that point.

One way to obtain a picture of a slope field is to draw, through each of several points in

the ( )-plane, a short straight line segment that has the slope associated with that point.
By drawing such line segments through a sufficient number of points in the plane, we can

get a good approximation to the overall slope field and hence the graphs of solutions.

Rather than randomly choosing points in the plane, it is better to proceed in a systematic

manner. We discuss two ways to do this: the “grid” and the “isocline” methods. The grid

method is particularly well suited for computer use. The isocline method is sometimes a

convenient way to obtain a sketch of the slope field by hand.

The Grid Method

One way to approximate a slope field is to draw a short line segment with the appropriate

slope at points lying on a rectangular grid in the ( )-plane. This grid method can be done
by hand; however, most computer programs that “solve” differential equations will also draw

slope fields using this “grid” method and display the results graphically.

When sketching a slope field by the grid method, one must chose a grid fine enough so

that the essential features of the slope field are apparent, but coarse enough so as not to be

visually cluttered. It usually takes a several attempts to find a suitable gird size. Sample

slope fields for several differential equations, drawn using the grid method, appear in Figure

1.2.

One can sketch the solution graph of an initial value problem (0) = 0 by drawing a

curve that both fits the slope field and passes through the point (0 0). Such a sketch can
often suggest important properties of solutions. For example, the slope field and solution

sketched in Figure 1.3 suggest that the solution is monotonically increasing without bound

as → +∞ and that the -axis is a horizontal asymptote as → −∞.
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Figure 1.2. Slope fields are shown for four different differential equations.
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Figure 1.3 The slope field for 0 =  and the solution satisfying the initial condi-

tion (0) = 1.
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The next example shows how a slope field can yield important properties of solutions.

Example 1.8 Figure 1.4 shows the slope fields of the logistic equation

0 = 
³
1− 



´
for several choices of the parameters  and . These slope fields, together with the sample

solution graphs, suggest that solutions with positive initial conditions (0) = 0   tend

monotonically to a horizontal asymptote at  =  as  → +∞. This important fact about
the logistic equation will be proved in Chapter 3 Note that () =  is a solution.
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(c)  = 01  = 05

Figure 1.4. Selected slope fields and solutions for the logistic equation 0 =
 (1− ).

The Isocline Method

In Figure 2.3 it is interesting to note that the points lying on a horizontal straight line appear

to be associated with the same slope. The reason for this is that

( ) = (1− )
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Figure 1.5

and hence the slope at a point ( ), does not depend on 

This observation in fact applies to any equation whose right

hand side  does not depend on the independent variable , i.e.

to any so-called autonomous differential equation (Chapter 3).

A curve all of whose points are associated with the same

slopes in the slope field of a differential equation is called an

isocline. (“iso” means “same” and “cline” means “slope” .)

The isoclines of an autonomous equation 0 = () are hori-
zontal straight lines. Points on a horizontal line  =  are asso-

ciated with slope (). This fact can be a useful aid in sketch-
ing the slope field of an autonomous equation. Figure 1.5

shows a sketch of the slope field for the equation 0 = (1−)
obtained using this isocline method.
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The concept of an isocline is not restricted to autonomous equations. For any equation

0 = ( ) we can find isoclines by determining those points in the plane that are associated
with a common slope . These points satisfy the isocline equation

( ) = 

The graph of this equation is, in general, a curve in the plane called the isocline associated

with slope .

For non-autonomous equations isoclines are not necessarily horizontal lines. If they can

be conveniently graphed, isoclines can be used to sketch slope fields for non-autonomous

equations in the same way they were used for autonomous equations. On an isocline we

draw several short line segments each having the slope associated with that isocline. Doing

this for a collection of isoclines we obtain a sketch of the slope field. The following example

illustrates the method.

Example 1.9 What are the isoclines associated with the equation

0 = 2 + 2 ?

Suppose we find the isocline associated with slope  = 1. The equation for this isocline is
2 + 2 = 1 which we recognize as the equation the circle with radius 1 and center at the
origin (0 0). Drawing this circle and placing on it several short line segments with slope
1, we obtain part of the slope field. This procedure can be repeated using other slopes .
Points associated with slope  = 2 lie on the circle of radius

√
2 while points associated with

slope  = 025 lie on the circle of radius
√
025 and so on. The typical isocline equation

2 + 2 =  yields the circle of radius
√
 provided   0. A “degenerate” isocline is

obtained for slope  = 0, namely the single point (0 0). There are no isoclines associated
with negative slopes   0. See Figure 1.6(a).
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Figure 1.6. (a) Selected circular isoclines of 0 = 2 + 2. (b) The solution

satisfying the initial condition (0) = 0.

Isoclines are not necessarily easy to identify or graph. Their usefulness for slope field

sketching depends on the right hand side ( ) of the differential equation. If we can
easily identify and graph isoclines, then this method for drawing slope fields is convenient.

Otherwise it is not.

Caution: A common mistake is to confuse isoclines with the solution graphs. Isoclines

are not graphs of solutions. For example, compare the solution graph in Figure 1.6(b) to

the circular isoclines in Figure 1.6(a).
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1.3.2 Numeric and Graphic Approximations

(t0,x0)

(t2,x2)

(t3,x3)

(t4,x4)

(t1,x1)

(t5,x5)

t

x

Figure 1.7

Slope fields provide approximate graphs of solutions of dif-

ferential equations. However, it is often desirable to have

a more accurate approximation to a solution and its graph

than can be obtained from a slope field. Another way to

obtain an approximate graph of a solution on an interval

0 ≤  ≤  is to calculate numerical approximations  to

the solution () at  =  where

0  1  2  · · ·  −1   = 

and, in the ( )-plane, connect the points (0 0)
(1 1). . . , ( ) by straight line segments. See Figure
1.7.

We want to obtain the approximations  ≈  () in such a way that if the number of
points  increases (and the distances between them tend to zero) then the approximations 
become more accurate and the approximate (“broken line”) graphs approach the (smooth)

graph of the solution  = ().

The Euler Method

In this section we study a basic method for numerically approximating the values of the

solution  () of the initial value problem

0 = ( ) (0) = 0 (1.10)

at specified values of   0. The method, called the Euler Algorithm, is a basic method that

serves as an introduction to the numerical approximation of solutions of differential equations.

It is, however, rarely used for other than pedagogical reasons because it “converges” too

slowly. Sec. 1.3.2 gives some methods that converge more quickly (and hence are more

commonly used). Nonetheless Euler’s Algorithm, by providing a basis for understanding

how solutions are numerically approximated, is a good starting point for the study of more

efficient (and hence complicated) algorithms.

Consider the problem of approximating the solution  = () of (1.10) at  = 1  0.

Since () is a solution, we can integrate both sides of the equation 0() = ( ()) from
 = 0 to  = 1 to obtain

(1)− (0) =

Z 1

0

( ())

or, using the initial condition,

(1) = 0 +

Z 1

0

( ()). (1.11)

The right hand side of this equation does not give a formula for (1) because it involves
the unknown solution (). However, we can use (1.11) to approximate (1) by making an
approximation to the integral on the right hand side. For example, we can use integration

approximation methods studied in calculus, such as the rectangle rule, the trapezoid rule,

or Simpson’s rule.
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The Euler Algorithm is obtained by using the (left hand) rectangle rule to approximate

the integral : Z 1

0

( ()) ≈ (1 − 0)(0 (0))

Defining the first step size by 0 = 1 − 0 and recalling the initial condition (0) = 0 we

have Z 1

0

( ()) ≈ 0(0 0)

and consequently from (1.11) we have the approximation

(1) ≈ 0 + 0(0 0)

Denote this approximation by 1; that is, we define 1 by

1 = 0 + 0(0 0)

To obtain an approximation 2 to the solution value (2) at the next point 2 we proceed
in a similar manner. Integrate both sides of the equation 0() = ( ()) from  = 1 to

 = 2. Using the Fundamental Theorem of Calculus, the (left hand) rectangle rule to

approximate the integral and the approximation 1 ≈ (1), we obtain

(2) = (1) +

Z 2

1

( ()) ≈ 1 + (2 − 1)(1 1)

We denote this approximation to the solution at  = 2 by

2 = 1 + 1(1 1) 1 = 2 − 1

In calculating the approximation 2 we introduced two sources of error. First, there is the

error made in using the rectangle rule to approximate the integral (called the “truncation

error”) and, secondly, there is the error in using the approximation 1 to (1). Together
these errors account for the “accumulation error” at the point  = 2.

If this procedure is repeated we obtain the following formulas

0 = 0

+1 =  + ( )  = +1 −   = 0 1 2 · · ·

of the Euler Algorithm. The number  is an approximation to the solution  = () of the
initial value problem (1.10) at the point  = . Usually equally spaced points are chosen, in

which case  =  for all  and the algorithm reduces to

0 = 0 (1.12)

+1 =  + ( ) for  = 0 1 2 · · ·  

The common distance  is called the step size of the algorithm.
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The formulas (1.12) are recursive. That is to say, one utilizes the same formula sequen-

tially to calculate the approximations at each of the points 1 2     using at each step

the approximation made at the previous step. This makes the method ideally suited for

programming on a computer or calculator.

The accuracy of the integral approximation obtained by the rectangle rule increases if the

step size  decreases. For this reason we expect the accuracy of the approximations obtained

from the Euler Algorithm (1.12) to increase if the step size  decreases. There is a cost for

this increased accuracy, however, because decreasing the step size  will increase the number

 of steps necessary to get from the initial condition 0 to the end point  . This means more

repetitions of the algorithm (1.12) are required, and consequently more arithmetic work is

necessary to reach the end point  =  (This also means more round off errors!)

Example 1.10 In this example we use the Euler Algorithm (1.12) to approximate the solu-

tion  = () of the initial value problem

0 =  (0) = 1

at  = 1 using step size  = 02. The Euler algorithm (1.12) for this problem is

+1 =  +  for  = 0 1 2 · · ·
with 0 = 1 Using step size  = 02 we need to calculate approximations at the five points
 = 02, 04, 06, 08, 10. The calculations are

1 = 0 + 0 = 1 + 02× 1 = 12
2 = 1 + 1 = 12 + 02× 12 = 144
3 = 2 + 2 = 144 + 02× 144 = 1728
4 = 3 + 3 = 1728 + 02× 1728 = 20736
5 = 4 + 4 = 20736 + 02× 20736 = 248832

The Euler Algorithm with step size  = 02 yields the approximation (1) ≈ 5 = 248832

How good is the approximation 5 in the previous example? More generally, how accurate

are the approximations (1.12) of the Euler Algorithm? Can we estimate the size of the error

and if not how can we have any confidence in the numerical approximations obtained from

the formulas (1.12)?

An accurate estimate of the error resulting from approximation methods such as the Euler

Algorithm is usually not possible. However, we expect the numerical approximations will

get more accurate as the step size  decreases and that they will tend to the exact solution

in the limit as  → 0. This turns out to be true for the Euler Algorithm, on the solution’s
interval of existence, under the assumptions of the Fundamental Existence and Uniqueness

Theorem 1.1.

One useful way to study the accuracy of the Euler Algorithm (and of other algorithms

as well) is to consider the rate at which the approximations converge to the exact solution.

The Euler Algorithm is said to be “first order” or of “order 1”. What this means is that
the magnitude of the error at  =  is no larger than constant multiple of the first power of
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. That is to say, there exists a constant   0 such that | ( )−  |≤  This inequality

guarantees the Euler approximations converge to the value of the solution at least as fast

as  decreases to 0 Thus, roughly speaking, if the step size  is halved, then in general we
expect the error to be (at least) halved. If the step size is decreased by a factor of 110, then
in general we expect the error to decrease by a factor of 110 and so on. (For an example,
see Table 1.2 below.) We summarize this by saying that the Euler Algorithm is “()”
(pronounced “Oh of ”).
We can gain confidence in the accuracy of numerical approximations by observing their

changes as the step size  decreases. This is commonly done by decreasing  by a fixed

fraction. For example, if  is decreased by one half several times, we expect the error to be

cut in half each time. Since the approximations at a fixed  approach the solution value (),
the leading digits in the resulting sequence of approximations should eventually “stabilize”

(i.e., remain unchanged as  decreases further). As a practical matter we accept these digits

as correct. However, none of these digits may be accurate, since we cannot be sure that they

will remain unchanged if the step size  decreases further.

Example 1.11 In this example we repeat Example 1.10 by halving the step size  six con-

secutive times and observe the resulting change in the approximation to (1). The number of
calculations necessary to perform the approximation increases as  decreases. For example,

the algorithm (1.12) must be used 320 times for the step size  = 0003125.
We use a computer to perform the calculations and the results appear in Table 1.1. We

expect the approximation (1) ≈ 2714047 obtained from the smallest step size  = 0003125
to be the most accurate, but how many of these digits are correct? We know the sequence of

approximations converges to the exact value of the solution at  = 1 Since only two digits
appear to have stabilized in Table 1.1, we accept only the two digit approximation 27 as
accurate.

Step size  Approximation to (1)

0.200000 2.488320

0.100000 2.593742

0.050000 2.653298

0.025000 2.685064

0.012500 2.701485

0.006250 2.709836

0.003125 2.714047

Table 1.1. The Euler Algorithm approximations to the solution at  = 1 of the
initial value problem 0 = , (0) = 1 obtained by repeatedly halving the step
size.

There is a formula for the solution of the initial value problem in Examples 1.10 and

1.11, namely () = . Therefore, the exact value of the solution at  = 1 is (1) =  (recall

 ≈ 2718282). Using this formula we can investigate how accurate the approximations in
Table 1.1 really are.

The percent error of each approximation is given in Table 1.2. Notice the percent error

decreases by a factor of (approximately) 12 at each consecutive step. This is what we expect,
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since the step size  decreases by a factor of 12 at each step and the Euler Algorithm is

().

Step size  Approximation to (1) % Error

0.200000 2.488320 8.4598

0.100000 2.593742 4.5816

0.050000 2.653298 2.3906

0.025000 2.685064 1.2220

0.012500 2.701485 0.6179

0.006250 2.709836 0.3107

0.003125 2.714047 0.1558

Table 1.2. The percent errors of the approximations in Table 1.1.

We approximate the graph of solution of the initial value problem 0 =  (0) = 1 by
connecting the points ( ) with straight line segments. This is done in Figure 1.8 for
decreasing step sizes on the interval 0 ≤  ≤ 5. The convergence, as  decreases, of these
approximate graphs to the graph of the solution  =  is apparent.
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One should not accept a graphical approximation to a solution obtained from a single step

size  alone (e.g., the default step size in a computer program). Instead, before accepting a

graphical approximation, one should decrease the step size until little change occurs in two

consecutive graphical approximations.

Example 1.12 The equation 0 = − describes the growth of a tumor where  = ()
is a measure of its size (e.g., weight or number of cells) and  is time. Figure 1.9 shows

approximate graphs of the solution of the initial value problem with 0 = 5 and parameter
values  = 20 and  = 15. These graphs result from the Euler Algorithm using a decreasing

sequence of step sizes starting with  = 01. Little change occurs in the graphs for the last two
steps sizes  = 0003125 and 00015625 and therefore we accept the final graph as an accurate
approximation. All of the graphs indicate that the tumor size  approaches a maximal size

as → +∞ However, the inaccurate graphs obtained from the larger steps sizes considerably

over estimate the maximal size of the tumor.
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The convergence rate () of the Euler Algorithm is sometimes too slow for practical

purposes. In Table 1.2 only two digits of accuracy for (1) are obtained with a step size
 = 0003125. To obtain more accuracy a smaller step size is needed. However, there are
more intermediate steps with each decrease in step size and it takes longer to perform all

of the necessary calculations. Furthermore, other sources of error, such as round-off errors

at each step, might eventually prevent increased accuracy if the number of steps (and hence

calculations) becomes too large.

Table 1.3 shows an example that dramatically illustrates the slow convergence of the

Euler Algorithm. In this example no accurate digits are found with a step size as small as

 = 0000391.

Step size  Approximation to (1)

0.100000 5.862897

0.050000 8.905711

0.025000 13.766320

0.012500 21.242856

0.006250 31.967263

0.003125 45.709606

0.001563 60.736659

0.000781 74.330963

0.000391 84.517375

Table 1.3. Euler Algorithm estimates to the solution of the initial value problem

0 = 2 (0) = 099, at  = 1 for a decreasing sequence of step sizes. The solution
formula () = 99 (100− 99) for this initial value problem gives the exact value
(1) = 99.3

Fortunately, practical algorithms with faster rates of convergent are available. In the

following section we discuss algorithms of orders two and four. An algorithm has order of

convergence  (or more succinctly is of order ), written (), if the accumulative error is
bounded in magnitude by a constant multiple of , i.e., if

| ( )−  |≤ 

To see the advantage of a convergence rate of order greater than  = 1 consider an
algorithm of order  = 2, for which the error satisfies

| ( )−  |≤ 2

We can expect the error to decrease by a factor of (12)2 = 14 if the step size  is decreased
by a factor of 12, or by a factor of (110)2 = 1100 if the step size  is decreased by a factor
of 110, and so on. For an algorithm of order 4 the error decreases even faster, e.g., by a
factor of (110)4 = 110000 if the step size is decreased by a factor of 110.

3The interval of existence for the solution is −∞    10099 ≈ 10101. It is interesting to note that the
Euler Algorithm will calculate “approximations” at  values outside of this interval. For example, with step
size  = 01, eleven repetitions of the algorithm produce the number 11 = 930025. However, this number
cannot be taken as an approximation to the solution at  = 11 because the solution is not defined at this
value of   10099.
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The Modified Euler Method

In deriving the Euler Algorithm we used the Rectangle Rule to approximate the integralZ +1



( ())

More accurate approximations to this integral lead to algorithms that converge faster than

the Euler Algorithm. For example, we could use the Trapezoid Rule. Integrating both sides

of the equation 0() = ( ()) from  =  to  = +1 we obtain

(+1) = () +

Z +1



( ())

From the Trapezoid Rule approximationZ +1



( ()) ≈ 

2
[(+1 (+1)) + ( ())]

we get

(+1) ≈ () +


2
[(+1 (+1)) + ( ())] 

Assuming that we already have an approximation () ≈  to the solution at the point

 =  we can write

(+1) ≈  +


2
[(+1 (+1)) + ( )] 

Unfortunately we cannot use the right hand side to calculate an approximation +1 to (+1)
because it involves (+1) This is an example of what is called an implicit algorithm because
the equation

+1 =  +


2
[(+1 +1) + ( )]

is not explicitly solved for the approximation +1. (The Euler Algorithm is an example

of an explicit algorithm.) To find the approximation +1, we have to solve this equation.

To do this at each step results in a highly complicated algorithm. One way to deal with

this difficulty is to perform another approximation. For example, we can use the Euler

approximation for the +1 on the right hand side. Thus, at each step we use the formulas

∗+1 =  + ( )

+1 =  +


2

£
(+1 

∗
+1) + ( )

¤
  = 0 1 2 · · ·

to calculate the approximation +1. This algorithm is called Modified Euler Algorithm . It

is an example of a “predictor-corrector” algorithm. At each step the Euler approximation

∗+1 is the prediction and +1 is the correction.

If equal step sizes  =  are used, the Modified Euler Algorithm becomes

∗+1 =  + ( ) (1.13)

+1 =  +


2

£
(+1 

∗
+1) + ( )

¤
  = 0 1 2 · · · 
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The initial condition 0 starts the algorithm. It turns out that Modified Euler Algorithm of

order (2).
Compare the results in Table 1.4 with those in Table 1.2. Note that the error in Table

1.4 decreases approximately by a factor of 14 as the steps size is decreased by a factor of
12. Modified Euler Algorithm is a popular procedure; for example, it is often used with

programmable hand calculators.

Step size  Approximation to (1) % Error

0.200000 2.702708 0.5729

0.100000 2.714081 0.1545

0.050000 2.717191 0.0401

0.025000 2.718004 0.0102

0.012500 2.718212 0.0026

0.006250 2.718264 0.0007

Table 1.4. The Modified Euler Algorithm approximations to the solution of the

initial value problem 0 = , (0) = 1 at  = 1 obtained by repeatedly halving
the step size.

We saw in Table 1.3 an example of an initial value problem for which the Euler Algorithm

converges too slowly to be practical. Table 1.5 shows the results of applying Modified Euler

Method to the same initial value problem. The estimates obtained from the two numerical

algorithms differ considerably. At each step size Modified Euler Algorithm provides a more

accurate approximation to (1) = 99 than does the Euler Algorithm.

Step size  Approximation to (1)

0.100000 19.346653

0.050000 33.073325

0.025000 52.217973

0.012500 72.662362

0.006250 87.787581

0.003125 95.273334

0.001563 97.719807

0.000781 98.719804

0.000391 98.928245

Table 1.5. Modified Euler Algorithm estimates to the solution of the initial

value problem 0 = 2 (0) = 099, at  = 1 for a decreasing sequence of step
sizes. The solution formula () = 99 (100− 99) for this initial value problem
gives the exact value (1) = 99

The Fourth Order Runge-Kutta Algorithm

Higher order algorithms necessarily involve more complicated formulas at each step. A

widely used class of algorithms is the class of so-called Runge-Kutta algorithms. Runge-

Kutta algorithms are available for any order of convergence. A popular algorithm is the
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fourth order Runge-Kutta Algorithm (RK-4) :

+1 =  + 1+22+23+4
6

for  = 0 1 2 · · ·

where

1 =  ( )

2 = 
³
 +



2
  +



2
1

´
3 = 

³
 +



2
  +



2
2

´
4 =  ( +   + 3)

At each step one must calculate, in order, the four numbers 1 2 3 and 4 before

calculating +1. Table 1.6 shows the results applying this algorithm to the same initial

value problem in Table 1.3 and 2.5. This faster converging algorithm provides an accurate

approximation to (1) = 99.

Step size  Approximation to (1)

0.100000 53.355933

0.050000 75.881773

0.025000 91.639594

0.012500 97.671604

0.006250 98.856123

0.003125 98.988718

0.001563 98.999238

0.000781 98.999951

0.000391 98.999997

Table 1.6. Fourth order Runge-Kutta Algorithm estimates to the solution of the initial

value problem 0 = 2 (0) = 099, at  = 1 for a decreasing sequence of step sizes.
The solution formula () = 99 (100− 99) for this initial value problem gives the

exact value (1) = 99

1.4 Chapter Summary

A solution  = () of the differential equation 0 = ( ) is a differentiable function for
which 0() = ( ()) holds for all  on an interval. In general a differential equation
has infinitely many solutions. The general solution is the set of all solutions. We need an

additional requirement in order to specify a unique solution. For a given point (0 0) the
initial condition (0) = 0 is such a requirement. Theorem 1.1 gives conditions under which

an initial value problem 0 = ( ) (0) = 0 has one and only one solution. Specifically,

if ( ) and its derivative ( ) with respect to  are both continuous for  near 0
and  near 0, then there is one and only one solution. Although formulas for the solution

cannot always be calculated, many kinds of approximation methods are available. The slope
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field associated with the differential equation helps in to sketching a graph of the solutions.

A computers is useful for plotting the slope fields by the grid method; this method associates

the slope ( ) with each point ( ) on from a chosen grid of points in the ( )-plane. Also
useful for sketching slope fields are isoclines, which are curves in the ( )-plane made up of
those points associated with a common slope. Numerical approximations to solution values

() yield more accurate graphs of the solution. If 1 2   approximate the solution
values (1) (2)  () for 1  2  · · ·  , then by connecting the points ( ) with
straight line segments we construct an approximate (broken line segment) solution graph.

Usually equally spaced points  are chosen and the common distance between them is the

step size  of the method. If the approximations converge to the solution values as  tends

to 0, then the broken line graph tends to the solution graph as  tends to 0. The Euler
Algorithm is one method for calculating such approximations. It is based on the left hand

rectangle rule for approximating an integral. Under the conditions on ( ) in Theorem 1.1
the Euler approximations converge to the solution values as the step size  decreases to 0
The Euler Algorithm is of order 1, which means the errors tend to 0 at the same rate that 
tends to 0. Faster converging algorithms are available. Modified Euler Algorithm is of order
2, which means the error tends to 0 at the same rate that 2 tends to 0. A fourth order

method called the Runge-Kutta Algorithm is commonly used.

1.5 Exercises

Find a formula for the general solution of the following differential equations. (These are

simply integration or anti-differentiation problems from calculus reformulated as differential

equations.)

Exercise 1.1 0 = 1 + 2

Exercise 1.2 0 = cos

Exercise 1.3 0 = 2

Exercise 1.4 0 = −

Find a formula for the unique solutions of the following initial value problems. (These

are simply definite integral problems from calculus reformulated as differential equations.)

Exercise 1.5 0 = 2 (1) = 2

Exercise 1.6 0 = −3 (0) = 1

Exercise 1.7 0 = −, (0) = 1

Exercise 1.8 0 = sin 3  (6) = 0

For which initial value problems can the Fundamental Existence and Uniqueness Theorem

1.1 be applied and for which can it not be applied? Explain your answer. In each case, what

do you conclude about the initial value problem?
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Exercise 1.9 0 = 2 + 2, (0) = 0

Exercise 1.10 0 = 2−2, (0) = 0

Exercise 1.11 0 = tan,  (2) = 0

Exercise 1.12 0 = tan (0) = 0

Exercise 1.13 0 = tan, (0) = 2

Exercise 1.14 0 = ln(), (1) = 2

Exercise 1.15 0 = 1 sin, (0) = 2

Exercise 1.16 0 = (− )−1, (−1) = 2

Exercise 1.17 0 = ||   (0) = 10

Exercise 1.18 0 = ||   (10) = 0

For what values of the constant  can the Fundamental Existence and Uniqueness The-

orem 1.1 be applied to the four initial value problems below? Explain your answer. What

do you conclude from this theorem for such values of ? What do you conclude from this

theorem for other values of ?

Exercise 1.19 0 = ln (− ), (0) = 0

Exercise 1.20 0 = tan , (0) = 2

Exercise 1.21 0 =
√
2 − 2, (1) = 2

Exercise 1.22 0 = (− )−1, (1) = 2

For which 0 and 0 does the Fundamental Existence and Uniqueness Theorem 1.1 apply

to the initial value problem 0 = ( ) (0) = 0, with the four functions ( ) below?
Explain your answer. What do you conclude from this theorem for such initial points? What

do you conclude from this theorem for other initial points?

Exercise 1.23  ( ) = ln (2 + 2)

Exercise 1.24  ( ) = 2−1

Exercise 1.25  ( ) = tan ,  = constant

Exercise 1.26  ( ) =
√
2 + 2 − 2, 0   = constant.

Exercise 1.27  ( ) = 13 + 23

Exercise 1.28  ( ) = 13 + 43
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Exercise 1.29  ( ) = (1− 2−1)43

Exercise 1.30  ( ) = (1− 2−1)23

Exercise 1.31  ( ) = ln |− |

Exercise 1.32  ( ) =
√
9− 2 − 2

Exercise 1.33  ( ) = ||

Exercise 1.34  ( ) = 13

Exercise 1.35 Does existence and uniqueness Theorem 1.1 apply to the initial value problem

0 =
√
1−  (1) = 0? Explain your answer. What do you conclude?

Exercise 1.36 Does the existence and uniqueness Theorem 1.1 apply to the initial value

problem 0 = (4− 2)
−1

 (2) = 0 Explain your answer. What do you conclude?

Explain why Theorem 1.1 does not apply to the two initial value problems below What

do you conclude?

Exercise 1.37 0 = (+ )13, (0) = 0

Exercise 1.38 0 = (sin(+ ))13, (0) = 0

Exercise 1.39 Apply the existence and uniqueness Theorem 1.1 to the initial value problem

0 =
√
1− 2 (0) = 0 in Example 1.7. What do you conclude?

Exercise 1.40 Let ( ) be a polynomial in  and . Prove that any initial value problem

0 = ( ) (0) = 0 has a unique solution on an interval containing 0.

Exercise 1.41 Let ( ) be a polynomial in  and  and let ( ) = (sin  sin). Prove
that any initial value problem 0 = ( ) (0) = 0 has a unique solution on an interval

containing 0.

Exercise 1.42 Consider the initial value problem 0 = ( ) (0) = 0 where

( ) =

½
1 for  ≥ 0 and all 
−1 for   0 and all 

(a) Show the existence and uniqueness Theorem 1.1 does not apply. What do you con-

clude?

(b) Show this initial value problem does not have a solution on any interval containing

0 = 0.
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Exercise 1.43 Consider the equation 0 =
√
1− 2

(a) Show the constant functions () = 1 and () = −1 are solutions for all .
(b) Show the function

() =

⎧⎨⎩ 1 for  ≥ 2
sin  −2    2
−1 for  ≤ −2

is a solution for all . Thus, the maximal interval for the solution of the initial value problem

(0) = 0 is the whole real line.
(c) The solution () = 1 and the solution in (b) both satisfy the same initial value

problem (2) = 1 for all . Why does this not contradict Theorem 1.1?

The following exercises provide practice in using a computer to obtain slope fields and

numerically approximated graphs of solutions to initial value problems. Use a computer to

obtain the slope fields for the differential equations in the exercises below and then have

the computer draw a graph of the solution to each initial value problem. Observe how the

solution graphs relate to the slope field.

Exercise 1.44 0 = 1−  with initial conditions (0) = 3 (0) = 0 and (−1) = 2
Exercise 1.45 0 = 2− 3 with initial conditions (0) = 1 (0) = 23and (0) = −1
Exercise 1.46 0 = 1 − 2 with initial conditions (0) = −1 (−2) = 1 (0) = 0 and
(1) = 12

Exercise 1.47 0 = 
¡
1−  (2 + cos )−1

¢
with initial conditions (0) = 0 (0) = 1 (0) =

−01 and (−2) = 2
Exercise 1.48 0 =  cos  with initial conditions (0) = 0 (1) = 4 (0) = 1 and
(0) = −1
Exercise 1.49 0 = −2 + sin  with initial conditions (0) = 0 (0) = 1 (−2) = −1
and (0) = −1
Exercise 1.50 0 =  sin with initial conditions (0) = 0 (0) = 2 (0) = −3 and
(0) = 4

Exercise 1.51 0 = (1 + 2 + 2)
−12

with initial conditions (0) = 0 and (−1) = −15
Exercise 1.52 0 = (1− ) sin2  with initial conditions (0) = −025 (0) = 2 and
(−2) = 05
Exercise 1.53 0 = (1 − 2) (sin − ) with initial conditions (0) = 0 (0) = −05
(1) = 15 and (0) = 1

Exercise 1.54 0 = (1− )(+ 1) with initial conditions (0) = 05 (0) = −05 (0) =
15 and (0) = −15
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Exercise 1.55 0 = 2 + 42 with initial conditions (0) = 0 and (05) = 05

Exercise 1.56 0 = − with initial conditions (0) = 1 and (1) = −1

Exercise 1.57 0 = (2 − 2) (2 + 2)
−1
with initial conditions (0) = 1 and (−1) = −1

Exercise 1.58 0 = ln (2 + 2) with initial conditions (1) = 0 and (0) = 01

Exercise 1.59 Consider the differential equation in Example 1.5 :

0 = 

µ
1− 

 +  sin 

¶


(a) Use a computer to sketch the slope fields of the equation in the window 0 ≤  ≤ 20,
0 ≤  ≤ 10 for each of the cases below.

(i)  = 1  = 2  = 1

(ii)  = 1  = 5  = 1

(iii)  = 05  = 5  = 2

(iv)  = 05  = 5  = 4

(b) For each case in (a), have the computer draw a graph of the solution satisfying the

initial condition (0) = 1.
(c) What do all the solutions graphed in (b) seem to have in common (if anything)?

Use a computer to obtain the slope field for the equations below. Do this for a selection

of values for the constant  How are the slope fields for   1 different from those for   1?

Exercise 1.60 0 = −+ 2− 2

Exercise 1.61 0 = (− )(1− )

Describe (geometrically) the isoclines for the four differential equations below and sketch

some sample isoclines and use them to obtain a sketch of the slope field.

Exercise 1.62 0 = 1− 

Exercise 1.63 0 = 4− 2

Exercise 1.64 0 = (1 + 2 + 2)
−12

Exercise 1.65 0 = −+ sin 

Exercise 1.66 Find the isocline equation for the differential equations in Exercises 1.55-

1.56 and graph several typical isoclines. Use your results to sketch the slope field of the

equation.
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Find first order differential equations whose isoclines are as described below, if possible.

Here  denotes the slope in the field slope. If there is no such equation, explain why.

Exercise 1.67 The family of lines  = + where  allowed to be any constant.

Exercise 1.68 The family of parabolas  = 2 + where  is allowed to be any constant.

Exercise 1.69 The family of lines  =  + 1 where  is allowed to be any nonzero

constant.

Exercise 1.70 The family of parabolas  = 2 + 1

where  is allowed to be any nonzero

constant.

Exercise 1.71 The family of ellipses 22+32 = 13 where  is allowed to be any positive

constant.

Exercise 1.72 The family of circles 2+ 2 = 1−22 where  is allowed to be any positive

constant satisfying 0    1
√
2.

____________________________________

Exercise 1.73 (a) Use the fourth order Runge-Kutta method to approximate the solution

of 0 =  (0) = 1 at  = 1 Start with step size  = 02 and calculate a sequence of
approximations by repeated step size halving.

(b) Use the solution formula  =  to calculate percent errors. Do the errors decrease at

the expected rate?

(c) Compare the results in (a) and (b) with those of the Euler and Modified Euler Algo-

rithms in Tables 1.2 and 1.4.

Exercise 1.74 Let  = () denote the solution of the initial value problem 0 = 3 (0) =
06 It turns out that (1) ≈ 11338934190
(a) Use the Euler Algorithm to obtain an approximation to (1) with step size  = 01

How many correct significant digits does this approximation have?

(b) Obtain Euler approximations by repeatedly halving the step size (starting at  = 01).
At which step size  is the Euler approximation first correct to 2 decimal places? To 3 decimal
places?

(c) Compute the absolute error at each step size, starting from  = 01 and halving four
times. Is the fractional decrease in the error correct for the Euler Algorithm?

Exercise 1.75 Repeat Exercise 1.74 using the Modified Euler Algorithm.

Exercise 1.76 Repeat Exercise 1.74 using the fourth order Runge-Kutta Algorithm.

Exercise 1.77 Repeat Exercise 1.74 using any other algorithm available on your computer.
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Exercise 1.78 Let  = () denote the solution of the initial value problem 0 =  (0) =
0 It turns out that (08) ≈ 16094379124
(a) Use the Euler Algorithm to obtain an approximation to (08) with step size  = 01

How many correct significant digits does this approximation have?

(b) Obtain Euler approximations by repeatedly halving the step size. At which step size 

is the Euler approximation first correct to 2 decimal places? To 3 decimal places?
(c) Compute the absolute error at each step size, starting from  = 01 and halving four

times. Is the fractional decrease in the error correct for the Euler Algorithm?

Exercise 1.79 Repeat Exercise 1.78 using the Modified Euler Algorithm.

Exercise 1.80 Repeat Exercise 1.78 using the fourth order Runge-Kutta Algorithm.

Exercise 1.81 Repeat Exercise 1.78 using any other algorithm available on your computer.

Exercise 1.82 Approximate the solution of the initial value problem 0 = 2 + 2, (0) = 0
at  = 05 using the Euler Algorithm, Modified Euler Algorithm, and the Runge-Kutta
Algorithm. Start with step size  = 01 and repeat by halving the step size four times.
What are the accurate digits obtained from each algorithm? What is the best approximation

obtained from all methods?

Exercise 1.83 Use a computer obtain an accurate graphical solution of the initial value

problem 0 = 2 + 2 (0) = 0 on the interval from  = 0 to  = 1 using the Euler
Algorithm. Repeatedly halve the step size  starting with  = 01 What step size did you
stop with and why?

Exercise 1.84 Repeat Exercise 1.83 using the Modified Euler Algorithm.

Exercise 1.85 Repeat Exercise 1.83 using the fourth order Runge-Kutta Algorithm.

Exercise 1.86 Repeat Exercise 1.83 using any other algorithm available on your computer.

Exercise 1.87 Use a computer obtain an accurate graphical solution of the initial value

problem 0 = 3 (− )  (0) = 1 on the interval from  = 0 to  = 1 using the Euler
Algorithm. Use a window size of −20    20. Repeatedly decrease the step size  by a

factor of one tenth, starting with  = 01 What step size did you stop with and why?

Exercise 1.88 Repeat Exercise 1.87 using the Modified Euler Algorithm.

Exercise 1.89 Repeat Exercise 1.87 using the fourth order Runge-Kutta Algorithm.

Exercise 1.90 Repeat Exercise 1.87 using any other algorithm available on your computer.

Exercise 1.91 (a) Use any algorithm you wish to obtain a graphical solution of the initial

value problem 0 = 500 cos(200) (0) = 0. Start with step size  = 01 and decrease until
the graph has stabilized. What do you conclude about the solution?

(b) Obtain a formula for the solution and use it to explain the graphical solution.
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Exercise 1.92 Consider the initial value problem 0 = 3− (0) = 1 Apply the Euler
Algorithm to approximate the solution at  = 06.
(a) Start with step size  = 01 and halve it four times. Which digits in the resulting

approximations do you think are accurate? Explain your answer.

(b) Halve the step size four more times. Now which digits in the resulting approximations

do you think are accurate? Explain your answer.

Exercise 1.93 Consider the initial value problem 0 = 3− (0) = 1 Apply Modified
Euler Algorithm to approximate the solution at  = 06.
(a) Start with step size  = 01 and halve it four times. Which digits in the resulting four

approximations do you think are accurate? Explain your answer.

(b) Halve the step size four more times. Now which digits in the resulting four approxi-

mations do you think are accurate? Explain your answer.

Exercise 1.94 Consider the initial value problem 0 = 3− (0) = 1 Apply the Runge-
Kutta algorithm to approximate the solution at  = 06. (See Exercise 1.73.)
(a) Start with step size  = 01 and halve it four times. Which digits in the resulting four

approximations do you think are accurate? Explain your answer.

(b) Halve the step size four more times. Now which digits in the resulting four approxi-

mations do you think are accurate? Explain your answer.

Exercise 1.95 Use the formula () = (2− − 1)−12 for the solution of the initial value
problem in Exercises 1.92, 1.93, and 1.94 to calculate the error and the per cent error of

the approximations in these exercises for step size  = 000625 Round all numbers to 6
significant digits.

Exercise 1.96 Use the Euler Algorithm and a computer program to obtain an accurate graph

of the solution of the initial value problem 0 = 153 sin 10 (0) = 1 on the interval from
 = 0 to  = 1. Use a window size of −2    2. Repeatedly halve the step size  starting
with  = 02 At what step size did you stop and why?

Exercise 1.97 Repeat Exercise 1.96 using the Modified Euler Algorithm.

Exercise 1.98 Repeat Exercise 1.96 using the fourth order Runge-Kutta Algorithm.

Exercise 1.99 Suppose the decay rate of a radioactive isotope is  = −035 per year The
differential equation for the amount () at time  is 0 = −035.
(a) Use a computer to study the graphs of solutions with many different initial conditions

0  0 and formulate a conjecture about the length of time it takes a sample amount of the
isotope to decay to one half of its initial amount.

(b) Use the solution formula () = 0
−035 to verify or disprove your conjecture.

Exercise 1.100 Let  = () be the dollars in an investment account which is compounded
continuously at a rate of 45%.
(a) Perform numerical experiments on the model equations 0 = 0045, (0) = 0 to

formulate a conjecture about how long will it take for the initial investment of 0 dollars to

triple.

(b) Use the solution formula () = 0
0045 to calculate a formula for the exact tripling

time and compare it to your conjecture in (a).
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Exercise 1.101 Suppose a population has a per capita death rate   0 and a per capita
birth rate that is proportional to population size  (with constant of proportionality denoted

by   0).
(a) Use the “inflow-outflow” rule 0 = birth rate − death rate to write down a model

differential equation for the population size  = ().
(b) Perform numerical experiments and formulate a conjecture about the fate of the pop-

ulation. (Hint: choose a pair of model parameter values, such as  = 1 and  = 1, and
compute solution graphs for many initial population sizes (0) = 0. Then repeat for other

values for  and .)

(c) Use the solution formula

() =
0

0+  (− 0)

to verify or disprove your conjectures in (b).
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Chapter 2

Linear First Order Equations

2.1 Introduction

There is no method that will succeed in calculating a formula for the general solution of every

first order differential equation 0 = ( ) We can find solution formulas only for certain
kinds of equations, i.e., for equations with specialized right hand sides ( ). Nonetheless,
for several reasons it is important to learn solution methods for some specialized types equa-

tions, even though they are necessarily limited in scope. First of all, some types of equations

arise often enough in applications that formulas for their general solutions are useful. Sec-

ondly, certain types of equations serve as approximations to more complicated equations.

Thirdly, a study of various types of equations increases one’s general understanding of dif-

ferential equations. In this chapter we study one of the most important special types of

differential equation, namely, linear differential equations.

A first order equation

0 = ( )

is linear if the right hand side ( ) is linear as a function of , i.e., if

( ) = ()+ ()

Notice it is irrelevant how the independent variable  appears. What matters is that the

dependent variable  and its derivative 0, appear linearly (i.e., to the first power and the
first power only).

Definition 2.1 A linear differential equation of first order has the form

0 = ()+ () (2.1)

where the coefficients () and () are defined on an interval     .

If the coefficients () and () are continuous on an interval     , then

( ) = ()+ ()

and its partial derivative
( )


= ()

33
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are both continuous for  on the interval      and for all  Thus, the Fundamental

Existence and Uniqueness Theorem 1.1 in Chapter 1 applies to the initial value problem

0 = ()+ () (0) = 0 (2.2)

for any initial time 0 from the interval      and for any initial condition 0. As a

result, we know there exists a unique solution of this initial value problem on some interval

containing 0. As we will see (Section 2.2), it turns out that a stronger existence and

uniqueness result holds for linear equations, namely that the solution exists on the whole

interval     .

It is important to distinguish between linear equations in which the term () is present
and those in which it is not.

Definition 2.2 The linear equation

0 = () (2.3)

is homogeneous. If the term () is not identically equal to 0, the linear equation

0 = ()+ () (2.4)

is nonhomogeneous. The term () is called the nonhomogeneous term (or forcing

function).

In many applications a quantity changes at a rate proportional to the amount present

at each moment of time. For example, this is true for radioactive sample as it decays over

time. Another example is the account balance of a continuously compounded investment. Yet

another example is the growth of a bacterial culture in an environment of abundant resources.

In all of these cases the rate of change 0 is proportional to  i.e., 0 =  for a constant of

proportionality . This is an example of a homogeneous, linear differential equation. Because

the coefficient  is constant, the equation is also called autonomous. An autonomous linear

equation is one in which both  and  are constants (so that the independent variable  does

not appear in  =  + ). Otherwise, the equation is non-autonomous . Below is a list of

linear equation that arise in applications that we will encounter in examples and exercises.

(a) 0 = −
(b) 0 =  − 

(c) 0 = −
(d) 0 = 

¡
 +  sin

¡
2


¢− 

¢
(e) 0 =  − 

1
+0

, where  =  − 

(2.5)

All coefficients are positive constants. Equation (2.5a) is homogeneous and autonomous

since () = 0 and () =  are both constants. Since () = − and  () =  are constants,

equation (2.5b) is also autonomous. Equation (2.5c) is homogeneous and non-autonomous

since () = − and  () = 0. In equation (2.5d)

() = − and  () =  ( +  sin (2 ))

and therefore this equation is nonhomogeneous and non-autonomous. Equation (2.5e) is also

nonhomogeneous and non-autonomous.
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2.2 Solution Formulas for Linear Equations

We learn in this section how to calculate formulas for solutions of linear equations and their

initial value problems. We begin with homogeneous linear equations.

2.2.1 Homogeneous Linear Equations

A particularly simple example of an homogeneous linear equation is

0 =  (2.6)

(in which  () ≡ 1). In recalling the derivatives of basic mathematical functions learned in
calculus, the reader will likely remember a function that equals its own derivative, namely,

. In fact, the same is true of any constant multiple  of  It is straightforward to check

that  satisfies the definition of a solution on the interval −∞    +∞ for any value of

 (cf. Definition 1.1) But are there any other solutions to the differential equation (2.6)?

To answer that question, consider any solution  () of the differential equation (2.6) on an
interval     . The claim is that this solution must be a constant multiple of . Here’s

how to see that this is true. Pick an 0 in the interval   0   and choose 0 to be  (0).
Then () is a solution of the initial value problem

0 = 

 (0) = 0

However, you can check that 0
−0 is also a solution of this same initial value problem.

By the Fundamental Existence and Uniqueness Theorem, there is only one solution to this

initial value problem, and it must then follow that  () and 0
−0 are identical, i.e. that

() = 0
−0 which is a multiple of ! We conclude that the general solution is

() =   = an arbitrary constant. (2.7)

Consider now the general homogeneous linear equation

0 =  () (2.8)

where

 () is continuous on     

There are numerous ways to derive a formula for the general solution of this differential

equation. Here we will use a method that is based on a general procedure that we will use

many times throughout the course. This procedure is called the Method of Undetermined

Coefficients (sometimes the Method of Judicious Guessing).

Since we will use this method, or variants of it, in several contexts in this course, it is

worthwhile pausing for a moment to learn the general idea and steps involved. There are

three basic steps to the procedure.
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THE METHOD OF UNDETERMINED COEFFICIENTS

Step 1. Make a guess for a solution, one containing undetermined coefficients or terms.

Step 2. Substitute the guess into both sides of the differential equation,

perform the required operations on both sides, and equate the results.

Step 3. The resulting equation should allow one to calculate the undetermined

coefficients or terms (and hence make the guess into a solution).

(2.9)

The details of the first “guessing” step vary according to the type of equation under con-

sideration. It takes some experience to make a “reasonable” guess (sometimes called an

“ansatz”) and to become proficient with the method. (“reasonable” here means, of course,

that the guess ultimately works and a solution formula is found!)

Here is an example of the procedure. Based on the exponential form (2.7) of the general

solution of the simple example equation (2.6), it seems reasonable to wonder if exponential

functions, of some kind or other, might play a role in the general solution of the general

homogeneous equation (2.8). Thinking along these lines, we could guess for a solution

formula of the form

 () =  ()  = an arbitrary constant (2.10)

where  () is an undetermined term and  is an undetermined constant. That is to say, the
challenge — the “name of the game” — is to find a function  () and  so that this guess

really is a solution of (2.6). (If it turns out to be impossible, then the guess was not so

“reasonable” after all.)

Following Step 2 we substitute our guess into the left side

0 () =  0 ()  ()

and then the right side

 () () =  ()  ()

of the differential equation (2.8) and equate the answers. In the result

 0 ()  () =  ()  ()

we cancel  () from both sides to obtain

 0 () =  ()  (2.11)

Our guess will be a solution if this equation is satisfied.

The final Step 3 is to solve this equation for the undetermined term  () and undeter-
mined coefficient . One way to satisfy this equation is to choose  = 0. Our guess (2.10)
then becomes a solution

 () = 0
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This constant function (called an equilibrium or steady state) is clearly a solution of the

differential equation (2.8). To obtain other solutions from our guess, we look to satisfy

(2.11) with  6= 0, in which case we can cancel  in (2.11) to obtain the equation
 0 () =  ()

for the undetermined term  ()  It is a calculus problem to solve for

 () =

Z 

 () 

This procedure has successfully led us from our guess (2.10) to solutions  () (on the interval

     where the coefficient  () is continuous) where  () is an anti-derivative of  ()
and where  = an arbitrary constant
We have found infinitely many solutions (since  is an arbitrary constant) to the homo-

geneous linear equation (2.8), but are there any more solutions?

We can handle this question in the same way we did for the motivating example above.

Suppose  () is any solution of (2.8) on some interval      (necessarily contained or

equal to     ). Pick any 0 in the interval   0   and define 0 to equal  (0).
Then  () satisfies the initial value problem

0 =  ()

 (0) = 0

However, so does  () with  = 0
− (0) and, as a result of the uniqueness part of the

Fundamental Theorem,  () and  () are identical. We conclude that any other possible

solution is a constant multiple of  ().

Theorem 2.1 Suppose  () is continuous on      The general solution of the

homogeneous linear equation

0 =  ()

is

 () =  ()  () =

Z 

 ()  (2.12)

where  = an arbitrary constant. The general solution is defined on the whole

interval     .

Remark 1. We know from calculus that there are infinitely many anti-derivatives of  (),
and we could write

 () =  +

Z 

 () 

where  is an arbitrary constant. However, the resulting set of solutions

 () = + () =  ()

obtained for all values of  and  is the same as the set of solutions (2.12). No new solutions

are obtained by adding the arbitrary constant  to the anti-derivative.
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Remark 2. From a linear algebraic point-of-view the general solution (2.12) is the span

of the solution  (). Therefore, we see that the general solution of a homogeneous linear

equation is a one dimensional vector space.

Example 2.1 The autonomous homogeneous equation

0 =
¡−1245× 10−4¢

describes the radioactive decay of a sample  = () of radioactive carbon-14 (14). An

anti-derivative of the coefficient

() = −1245× 10−4

is

 () =
¡−1245× 10−4¢ 

and the general solution is therefore given by the formula

 = (−1245×10
−4)

where  is an arbitrary constant.

We can calculate a formula for the solution of an initial value problem

0 =  ()

 (0) = 0

using the general solution (2.12) of the differential equation. Placing  = 0 into (2.12) we

find that

0 =  (0) =⇒  = 0
− (0)

and hence

 () = 0
− (0) ()

= 0
 ()− (0)

Noting that

 ()−  (0) =

Z 

 () −
Z 0

 ()  =

Z 

0

()

we arrive at the following theorem.

Theorem 2.2 Suppose  () is continuous on      The unique solution of the

initial value problem

0 =  ()

 (0) = 0

(for   0  ) is

() = 0
 ()  () =

Z 

0

() (2.13)

This solution is defined on the whole interval     .
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Example 2.2 The initial value problem

0 = − (0) = 0  0

arises from a model of tumor growth. The coefficients  and  are positive constants and

 () is the size of the tumor, which initially is 0. From

() = −

we calculate

 () =

Z 

0

− =




¡
1− −

¢


Using formula (2.13) we obtain the solution formula

 = 0 exp
³


¡
1− −

¢´


As a biological punch line, we note that lim→+∞  = 0 exp (). That is to say, this model
implies the tumor monotonically increases to a limiting size

lim
→+∞

() = 0 exp
³


´


2.2.2 Nonhomogeneous Linear Equations

We now consider the problem of calculating a formula for the general solution of a nonho-

mogeneous linear equation

0 = ()+ () (2.14)

Remember that the general solution is a set of solutions. We begin by asking ourselves what

the solutions in this set have in common? Or, put another way, in what way do two solutions

differ?

Suppose  () is a known solution, obtained in some way or another. The subscript 
stands for “particular”, so think of () as one particular solution that we happen to have
in hand. (We’ll return in a minute to the question of how we might find a solution.) Suppose

that  () is any other solution of (2.14). How do all other solutions  () differ from the one
solution  () we know? Consider the difference

 ()−  () 

A calculation shows

[ ()−  ()]
0 = 0 ()− 0 ()

= [()() + ()]− [() () + ()]

or, after some algebraic rearrangement

[ ()−  ()]
0 =  () [ ()−  ()] 
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In other words, the difference  ()−  () satisfies the homogeneous equation, which as we
saw in the previous section, has general solution  () Since  () is any solution to the
nonhomogeneous equation (2.14), we conclude that the set of all solutions has the form

 () =  () +  () 

We have just reduced the problem of calculating the general solution of a nonhomogeneous

equation to two steps:

Step 1. Calculate the general solution  () of the associated homogeneous equation

Step 2. Find just one solution  () of the nonhomogeneous equation

Step 3. Add the two answers:  () =  () +  ()

Example 2.3 The associated homogeneous equation 0 = − to the equation

0 = −+ 1

has general solution

 () = −

where  is an arbitrary constant. Note that the constant function  () = 1 is a solution
(check it!). Thus, the general solution is

 () = − + 1

(Note: a constant solution is called an “equilibrium”.)

In general, we cannot expect to find — or “guess” — a particular solution  () so easily
as we did in the example above. There is, fortunately, a procedure to calculate a particular

solution. The procedure is called the Variation of Constants Formula. This procedure starts

with the “judicious guess”

 () =  ()  ()

where  () is an undetermined coefficient. This is another application of the Method of
Undetermined Coefficients, but one in which the yet-to-be determined coefficient  () is a
function of  and not a constant. Indeed, if one chooses  () to be a constant then  ()
will certain not satisfy the nonhomogeneous equation (2.14). This is because when  () is a
constant  () satisfies the homogeneous equation, not the nonhomogeneous equation!.

Following the steps (2.9) of the Method of Undetermined Coefficients, we substitute

 () =  ()  () into bother sides of the nonhomogeneous equation, equate the answers,
and let the result tell how we choose  () to succeed in making our guess into a solution.
The details go like this. We equate

0 () =  () 0 ()  () + 0 ()  () =  ()  ()  () + 0 ()  ()

 () () +  () =  ()  ()  () +  ()
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to get

 ()  ()  () + 0 ()  () =  ()  ()  () +  ()

which simplifies to

0 () = − () ()

or

 () =

Z 

− () () 

This is the function  () that turns our guess into a solution of the nonhomogeneous equation:

 () =  ()
Z 

− () () 

Theorem 2.3 (The Variation of Constants Formula for general solutions). Sup-

pose  () and  () are continuous on an interval      A formula for the

general solution of the nonhomogeneous differential equation

0 = ()+ ()

is

 () =  () +  ()
Z 

− () ()  (2.15)

The general solution is a solution on the whole interval     .

Example 2.4 The coefficients of the linear differential equation

0 = −3+ 2−

are

 () = −3  () = 2−

Since

 () = 
 (−3) = −3

from the Variation of Constants Formula (2.15) we find the general solution

 () = −3 + −3
Z 

3
¡
2−

¢


= −3 + −3
Z 

22

= −3 + −32

= −3 + −

Example 2.5 The velocity  = () of an object falling near the surface of the earth, subject
to gravity and friction due to air resistance, satisfies the equation

0 =  − 
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where  is the (per unit mass) coefficient of friction and  is the (constant) acceleration

due to gravity. This is a linear (nonhomogeneous and autonomous) equation with constant

coefficients

() = − and () = 

An integral of () is
 () = −

Applying the Variation of Constants Formula (2.15) we obtain a formula for the general

solution as follows:

 () = − + −
Z 



= − + −





= − +





It is interesting to note that this formula implies lim→+∞  = , that is, the object

approaches a limiting velocity  (until it hits the ground, of course).

One way to solve an initial value problem

0 = ()+ () (0) = 0 (2.16)

is to first find the general solution and then use the initial condition (0) = 0 to determine

the correct value for the arbitrary constant .

Example 2.6 To find a formula for the initial value problem

0 = −3+ 2− (0) = 5

we can use the general solution

 () = −3 + −

calculated in Example 2.4. From this formula we find that

(0) = + 1

and therefore the initial condition requires  + 1 = 5 or  = 4. The solution of the initial
value problem is

 = 4−3 + −

Another way to solve the initial value problem (2.16) is to incorporate the initial condi-

tion into the Variation of Constants Formula. In this way, the resulting formula calculates

solutions of initial value problems directly, without first having to calculate the general

solution.

This is done by using definite integrals instead of anti-derivatives. Specifically, we choose

the anti-derivatives

 () =

Z 

0

() and

Z 

0

 () () 
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to use in the Variation of Constants Formula (2.15). Note that with these choices, both

integrals vanish when  = 0. Then from the Variation of Constants Formula

 () =  () +  ()
Z 

0

− () () 

evaluated at  = 0, we get  (0) =  and it follows that to solve the initial value problem

we need to take  = 0

Theorem 2.4 (The Variation of Constants Formula for Initial Value Problems)

Suppose  () and  () are continuous on an interval     . 1 Then the unique

solution of the initial value problem

0 = ()+ () (0) = 0

where   0  , is given by the Variation of Constants Formula

() = 0
 () +  ()

Z 

0

− ()() (2.17)

where

 () =

Z 

0

()

Example 2.7 From the Variation of Constants formula (2.17) for the initial value problem

0 = −3+ 2−  (1) = −1

with

 () =

Z 

1

(−3)  = −3 (− 1)

we get the solution formula

 () = (−1) −3(−1) + −3(−1)
Z 

1

3(−1)
¡
2−

¢


= −−3(−1) + −3(−1)
Z 

1

22−3

= −−3(−1) + −3(−1)
£
2−3

¤=
=1

= −−3(−1) + −3(−1)
£
2−3 − −1

¤
or

 () =
¡−1− −1

¢
−3(−1) + −

1The continuity of  and  guarantees the differentiability of  () and () for on the interval     .
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Example 2.8 According to Newton’s Law of Cooling the temperature  = () of an object,
residing in an environment of temperature , satisfies the nonhomogeneous linear equation

0 =  (− )

where coefficient  is positive. Suppose 0 is the initial temperature of the object. To solve

the initial value problem (0) = 0 we can use either the Variation of Constants Formula

(2.17) with () = − and
 () =

Z 

0

(−) = −

Using formula (2.17) with () =  we obtain

 = 0
− + −

Z 

0



= (0 − ) − + 

Note lim→+∞ () =  (since   0). Thus, Newton’s Law of Cooling predicts, in the long
run, that the temperature of the object will (exponentially) approach that of its environment.

As a final observation, we note that the Variation of Constants Formula (2.17) shows the

solution of a linear differential equation exists on the whole interval on which the coefficients

() and () of the equation are continuous. This is because the continuity of () and () on
an interval      guarantees the integrals appearing in the formula define differentiable

functions on the interval     .

Corollary 2.1 If the coefficient () and nonhomogeneous term () are continuous
on an interval      containing 0, then the solution of the initial value

problem 0 = ()+ () (0) = 0 exists on the whole interval     .

2.3 Properties of Solutions

Suppose () is any particular solution of the nonhomogeneous equation

0 = ()+ ()

and suppose () is any other solution of this same equation. Let  denote the difference
between these two solutions, i.e.,

 = − 

Then

0 = 0 − 0
= ()+ ()− [() + ()]

= () (− )

= ()
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In other words, the difference  is a solution of the homogeneous equation

0 = ()

It follows that  = −  must be found in the general solution  (),  0() = (), of this
homogeneous equation. We conclude that any solution of the nonhomogeneous equation can

be written in the form () =  ()+() for some constant  where  () is any particular
solution.

Theorem 2.5 The general solution of the nonhomogeneous linear equation

0 = ()+ ()

has the additive decomposition

() =  () +  ()

where

 () =  ()  0() = ()

is the general solution of the associated homogeneous equation

0 = ()

and  is any particular solution of the nonhomogeneous equation.

The additive decomposition

 () =  () +  ()

of the general solution often provides a shortcut for its calculation.

STEP 1: Calculate the general solution  () =  () of the homogeneous equation

0 = ()

STEP 2: Find any particular solution  () of the nonhomogeneous equation

0 = ()+ ()

STEP 3: Add the answers from Step 1 and Step 2 to get the general solution

 () =  () +  ().
To accomplish Step 1 we must calculate the antiderivative

 () =

Z
 () 

of the coefficient  (). One way to accomplish Step 2 is to use the particular solution provided
by the variation of constants (2.15), namely

 () =  ()
Z

− ()(). (2.18)
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The reason we know this is a solution of the nonhomogeneous equation is because it is the

solution we obtain from (2.15) when we choose the arbitrary constant  = 0. However, it
frequently occurs that shortcuts for finding a particular solution  () are available that
are simpler than calculating the integral required in (2.18). Sometimes there is even an

“obvious” solution that can be found be inspection. For example, the equation

0 = − 1
has the constant solution (equilibrium solution)  () = 1 as is easily checked by inspection.
Therefore, the general solution (noting that  () = 1 and  () = ) is

 () =  + 1.

Example 2.9 Consider the nonhomogeneous equation

0 =  − 

for the velocity  of a falling object subject to gravity and a frictional force. (See Example

2.5). The general solution of the associated homogeneous equation 0 = − is  () = −
The constant solution  () =  is found by inspection. Therefore the general solution is

the sum

 () = − +





Perhaps the constant solution in the preceding example (“found by inspection”) would

not have immediately occurred to the reader. Sometimes there are shortcuts for finding a

particular solution  () which are more systematic than simply guessing. In the next section
we illustrate one such method. The method (which involves only algebraic calculations and

thereby avoids having to calculate integrals) starts by making a “reasonable guess” for  ()
and using the Method of Undetermined Coefficients (2.9) in Section 2.2.1.

Example 2.10 Suppose a population  = () grows exponentially according to the equation
0 =  If we harvest this population at a rate () then

0 = − ()

For example if () = − then we harvest the population at an exponentially decreasing rate,
as time goes by. In this case we have the nonhomogeneous equation

0 = − −

The homogeneous equation 0 =  associated with this equation has the general solution

 () = 

To find a particular solution  () of the nonhomogeneous equation we reason as follows.
If 0 −  is equal to −−, then  must somehow involve the exponential function −.
Suppose, then, we try to find a solution  () that is a constant multiple of 

−. That is,
suppose we try to find a constant  such that  () = − solves the differential equation.
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Following the steps in the Method of Undetermined Coefficients (2.9) we substitute this guess

into the left side of the differential equation

0 = −−

and into the right side of the differential equation

 − − = ( − 1)−

and equate the results:

−− = ( − 1)−
After canceling − from both sides we have − = − 1 or  = 12 This choice for  yields
the particular solution  () = −2 and consequently the general solution

 =  +
1

2
−

2.3.1 The Method of Undetermined Coefficients for Linear Differ-

ential Equations

To calculate a formula for the general solution

 () =  () +  ()

of a nonhomogeneous linear equation

0 =  ()+  ()

we need to do two things: calculate the integral

 () =

Z
 () 

and find a particular solution. The variation of constants formula provides a method to

calculate

 () =  ()
Z 

− () () 

The guessing method illustrated in Example 2.10 obtained a particular solution  () without
having to perform any integrations. This shortcut method is available for restricted kinds

of nonhomogeneous linear equations, namely, for those equations with the following two

properties:

(1) The coefficient  () =  is a constant.

(2) The nonhomogeneous term  () produces a finite number of
independent functions upon repeated differentiations.

Note in Example 2.10 that  () = 1 is a constant and  () = −− produces no new
independent functions upon repeated differentiations.
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When criteria (1) and (2) hold, then we can calculate a particular function  () as
follows.

(a) Calculate the general solution  () =  of the

associated homogeneous equation 0 = .

(b) List the independent functions obtained from the

nonhomogeneous term  () by repeated differentiations.
(c) If  appears in the list (2), multiple every function

in the list by 

(d) Construct a guess  () by constructing a linear combination
of the list in (c) with constants  that are then determined

by the Method of Undetermined Coefficients.

Example 2.11 The nonhomogeneous equation

0 = 2+ −

has a constant coefficient  () = 2 and  () = 2 A differentiation of  () = − produces
0 () = −− + − and hence a new independent function −. Thus, we begin with the list

− −

To complete Step (b) we differentiate − and find that no new independent functions arise.
Therefore, our list is complete. We note that 2 does not appear in this list. Therefore, our

guess is the linear combination

 () = 1
− + 2

−

to which we apply the Method of Undetermined Coefficients (2.9) in Section 2.2.1. Equating

0 () = 1
¡−− + −

¢− 2
−

to

2 () + − = 2
¡
1

− + 2
−¢+ −

we get

1
¡−− + −

¢− 2
− = 2

¡
1

− + 2
−¢+ −

Gathering together like terms, we obtain

(31 + 1) 
− + (−1 + 32) − = 0

which (because − and − are independent) implies

31 + 1 = 0

−1 + 32 = 0

These two algebraic equations have the unique solution pair 1 = −13 and 2 = −19
Thus, we arrive at the particular solution

 () = −1
3
− − 1

9
−

and the general solution

 () = 2 − 1
3
− − 1

9
−
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Example 2.12 Suppose a population  = () grows exponentially according to the equation
0 = . If individuals immigrate or emigrate at a rate () then the population changes
according to the equation

0 = + ()

If ()  0 then at time  individuals are being added to the population at the rate () If
()  0 then at time  individuals are removed from the population at the rate ().
Consider the case when immigration and emigration alternate periodically at the rate

() = cos . Then we have the linear nonhomogeneous equation

0 = + cos 

for .

Since the associated homogeneous equation 0 =  has general solution  () = , the

general solution of the nonhomogeneous equation has the form  () = + () where  ()
is any particular solution. Since repeated differentiations of cos  produce only two indepen-
dent solutions, namely, cos  and sin  we begin the Method of Undetermined Coefficients
with the list

cos  sin 

Since  does not appear in this list, we do not need to multiple the list by  Our guess is the

linear combination

 () = 1 sin + 2 cos . (2.19)

Applying the Method of Undetermined Coefficients, we substitute this guess into the differ-

ential equation. The result from the left side of the differential equation is

0 () = 1 cos − 2 sin 

and from the right side is

 () + cos  = 1 sin + (2 + 1) cos 

Equating these we obtain

1 cos − 2 sin  = 1 sin + (2 + 1) cos 

or gathering like terms

(−1 + 2 + 1) cos + (1 + 2) sin  = 0

Since cos  and sin  are independent, we have

−1 + 2 + 1 = 0

1 + 2 = 0

which is an algebraic system of equations for 1 and 2 whose unique solution is

1 =
1

2
 2 = −1

2
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Using these coefficients in (2.19) we obtain the particular

 () =
1

2
sin − 1

2
cos 

and the general solution

 () =  +
1

2
sin − 1

2
cos 

Example 2.13 The nonhomogeneous equation

0 = + 

has a constant coefficient  () = 1 and  () =  A differentiation of  produces  and

hence no new independent functions. Thus, we begin with the list of only one function



We note that the solution of the homogeneous equation  does appear in our list. Therefore,

we multiple every function in the list by  to obtain



from which we construct our guess

 () = 

Applying the Method of Undetermined Coefficients (2.9) in Section 2.2.1, we substitute this

guess into the differential equation. The left side of the equation produces

0 () = 
¡
 + 

¢
and the right side produces

 () +  =  + 

Equating these, we get


¡
 + 

¢
=  + 

from which we obtain, after gathering together like terms (note the cancellation of the 

terms!)

( − 1)  = 0.
Thus  = 1 and we arrive at the particular solution

 () = 

and the general solution

 () =  + 
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Example 2.14 The homogeneous equation 0 = 2 associated with the nonhomogeneous
equation

0 = 2− 2 sin 
has general solution  () = 2 The nonhomogeneous term () = −2 sin  is a multiple
of  sin . Using the Method of Undetermined Coefficients we construct a particular solution
 () from  sin  and all new independent functions (up to linear combinations) that arise
by repeated differentiation of  sin . From the first derivative of  sin  namely

 cos +  sin +  sin 

we obtain two new independent functions  cos  and  sin . We therefore begin with the
list

 sin   cos   sin 

We have left to consider the derivatives of the last two functions. The derivative of  cos 

− sin +  cos +  cos 

results in one new independent function,  cos  and our list expands to

 sin   cos   sin   cos 

Left to consider are independent functions arising from derivatives the last two functions.

However, neither derivative results in new independent functions not already in the list.

Therefore, the list is complete. Moreover, the homogeneous equation solution 2 does not

appear in the list (so there is no need to multiply by ). Our guess is constructed as a linear

combination of this finalized list:

 () = 1
 sin + 2

 cos + 3
 sin + 4

 cos 

Applying the Method of Undetermined Coefficients, we substitute this guess into the differ-

ential equation, obtaining

0 () = (1 − 2) 
 sin + (1 + 2) 

 cos 

+ (1 + 3 − 4) 
 sin + (2 + 3 + 4) 

 cos 

from the left side and

2 ()− 2 sin  = (21 − 2)  sin + 22 cos 
+ 23

 sin + 24
 cos 

from the right side. If you equation these two expressions, gather up all like terms and set

their coefficients equal to 0, you obtain the four linear algebraic equations

1 − 2 = 21 − 2
1 + 2 = 22

1 + 3 − 4 = 23

2 + 3 + 4 = 24
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to solve for

1 = 1 2 = 1 3 = 0 4 = 1

Thus, a particular solution is

 () =  sin +  cos +  cos 

and the general solution  () =  () +  () is

 = 2 +  sin +  cos +  cos .

Remark 3. If the list generated by the method used in this section is long, and hence

the linear combination of the list that serves as the guess in the Method of Undetermined

Coefficients is long, then the calculations involved in this method can be lengthy and tedious.

The method is guaranteed to work, but it might not be such a shortcut in this case when

compared to using the Variation of Constants Formula to calculate  (). A main advantage
of the Method of Undetermined Coefficients is that it involves no integration (as does the

Variation of Constants Formula).

Remark 4. The Method of Undetermined Coefficients described in this section cannot be

replied upon to work when the coefficient  () is not a constant. Thus, we would not use
this method to calculate a particular solution of

0 =  sin + 

for example.

Remark 5. Not all functions satisfy the criterion (2). For example, ln  produces infinitely
many independent functions upon repeated differentiation. Thus, we would not use this

method to calculate a particular solution of 0 = + ln , for example.

2.3.2 The Superposition Principle

Another shortcut for calculating a particular solution  () of a nonhomogeneous linear
differential equation involves breaking the equation into two or more “simpler” nonhomoge-

neous equations. Then particular solutions of the simpler equations are put back together,

in just the right way, to obtain a particular solution of the original equation.

This idea is based on what’s called the Superposition Principle.

We begin with an example. The nonhomogeneous term of the equation

0 = + 3 − 2 cos , (2.20)

namely,

 () = 3 + (−2) cos  (2.21)

is a linear combination of  and cos . We use these two functions to construct the two
nonhomogeneous differential equations

0 = + 

0 = + cos 
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Examples 2.13 and 2.19 in Section 2.3.1 we calculated particular solutions for each of these

equations (using the Method of Undetermined Coefficients). The first equation has a par-

ticular solution  and the second equation has a particular solution

1

2
sin − 1

2
cos 

If we form the same linear combination of these two solutions as is formed to construct  ()
in (2.21) we get

 () = 3 + (−2)
µ
1

2
sin − 1

2
cos 

¶
= 3 − sin + cos 

That this function is actually a solution of the original nonhomogeneous differential equation

(2.20) follows from the Superposition Principle, as state in the following theorem. (You can

also directly check that this function is a solution by substituting it into the equation.)

Theorem 2.6 (Superposition Principle) Suppose, on an interval     ,  =
1() is a solution of the equation

0 = ()+ 1()

and  = 2() is a solution of the equation

0 = ()+ 2().

Then the linear combination

 () = 11() + 22()

solves the equation

0 = ()+ [11() + 22()]

on the interval      for any constants 1and 2.

The student is challenged to prove this theorem in Exercise 2.76.

Notice all three nonhomogeneous equations in this theorem have the same associated

homogeneous equation 0 = () and differ only in their nonhomogeneous terms 1(), 2()
and 11() + 22().

Example 2.15 Suppose in Example 2.10 the population is harvested at the rate

() = 1 + 9−

In this model, the harvesting rate initially starts at (0) = 10 and then exponentially decreases
over time to 1 This yields the nonhomogeneous equation

0 = −  ()
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or

0 = − 1− 9−
for the population size  ().
The general solution of the associated homogeneous equation 0 =  is

 = 

To find the general solution of the nonhomogeneous equation we need only find a particular

solution  ().
We begin by noting that the nonhomogeneous term

() = −1− 9−

is as a linear combination 11() + 22() of

1() = 1 and 2() = −

Specifically

 () = (−1) 1 () + (−9) 2 () 
We can therefore use the Superposition Principle (Theorem 2.6) to construct a particular

solution  by forming the same linear combination of solutions of the equations

0 = + 1

0 = + −.

The first equation has the constant solution −1 From Example 2.10, −2 is a solution of
the second equation. Using the Superposition Principle we construct a particular solution as

the linear combination

 () = (−1) (−1) + (−9) 1
2
−

that is,

 = 1 +
9

2
−

Finally, the general solution is the sum  () =  () +  (), or

 () =  + 1 +
9

2
−.

The final example uses both the Method of Undetermined coefficients together with the

Superposition Principle to find a particular solution.

Example 2.16 The general solution of the homogeneous equation 0 =  associated with

the nonhomogeneous equation

0 = − +  cos 

is

 = 
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Therefore,  =  +  is the general solution of this equation if  is a particular solution.

To find a particular solution  we notice that

() = −+  cos 

is a linear combination of () = −1 and 2() = cos , i.e.,
() = (−1) +  cos 

By the Superposition Principle the same linear combination of solutions 1 and 2 of the two

nonhomogeneous equations

0 = − 1
0 = + cos 

namely,

 = 1 + 2

The first equation has the constant solution 1 = 1 From Example 2.12 we find that the

second equation has solution

2 =
1

2
sin − 1

2
cos 

Thus,

 =  (1) + 

µ
1

2
sin − 1

2
cos 

¶
and the general solution is

 =  + +


2
sin − 

2
cos 

Theorem 2.6 concerns linear combinations of two solutions of two equations. An analo-

gous principle holds for any number of solutions of any number of equations. For example,

if 1(), 2(), and 3() are solutions of the three linear nonhomogeneous equations

0 = ()+ 1()

0 = ()+ 2() (2.22)

0 = ()+ 3()

respectively, then the linear combination

 = 11() + 22() + 33()

solves the linear nonhomogeneous equation

0 = ()+ [11() + 22() + 33()]  (2.23)

The same linear combination is made of the solutions as is made of the nonhomogeneous

terms 1 2 3. See Exercises 2.77 and 2.78.
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2.4 Autonomous Linear Equations

A linear equation is called autonomous if both () and () are constant functions:

0 = +  (2.24)

where  and  are constants. Although autonomous linear equations are a specialized kind

of linear equations, we will nonetheless discuss them briefly in order to introduce several

concepts that will play important roles later in our study of nonlinear autonomous equations

and systems. We focus on the asymptotic dynamics of autonomous equations, i.e., on the

behavior of solutions as  → ±∞. We need to distinguish between equations (2.24) with
 = 0 and those with  6= 0

Definition 2.3 The autonomous equation 0 =  +  is hyperbolic if  6= 0 It is non-
hyperbolic if  = 0.

We begin with two hyperbolic examples. In Figure 2.1a appear graphs of several solutions

of the equation

0 = −+ 1
These graphs appear to have a horizontal asymptote at  = 1. That is to say, the solutions
tend to 1 as → +∞. The horizontal asymptote is itself the graph of a solution, namely, the
constant solution  = 1. As → −∞ the solutions in Fig 2.1a appear to be unbounded. The

formula  = (0 − 1) − + 1 for the solution of the initial value problem (0) = 0 shows

that these observations hold for all solutions of the equation.

Figure 2.1b shows solution graphs for the equation

0 = − 1
where the asymptotic dynamics are reversed. Solutions appear to have a horizontal asymp-

tote at  = 1 as →−∞ and are unbounded as → +∞. These facts hold for all solutions
(except the constant solution  = 1) as you can see from the solution formula

 () = (0 − 1)  + 1
As we will see, the two examples in Figure 2.1 turn out to be typical for hyperbolic equations.

-4 -3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

 t 

x

(a)

-4 -3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

 t 

x

(b)

Figure 2.1. (a) Selected solutions of 0 = − + 1. (b) Selected solutions of
0 = − 1
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The general solution of the homogeneous equation 0 =  associated with equation (2.24)

is  =  To find the general solution all we need is a particular solution. A hyperbolic

equation (2.24) has a very special particular solution, namely the constant solution  =
−.

Definition 2.4 A constant solution is called an equilibrium solution or simply an equi-

librium2.

We will denote equilibrium solutions by . Using the equilibrium

 = −


as a particular solution, we can have the formula

 =  − 


,  = arbitrary constant

for general solution of (2.24). From this general solution we obtain the formula

 =

µ
0 +





¶
(−0) − 


(2.25)

for the solution of the initial value problem (0) = 0.

Using (2.25) we discover the following general facts about hyperbolic linear equations.

If   0 then all solutions are strictly monotonic (i.e., strictly increasing or decreasing,
depending on the sign of the coefficient 0 + ) and tend to the equilibrium  = − as
 → +∞. (This is because the exponential term is strictly monotonic and tends to 0 when
  0.) In this case, the equilibrium is called an attractor (or a sink) and is called stable.

On the other hand, if   0 then all non-equilibrium solutions (0 6= −) are strictly
monotonic and are exponentially unbounded as  → +∞. (This is because the exponential
term is strictly monotonic and unbounded when   0.) In this case, the equilibrium is

called a repeller (or a source) and is called unstable.

Theorem 2.7 If the linear autonomous equation

0 = + 

is hyperbolic (i.e., if  6= 0), then non-equilibrium solutions are strictly monotonic

(i.e., are strictly increasing or decreasing). The equilibrium  = − is an
attractor if   0 and a repeller if   0.

Note that simply checking the sign of the coefficient  is sufficient to obtain a great deal

of information about all solutions. It is not necessary to solve the differential equation in

order to determine whether the equilibrium is an attractor or a repeller. Here is an example

involving an attractor.

2An equilibrium is sometimes called a rest point, a critical point or a singular point.
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Example 2.17 The equation

0 =  − 

  0   0

for the velocity  = () of an object falling under the influence of gravity and a frictional
force  is linear and autonomous. Since the coefficient of friction   0 is positive, the
equation coefficient  = − is negative and the equilibrium  =  is an attractor. Thus,

all solutions () tend to  as → +∞ in a strictly monotonic fashion. If, for example, the

object is dropped, so that (0) = 0, its velocity strictly increases to the “limiting velocity” 
as → +∞.
The next example involves a repeller.

Example 2.18 The linear autonomous equation

0 = − 

  0  ≥ 0
describes the dynamics of a harvested population  = () The constant  is the rate at
which the population is harvested. The population has a positive (per unit) growth rate 

when unharvested. That is, when  = 0 the population grows exponentially according to the
equation 0 = . Since the coefficient  =  is positive, the equilibrium  =  is a

repeller. This means all non-equilibrium populations are exponentially unbounded, growing

without bound for initial population densities (0)   and decreasing without bound for

 (0)  . In the latter case, () equals 0 and the population becomes extinct at some finite
time   0.

In the non-hyperbolic case, when  = 0, the autonomous equation (2.24) becomes

0 = 

The solution of the initial value problem (0) = 0 associated with this equation is

 = (− 0) + 0

By inspection of this formula we obtain the following theorem for the non-hyperbolic case.

Theorem 2.8 If the linear autonomous equation

0 = + 

is non-hyperbolic (i.e., if  = 0) then all solutions are equilibrium solutions if

 = 0 or are (linearly) unbounded if  6= 0.
Theorems 2.7 and 2.8 completely account for the asymptotic dynamics of the linear

autonomous equation (2.24). They show that the asymptotic dynamics an autonomous linear

equation can be determined from an inspection of the coefficient  and nonhomogeneous term

 alone. There is no need to solve the equation (i.e., find a formula for solutions).
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xe

xe

(a)

(b)

Figure 2.2. Phase line

portraits of (a) an attrac-

tor and (b) a repeller.

The coefficient  plays a determining role. If   0 then all
solutions tend to the equilibrium  = −; one the other hand,
if   0 then all non-equilibrium solutions tend away from the

equilibrium and are unbounded.

These facts are conveniently summarized in a graphical manner

by a phase line portrait, which is drawn as follows. Locate the

equilibrium  on an -axis (called the “phase space” or, in this

case, the “phase line”). The equilibrium point separates the phase

line into two half lines. If   0 place two arrows on these half
lines that point toward the equilibrium. These directed half lines

are called orbits. The resulting picture is the phase line portrait of

an attractor. See Figure 2.2a. If   0 the two arrows are reversed and the resulting phase
line portrait is that of a repeller. See Figure 2.2b. Phase line portraits are also important

for nonlinear equations and are studied in more detail in Chapter 3.

As an example, the phase line portraits for the equations in the Examples 2.17 and 2.18

are, respectively,

→ 


← and ← 


→

Imagine varying (or “tuning”) the coefficient  in the linear autonomous equation (2.24)

from −∞ to +∞. For   0 the equilibrium is an attractor. However, as soon as  is

increased through 0 and becomes positive, the attractor changes into a repeller and the
arrows reverse their directions in the phase line portrait.

A drastic change in asymptotic dynamics as a coefficient passes through a critical value

is called a bifurcation. The critical value of the coefficient is called a bifurcation value. In

this context the coefficient is called a bifurcation parameter. With respect to the bifurcation

parameter , the linear autonomous equation 0 =  +  undergoes a bifurcation at the

bifurcation value  = 0 ( being held fixed). Notice the equation is non-hyperbolic at this
bifurcation value. This is not a coincidence; it is typically the case, as we will see in Chapter

3 where these bifurcation concepts are extended to nonlinear equations.

2.5 Chapter Summary

A linear first order differential equation for an unknown function  =  () has the form
0 = () + () If the coefficients  () and  () are continuous functions on an interval
     then an extended Fundamental Existence and Uniqueness Theorem implies

that any initial value problem  (0) = 0 (with   0  ) has a unique solution on the

entire interval     . A formula for the general solution is provided by the Variations of

Constants Formula. An adaptation of this formula gives the unique solution to an initial value

problem. The general solution has the additive decomposition  () =  () +  () where
 () =  () is the general solution of the associated homogeneous equation 0 = () and
 () is any particular solution of the nonhomogeneous equation. In some cases shortcut
methods exist for finding a particular solution  () that utilize the Superposition Principle
and the Method of Undetermined Coefficients. When  and  are constants the equation

is called autonomous. If  6= 0 the equation is hyperbolic. If   0 all solutions tend to
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the equilibrium  = − which is then called an attractor. If   0 all non-equilibrium
solutions are unbounded and the equilibrium is called a repeller. These facts are summarized

by means of phase line portraits.

2.6 Exercises

Which of the following equations are linear and which are nonlinear? For those equations

that are linear, identify the coefficient () and nonhomogeneous term ().

Exercise 2.1 0 − 2 = 

Exercise 2.2 0 + 2 = 2

Exercise 2.3 0 − 2 = 2

Exercise 2.4 0 +  = sin 

Exercise 2.5 0 = + sin

Exercise 2.6 0 = −+√
Exercise 2.7 0 = 2+ 1

Exercise 2.8  sin + 1− 0 = 1

Exercise 2.9 2− cos 3+  sin − 50 = (2 + 1)−1

Exercise 2.10 2− cos 3+  sin− 50 = (2 + 1)−1

Which of the following equations are linear homogeneous? Which are linear nonhomo-

geneous? Which are nonlinear? For the linear equations identify the coefficient () and
nonhomogeneous term ().

Exercise 2.11 0 = 2− 1
Exercise 2.12 0 = (+ )  (− 1)
Exercise 2.13 0 − 2 = 0

Exercise 2.14 0 = (+ ) (− )−1

Exercise 2.15 0 = 3− 

Exercise 2.16 20 = −
Exercise 2.17 Identify the coefficient () and nonhomogeneous term () for the equations
of (2.5). Which equations are homogeneous and which are nonhomogeneous? Which equa-

tions are autonomous?
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Find a formula for the general solution of the following linear homogeneous equations.

Exercise 2.18 0 = −3

Exercise 2.19 0 = −1
2


Exercise 2.20 0 = −1

Exercise 2.21 0 = 

Exercise 2.22 0 = −3

Exercise 2.23 0 =  sin 2

Exercise 2.24 0 =  (1 + 2)
−1



Exercise 2.25 0 = (− 2)
−1



Exercise 2.26 0

=  sin 

Exercise 2.27 − 0 = 0

Find a formula for the general solution of the following linear homogeneous equations.

( and  are constants.)

Exercise 2.28 0 =   6= 0

Exercise 2.29 0 =  cos 

Exercise 2.30 0 = 

Exercise 2.31 0 =  (+ )−1 

Use the Variation of Constants Formula (2.15) to calculate a formula for the general

solution of the linear nonhomogeneous equations below. ( and  are constants.)

Exercise 2.32 0 = −2+ 12

Exercise 2.33 0 = 3− 4

Exercise 2.34 0 −  = 

Exercise 2.35 0 = −−1+ sin 

Exercise 2.36 0 = + cos 

Exercise 2.37 0 = + sin 

Exercise 2.38 0 = −+ 13
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Exercise 2.39 0 = −− 2

Exercise 2.40 0 = − 1

Exercise 2.41 0 =  cos − 2−1 sin 2

Exercise 2.42 Prove all integrals  () lead to the same general solution  of 0 = ()+
().

Find formulas for the solutions of the following initial value problems. ( and  are

constants.)

Exercise 2.43 0 =  (1) = −2

Exercise 2.44 0 = −32 (−2) = 3

Exercise 2.45 0 = (1 + 2)
−1

 (1) = 

Exercise 2.46 0 = (sec2 )  (3) = 
√
3

Exercise 2.47 0 = (sin ) (0) = 1,  6= 0

Exercise 2.48 0 = (+ −1) (1) = 1

Find formulas for the solutions of the following initial value problems, in which  and 

are constants. Do this two ways. (a) Use the Variation of Constants Formula (2.15) to find

the general solution and use it so find the unique solution of the initial value problem. (b)

Use the Variation of Constants Formula (2.17) for initial value problems.

Exercise 2.49 0 = 3− 2, (0) = 5

Exercise 2.50 0 = −2+ 6 (0) = −1

Exercise 2.51 0 = −1+ 3, (2) = 0

Exercise 2.52 0 = −−1+√, (1) = 1

Exercise 2.53 0 =  cos +  cos , (0) = 0  6= 0

Exercise 2.54 0 = 2+ , (0) = 0  6= 0

Exercise 2.55 0 = −−1+ 2 (1 + 2)
−1
, (1) = ln 8

____________________________________

Exercise 2.56 Find a formula for the solution of the initial value problem 0 = ( − )
(0) = 0, for a population of size  = () which has a per capita birth rate   0 and a per
capita death rate   0.
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Exercise 2.57 Show the length of time it takes the solution of the initial value problem

0 =  (0) = 0  0 (where   0) to double its initial size 0 is independent of the

initial condition 0. Find a formula for this “doubling” time.

Exercise 2.58 Show the length of time it takes the solution of 0 = − (0) = 0  0
(where   0) to decrease by 50% is independent of the initial condition 0. Find a formula

for this “halving” time.

Exercise 2.59 Suppose a population  = () naturally grows at an exponential rate  i.e.,
0 =  However, suppose the population also is subject to harvesting (removal of individuals)

at a constant rate   0. Then 0 =  −  Find a formula for the solution of the initial

value problem

0 = −  (0) = 0

Exercise 2.60 Suppose in Exercise 2.59 that the population is harvested periodically at the

rate  =  +  sin (2 ). Here   0 is the average rate over one harvesting period of
length   0. Find a formula for the solution of the resulting initial value problem.

Exercise 2.61 Suppose the temperature  = () of an object satisfies the nonhomogeneous
(non-autonomous) linear equation

0 = 

µ
 +  sin

µ
2




¶
− 

¶
   0

This equation arises from Newton’s Law of Cooling when the environmental temperature +
 sin (2 ) oscillates sinusoidally with period  , average , and amplitude  Suppose 0
is the initial temperature of the object.

(a) Find a formula for the solution () of the initial value problem (0) = 0

(b) For large   0 and some constant  show

() =  +
√

2 2 + 42
 sin

µ
2


− 

¶


(c) Use the result in (b) to discuss the relationship between the oscillating temperature of the

environment and that of the object.

Exercise 2.62 (a) Use a computer to investigate the solutions of the equation 0 = −05.
What properties do all solutions have in common as → +∞? What differences do solutions
have as → +∞ ?

(b) Find a formula for the solution of the initial value problem (0) = 0 and it to verify

your observations in (a).

Exercise 2.63 Consider the initial value problem

0 = (500 sin 600) (0) = 1

(a) Use a computer program to approximate (02)
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(b) Use a computer program to graph the solution on the interval 0 ≤  ≤ 02. Describe
the important features of the graph.

(c) Find a formula for the solution of the initial value problem and use it to calculate

(02). Compare your answer with that obtained in (a).
(d) Describe the important features of the graph of the solution found in (c) and compare

your answer with your description in (b).

Exercise 2.64 Consider the initial value problem

0 =
1


+ − (−1) = 0

(a) Notice the right hand side of the differential equation is not defined for  = 0. Use a
computer to obtain a graph of the solution on the interval −1    0. Describe the graph.
In particular, what happens as → 0−?
(b) Use a computer to obtain approximations to the solution at  = −01, −001 −0001

and −00001. How do these approximations compare to your answer in (a)?
(c) Find a formula for the solution of the initial value problem and use it to compute

lim→0− (). How does your answer compare with your answers in (a) and (b)?

Exercise 2.65 Consider the initial value problem

0 = (cos 60)+ 100 cos 60 (0) = 0

(a) Use a computer program to approximate the solution  at  = 099
(b) Use a computer program to graph the solution on the interval 0 ≤  ≤ 1. Describe

the important features of the graph.

(c) Find a formula for the solution of the initial value problem and use it to calculate

(099). How does your answer compare with that in (a)?
(d) Use the formula obtained in (c) to explain the features of the graph found in (b).

Exercise 2.66 Consider the equation 0 = −− 15 sin 5+ 3cos 5
(a) Use a computer program to find the graph of what appears to be a periodic solution.

Do this by investigating solution graphs for many initial conditions (0) = 0 What is the

approximate period and amplitude of this periodic solution? What relationship do all other

solutions have to this periodic solution?

(b) Find a formula for the solution of the initial value problem (0) = 0.

(c) Use the formula found in (b) to show there is exactly one periodic solution. (HINT:

show the formula gives a periodic function if and only if one special value of 0 is cho-

sen.) What is the period and amplitude of this periodic solution? Do your answers compare

favorably to your answers in (a)?

Exercise 2.67 Given that  = 100 solves 0 =  + 10099 find the general solution of
this equation.

Exercise 2.68 Given that  =  (1 + )−1 solves 0 = (cos ) + (1 + 2+ 2)
−1
(1−  cos 

−2 cos ) find the general solution of this equation.
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Exercise 2.69 Given that 1 = 2−3 solves 0 = − − 4−3 and that 2 =  solves

0 = −+ 2 find the general solution of the equation 0 = −− 4−3 + 2

Exercise 2.70 Given that 1 = sin  solves 
0 = 2+ cos − 2 sin  and that 2 = ln  solves

0 = 2−2 ln + 1

find the general solution of the equation 0 = 2+2 cos −4 sin +2 ln −−1

Exercise 2.71 Given that  = 10 solves the differential equation, find the solution of the
initial value problem 0 = − 10 (0) = 5

Exercise 2.72 Given that  =  solves the differential equation, find the solution of the

initial value problem 0 = −+  − 1 (0) = 0

Exercise 2.73 Given that  =  solves the differential equation, find the solution of the

initial value problem 0 = −  (0) = 0

Exercise 2.74 Given that  = 2+ (2 + 1) ( sin − cos ) solves the differential equation,
find the solution of the initial value problem 0 = − (− 2− sin )  (0) = 0

Exercise 2.75 Suppose 1 2 ... ,  are  solutions of the linear homogeneous equation

0 = () Show the linear combination  = 11 + 22 + · · ·+  is also a solution for

any constants 1 2..., .

Exercise 2.76 Prove Theorem 2.6.

Exercise 2.77 If 1(), 2(), and 3() are solutions of the three linear nonhomogeneous
equations (2.22) respectively, show  = 11() + 22() + 33() is a solution of (2.23) for
any constants 1 2 3.

Exercise 2.78 If () solves 
0 = ()+ () for  = 1 2    , show that a linear combi-

nation  =
P

=1 () solves the equation 0 = ()+
P

=1 ().

For each equation below, determine whether or not the Method of Undetermined Coeffi-

cients applies.

Exercise 2.79 0 = 2+ 2−

Exercise 2.80 0 = −+ 2−3 sin 2

Exercise 2.81 0 = + 1
2
 sin 

Exercise 2.82 0 = 5+  cos 

Exercise 2.83 0 = −+ 2,  is a constant

Exercise 2.84 0 = − 3

Exercise 2.85 0 = −2− −2
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Exercise 2.86 0 = − 52

Exercise 2.87 0 = − 3,  is a constant

Exercise 2.88 0 = + 2,  and  are constants

Use the Method of Undetermined Coefficients to (a) formulate a guess for a particular

solution  () of each equation below. (b) Use your guess to find a particular solution  ().
( and  are constants.)

Exercise 2.89 0 = 05− 0302

Exercise 2.90 0 = 4− 3

Exercise 2.91 0 = 3− 153

Exercise 2.92 0 = −2− 3−2

Exercise 2.93 0 = −2
3
− 15

16
− sin 

Exercise 2.94 0 = 01+ 2− cos 

Exercise 2.95 0 = −+ 54 cos 2

Exercise 2.96 0 = 2− 33 sin 5

Exercise 2.97 0 = + 1
3
3

Exercise 2.98 0 = − 142

Exercise 2.99 0 = + 2 cos 2

Exercise 2.100 0 = 2+ sin 3− cos 3

Exercise 2.101 Find a formula for the general solution of the equation

0 = 2+  + 2

where  and  are constants.

Use the Superposition Principle and the Method of Undetermined Coefficients to find a

formula for a particular solution () of the following equations.

Exercise 2.102 0 = −+ 2 − 3 sin 

Exercise 2.103 0 = −− 05+ 32

Exercise 2.104 0 = + 3 − 4 cos 
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Exercise 2.105 0 = 2− 2 + 05

Under what conditions (i.e., for what values of the parameter ) are the following equa-

tions hyperbolic? Under what conditions are they non-hyperbolic? Explain your answers.

In all equations  is a constant.

Exercise 2.106 0 =  sin + 5

Exercise 2.107 0 =  cos + 

Exercise 2.108 0 = 2+ 5

Exercise 2.109 0 = (1− 2)+ sin 

Without solving the equations, find the equilibrium solutions and determine the asymp-

totic dynamics of all other solutions as → +∞. ( is a constant.)
Exercise 2.110 0 = −5− 7
Exercise 2.111 0 = −2+ 4
Exercise 2.112 0 = 2− 10
Exercise 2.113 0 = 6+ 7

Exercise 2.114 0 = (− 1)+ 2
Exercise 2.115 0 = (2 − 4)− 1
Exercise 2.116 0 = sin 

Exercise 2.117 0 = ln (− 1)    1
Describe what solutions do when → −∞ when the equation 0 = +  is :

Exercise 2.118 hyperbolic and the equilibrium is an attractor?

Exercise 2.119 hyperbolic and the equilibrium is a repeller?

Exercise 2.120 is non-hyperbolic and  6= 0?
Exercise 2.121 is non-hyperbolic and  = 0?

____________________________________

Exercise 2.122 A population  = () with per capita birth and death rates   0 and   0
satisfies the equation 0 = − Suppose we harvest the population at constant rate  ≥ 0
Then 0 = −− With respect to the parameter  are there any bifurcation points and,

if so, what are they?
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Exercise 2.123 Fix the coefficient   0 in the linear autonomous equation (2.24) Does
the equation undergo a bifurcation (i.e., a qualitative change in the asymptotic dynamics

of its solutions) as the nonhomogeneous term  is varied from −∞ to +∞? Explain your
answer. Does your answer change if   0?

Exercise 2.124 Use a computer program to study the asymptotic dynamics of the equation

0 = (− −)+ 1 where   0 is a constant. Formulate conjectures about the dependence
of the asymptotic dynamics on  Are there any bifurcation points? Solve the equation and

prove (or disprove) your conjectures.

Exercise 2.125 Use a computer program to study the asymptotic dynamics of the equation

0 = (2 − 3+ 2) + 1 where   0 is a constant. Formulate conjectures about the depen-
dence of the asymptotic dynamics on  Are there any bifurcation points? Solve the equation

and prove (or disprove) your conjectures.

Find a formula for the general solution of the following homogeneous differential equa-

tions. (  and  are constants.)

Exercise 2.126 0 −  = 0

Exercise 2.127 0 = (1 + 2)
−1



Exercise 2.128 0 + −
22 = 0

Exercise 2.129 0 = (1 + cos )

Exercise 2.130 0 = 

Exercise 2.131 0 = 
2


Exercise 2.132 0 =  ln 

Exercise 2.133 0 =  ln 

Exercise 2.134 0 =  tan 

Exercise 2.135 0 = ( + )

Find a formula for the general solution of the following nonhomogeneous differential

equations by means the Variation of Constants Formula. (  and  are constants.)

Exercise 2.136 0 = + cos 

Exercise 2.137 0 = −+ sin 

Exercise 2.138 0 =  cos+ cos

Exercise 2.139 0 = −1+ 



2.6. EXERCISES 69

Exercise 2.140 0 =  ln + 

Exercise 2.141 0 = (1 + −1)+ 

Exercise 2.142 0 = + 

Exercise 2.143 0 = + 

Find a formula for the general solution of the following equations making use of the

Method of Undetermined Coefficients.

Exercise 2.144 0 = + sin 10

Exercise 2.145 0 = −2+ 2

Exercise 2.146 0 = −2+ −2

Exercise 2.147 0 = + 22−2

Write down the appropriate guess for a particular solution  () of the following equa-
tions. Do not solve for ()

Exercise 2.148 0 = − 23− cos 2

Exercise 2.149 0 = −− 23− cos 2

Use the Superposition Principle together with the Method of Undetermined Coefficients

to find a formula for the general solution of the following equations.

Exercise 2.150 0 = + 2 sin 10+ 3 cos 

Exercise 2.151 0 = −2+ 32 − 5−2

Exercise 2.152 0 = 3+ 2 + 3− 2 + 63

Exercise 2.153 0 = −+ 2− 3− + cos 

Exercise 2.154 0 = −+ 3 sin + 2 sin 2

Exercise 2.155 0 = − cos 4+ 2 cos 2

Find a formula for the solution of the following initial value problems.

Exercise 2.156 0 −  = 0, (5) = 

Exercise 2.157 0 = (1 + 2)
−1

, (1) = 1

Exercise 2.158 0 = + sin 10, (0) = 0
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Exercise 2.159 0 = + sin 10, (0) = 0

Exercise 2.160 0 = −2+ 2, (0) = 0

Exercise 2.161 0 = −2+ 2, (0) = −1

Suppose the size of a tumor grows according to the following law: the per unit size rate

of growth is a decreasing function of time (). Then 0 = () or 0 = () Solve the
initial value problem (0) = 0 for each of the growth rates below. In all cases   0   0
and 0 are constants.

Exercise 2.162 () = −

Exercise 2.163 () = 0 + −

Exercise 2.164 () =  (1 + )−1

Exercise 2.165 () = 0 +  (1 + )−1

Exercise 2.166 () =  (1 + 2)
−1

Exercise 2.167 () = 0 +  (1 + 2)
−1

____________________________________

Exercise 2.168 A chemical substance is dissolved in a fluid contained in a container Fluid

flows into the container at a rate   0 and out of the container at rate   0. The
concentration of the substance in the entering fluid is  If we denote the amount of the

substance in the container at time  by (), then  satisfies the equation

0 =  − 

+ 0


where  = − and 0 ≥ 0 is the initial amount of fluid in the container. If the container
initially contains no chemical substance, then (0) = 0 Suppose the volume of the container
is 10 and the initial volume of fluid is 0 = 2
(a) Find a formula for the general solution when the volume of fluid in the container

remains constant, i.e.,  = . Then solve the initial value problem. Use your answer to

find the long term concentration in the container.

(b) Suppose the inflow rate is twice the outflow rate, i.e.,  = 2. Find the general
solution. Then find a formula for the solution of the initial value problem. What is the con-

centration at the moment the container is full? Is it more or is it less than the concentration

in the incoming fluid?

Suppose a population  = () is grows (decays) exponentially according to the equation
0 = . Suppose this population is subject to immigration (seeding) and emigration (har-

vesting) at rate () Interpret the immigration/ emigration rate () and then find a formula
for the solution of the initial value problem (0) = 0.
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Exercise 2.169 () = − sin 

Exercise 2.170 () = −

Exercise 2.171 () = 1 + 2 cos 

Exercise 2.172 () = −1 + 2 cos 

Exercise 2.173 Consider the initial value problem

0 =
¡
100sin 40 cos 40

¢
, (0) = 1

(a) Use a computer program to approximate the solution  at  = 23
(b) Use a computer program to graph the solution. Describe the important features of the

graph.

(c) Find a formula for the solution of the initial value problem and use your answer to

calculate  at  = 23. Compare this answer with the results in (a).
(d) Describe the important features of the graph of the solution found in (c) and compare

your answer with your description in (b).

Exercise 2.174 Consider the initial value problem

0 = 100 cos(1002) (0) = 1

(a) Use a computer program to approximate the value (1) of the solution at  = 1
(b) Use a computer program to graph the solution on the interval 0 ≤  ≤ 1. Describe

the important features of the graph.

(c) Find a formula for the solution of the initial value problem and use is to calculate

(1). Compare the answer with that obtained in (a).
(d) Describe the important features of the graph of the solution found in (c) and compare

your answer with your description in (b).

Without finding a formula for the solution of the equation determine the asymptotic

dynamics of each of the following autonomous equations. Draw the phase line portrait. In

Exercise 2.181 - 2.184, in which  is a constant, find all bifurcation values.

Exercise 2.175 0 = −05+ 1

Exercise 2.176 0 = − 3

Exercise 2.177 0 = −+ 2

Exercise 2.178 0 = 001− 1

Exercise 2.179 0 = −+ 7

Exercise 2.180 0 = 3
2
− 
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Exercise 2.181 0 = (2− 1)+ 1

Exercise 2.182 0 = −+ 

Exercise 2.183 0 = (2 − 1)+ 1 + 

Exercise 2.184 0 = (ln )− ln 2,   0

Exercise 2.185 (a) Use a computer program to investigate the asymptotic dynamics as

 → +∞ of the equation 0 = (− − 2) − 1, 0    1. Describe how the asymptotic
dynamics depend on the parameter  Find (approximately) any bifurcation points for .

(b) Formulate a conjecture about the phase line portraits as they depend on .

(c) Prove or disprove your conjectures by utilizing the theorems in the Sec. 2.4.

For each equation find a formula for a periodic solution. Discuss the asymptotic dynamics

as → +∞ of all other solutions.

Exercise 2.186 0 = + sin 10

Exercise 2.187 0 = + sin 10+ cos 10

Exercise 2.188 0 = −+ sin 10+ cos 

Exercise 2.189 0 = −3+ 2 sin  cos 

Find a formula for the general solution of the following equations in which  is a constant.

Exercise 2.190 0 = + 2 sin 2

Exercise 2.191 0 = − 3 cos 

Exercise 2.192 Consider the initial value problem equation 0 = −+05 sin 2 (0) = 0,
where   0 is a constant.
(a) Use a computer program to study the solution for selected values of , ranging from

 = 01 to 50. The solutions will approach periodic oscillations as  → +∞. Formu-

late conjectures about how the period, amplitude and phase of this oscillation depend on

. Relate these properties of the oscillation to the nonhomogeneous nonhomogeneous term

() = 05 sin 2.
(b) Find a formula for the solution of the initial value problem.

(c) Use the formula in (b) to prove (or disprove) your conjectures in (a).

Exercise 2.193 In this exercise you are asked to prove the linear equation 0 =  + ()
has exactly one periodic solution of period T when  6= 0 and () is a periodic solution of
period  .

(a) Prove () is a periodic solution if (0) = ( ). (Hint: show the function () =
(+  ) is a solution.)
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(b) Use the Variation of Constants Formula to prove there exists exactly one initial con-

dition 0 for which the condition in (a) holds.

(c) Prove   0 implies all other solutions tend to the unique periodic solution as  →
+∞. Prove   0 implies no other solution tends to the unique periodic solution as → +∞
(and are in fact exponentially unbounded).

(d) Apply these results to the equation 0 = (−03) + (2 + cos 2)−1. Use a computer
program to study and then describe the periodic solution. Can you find a formula for the

periodic solution?
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Chapter 3

Nonlinear First Order Equations

In Chapter 2 we learned to solve and analyze linear first order differential equations. We

now turn our attention to nonlinear equations. In general, nonlinear equations are more

difficult to solve and analyze than are linear equations. The Fundamental Existence and

Uniqueness Theorem 1.1 in Chapter 1 tells us, under very general conditions, that nonlinear

equations do have solutions. For specialized types of nonlinear equations mathematicians

have developed methods for obtaining formulas for the solutions. Although such methods

can be useful, applications frequently do not involve equations of these specialized types. In

these cases, we must turn to other methods of analysis.

In an application that involves a differential equation one generally wants to answer

specific questions about solutions. For example, one may want to know whether the solution

has zeros or not; whether it is increasing or decreasing; whether it has maxima or minima;

whether it is periodic; whether its graph has an asymptote; and so on. If we can “solve” the

equation, in the sense of obtaining a formula for solutions, then we could use the solution

formula to answer such questions. This approach is possible only for those special types of

equations for which solution methods are available and tractable. Otherwise we will have to

use other methods to obtain answers to our questions. It turns out, in fact, that methods are

available for certain types of analysis that are often much easier to use even when solution

formulas are readily obtainable. This chapter begins with a study of a very important class

of nonlinear equations, called “autonomous” equations, for which this is the case. In this

chapter we will see that a great deal can be learned about solutions of autonomous equations

directly from the equation itself, without the need of a solution formula. These “qualitative”

methods of analysis serve as a basic introduction to the modern theory of dynamical systems.

Of course solution formulas, when available, can be useful. Autonomous equations (stud-

ied in Sec. 3.1) are a special case of so-called “separable” equations for which a method

is available to calculate solution formulas. The solution method for separable equations is

covered in Sec. 3.2. Finally, in Sec. 3.3 we study one classic method for calculating formulas

that approximate solutions.

75
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3.1 Autonomous Equations

An important class of first order differential equations are those in which the independent

variable  does not explicitly appear on the right hand side :

0 = ()

Equations of this kind are called autonomous. (See Exercise 3.1.) In Chapter 2 we studied

linear autonomous equations (when () =  +  for constants  and ). Examples of

nonlinear autonomous equation are

0 = 
³
1− 



´


0 = − (− ) |− |
0 = 98− 0

2

provided all the parameters (     and 0) are constants. The first equation arises

in applications from many disciplines, including population dynamics, and is called the

“logistic” equation. The second equation arises in the study of the heating and cooling of

objects. The third equations describes the motion of an object falling near the surface of

the earth under the influence of gravity and frictional forces.

An equation that is not autonomous is called non-autonomous . The independent variable

 appears explicitly in a non-autonomous equation. For example, the linear equation 0 =
 + sin  is non-autonomous. Another example arises from the logistic equation when one

of its constants  or  is replaced by a function of  For example, the non-autonomous

equation

0 = 

Ã
1− 

0 +  sin
¡
2


¢!

arises in population dynamics.

3.1.1 Basic Properties of Solutions

Consider an autonomous differential equation

0 = () (3.1)

We assume () is defined and continuously differentiable on some interval  of  values.
Then, for each initial conditions 0 from the interval , the fundamental Existence and

Uniqueness Theorem 1.1 implies the initial value problem (0) = 0 has a unique solution

(for any 0). For most equations we study, () is continuously differentiable for all  or, in
other words, the interval  is the entire real number line.

It is possible for an autonomous equation (3.1) to have a constant solution, that is to say,

to have a solution () =  where  is a real number. (The graph of such a solution is a

horizontal straight line.) Since the derivative of a constant equals zero, a constant solution

() =  must satisfy  () = 0. In other words, constant solutions correspond to the roots
of ()
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Definition 3.1 A constant solution of (3.1) is called an equilibrium (or a rest point or a

critical point). Equilibria are the roots of ()

To find the equilibria of an autonomous equation (3.1) we must solve the equilibrium

equation

() = 0

Example 3.1 The equilibrium equation of the autonomous differential equation

0 =
1

3

¡
1− 3

¢
is

1

3

¡
1− 3

¢
= 0

This polynomial has one (real) root  = 1 and therefore the differential equation has one
equilibrium  = 1.
Another example is the equation

0 = 2 − 1

whose equilibrium equation

2 − 1 = 0
has two roots ±1. This differential equation has two equilibria

 = 1 and  = −1

x

x

a2/(b2 + x4)

Figure 3.1

The equilibrium equations of some differential

equations are not easily solved by hand. Graphic

methods or numerical approximation methods (us-

ing a computer or calculator) often help determine

the equilibria of a differential equation.

Example 3.2 Consider the autonomous equation

0 =
2

2 + 4
− 

in which  and  are nonzero constants. It is not

possible to solve the equilibrium equation

2

2 + 4
−  = 0

for  algebraically. However, rewriting the equation as

2

2 + 4
= 
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and plotting the right hand side and the left hand side on the same graph, we see that these

graphs intersect in exactly one point (no matter what the nonzero values of  and  are). See

Figure 3.1.

For particular cases in which  and  have specified numerical values, we can use a

computer or hand calculator to obtain accurate approximations to the root of the equilibrium

equation. For example, with  =  = 1 the equilibrium equation becomes

1

1 + 4
−  = 0

Using a computer or calculator, we find the root of this equation to be approximately  ≈
07549.

We now turn our attention to non-equilibrium solutions of autonomous equations. Unlike

equilibrium solutions, non-equilibrium solutions might not be defined for all . We saw

examples in Chapter 1 (Examples 1.3 and 1.7). We denote the maximal interval on which a

solution  = () is defined by     . This means there is no larger interval containing

     on which the solution  = () is defined. For equilibria  = −∞ and  = +∞.
For non-equilibrium solutions one or both of the end points  and  may be finite.

0 2 4 6 8 10 12

t

-1.0

-0.5

-0.0

0.5

1.0

1.5

2.0

x

Figure 3.2

We begin our look at non-equilibrium solutions with

two motivating examples.

Example 3.3 Consider the autonomous equation

0 =
1

3

¡
1− 3

¢
 (3.2)

Figure 3.2 shows computer generated graphs of solutions

for a selection of initial values (0) = 0. Further com-

puter experimentation, using a wider selection of initial

values, will show these graphs are typical. The non-

equilibrium graphs in Figure 3.2 all appear to approach the

limit 1 as  → +∞ and to do so in a strictly monotonic

fashion (i.e., the solutions are either strictly increasing or strictly decreasing). Note that

 = 1 is the equilibrium solution of equation (3.2). These numerical examples and observa-
tions encourage us to conjecture that all non-equilibrium solutions monotonically approach

the equilibrium  = 1 as  → +∞. We must remain cautious in making this conjecture,
however, since computer examples cannot prove general statements like this. This is because

it is possible to investigate only a finite number of examples and also because one cannot be

sure what the graphs of solution are like outside the display window.

In Example 3.3 we conjectured, on the basis of some computer explorations, that all

non-equilibrium solutions of the equation (3.2) monotonically approach an equilibrium as

 → +∞. This is one possibility for non-equilibrium solutions of autonomous equations;

there are others, however. For example, all non-equilibrium solutions () = 0
 of the lin-

ear autonomous equation 0 =  are monotonic, but do not approach the equilibrium  = 0.
Instead they are unbounded, either increasing without bound (“blowing up”) if 0  0 or
decreasing without bound (“blowing down”) if 0  0 as → +∞ For nonlinear autonomous

equations some non-equilibrium solutions approach an equilibrium while others are un-

bounded. Here is an example.
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-3 -2 -1 1 2 3

-1

1

 t 

x

Figure 3.3. The slope field asso-

ciated with equation  = 2− 1
and graphs of selected solutions.

Example 3.4 The differential equation

0 = 2 − 1
has equilibria  = −1 and  = 1. We can use a com-
puter to explore the graphs of selected non-equilibrium solu-

tions. Figure 3.3 shows the slope field and several solution

graphs. The graphs of the equilibria are horizontal straight

lines. The non-equilibrium solutions displayed in Figure

3.3 are monotonic. Those with initial values (0) = 0
lying between the equilibria −1 and 1 are decreasing and
those with initial values outside this interval are increas-

ing. From these computer explorations we conjecture that

all non-equilibrium solutions with initial values between −1
and 1 are decreasing (approaching the equilibrium  = −1 as → +∞). We also conjecture
that all other non-equilibrium solutions are increasing; those with initial conditions 0  −1
appear to approach the equilibrium  = −1 and those with 0  1 appear to be unbounded
as → +∞.

While the computer explorations in Examples 3.4 and 3.3 do not prove the conjectured

monotonicity of non-equilibrium solutions for those nonlinear autonomous equations, the

conjectures turn out to be true. In fact the conjecture is true for all autonomous differential

equations, as the following theorem asserts.

Theorem 3.1 (Monotonicity of Solutions) Assume () is continuously differ-
entiable. All non-equilibrium solutions of the autonomous equation 0 = () are
strictly monotonic, i.e., non-equilibrium solutions are either strictly increasing

or strictly decreasing. The solution of the initial value problem

0 = () (0) = 0

is an equilibrium if (0) = 0, is strictly increasing if (0)  0 or is strictly
decreasing if (0)  0.

To see why this theorem is true consider a non-equilibrium solution  = () of the
autonomous equation (3.1) on the (maximal) interval     . First, note that this

solution can never, for any value of , equal an equilibrium . (In other words, the graph of

the solution  = () in the  -plane can never intersect the horizontal straight line graph
of an equilibrium .) The reason for this is as follows. Suppose () did equal  at some
value of  say at  = ∗ Then there would exist two different solutions of the initial value
problem

0 = () (∗) = 

namely, the non-equilibrium solution () and the equilibrium solution  itself. This would
contradict the Existence and Uniqueness Theorem 1.1 (specifically, the uniqueness assertion
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of the Theorem). From this contradiction we conclude that () cannot equal an equilibrium,
that is to say a root of (), for any value of . In other words, we have shown that (()) 6= 0
for all . This means either 0() = (())  0 or 0() = (())  0 on the whole interval
    . In the first case the solution  = () is strictly increasing and in the second
case it is strictly decreasing. This is the conclusion of Theorem 3.1.

Example 3.5 For the equation 0 = (1− 3) 3 in Example 3.3 an initial value 0  1 im-
plies (0) = (1− 30) 3  0 and Theorem 3.1 implies the solution is strictly increasing. On
the other hand, an initial value 0  1 implies (0)  0 and the solution is therefore strictly
decreasing. This application of Theorem 3.1 proves the monotonicity conjecture concerning

non-equilibrium made in Example 3.3.

For the equation 0 = 2− 1 in Example 3.4 we see  (0) = 20− 1  0 for −1  0  1.
By Theorem 3.1 solutions associated with these initial conditions are strictly decreasing. For

initial conditions satisfying 0  −1 or 0  1 we see  (0)  0 and the solutions are
strictly increasing.

In Examples 3.3 and 3.4 we conjectured that non-equilibrium solutions either approach

an equilibrium or increase (decrease) without bound as  increases. We now investigate these

alternatives for solutions of general autonomous equation.

A function  = (), defined on an interval     , is said to be bounded above if

there is a number  such that () ≤  for all  from the interval. It is bounded below if

there is a number  such that  ≤ () holds on the interval.
If  = () is increasing (or decreasing) on an interval      and is bounded above

(or below), then the limit

lim
→

() = 

exists. If  = () is increasing (or decreasing) on an interval      and is not bounded

above (or below), then we write

lim
→

() = +∞ (or −∞).

Here we allow the possibility that  = +∞.
The exponential  =  is an example of a solution of an autonomous equation (namely,

0 = ) that is not bounded above on its interval of definition −∞    +∞. It is, however,
bounded below (with  = 0 for example). On the other hand, solution  = − is bounded
above (with  = 0), but not below.
It is also possible that a solution is not be bounded above (i.e., it may “blow up”) even

when its interval of definition is finite. For example,  = tan  is a solution of the equation
0 = 2 + 1 on the interval −2    2. This solution is neither bounded above (since
lim→2 tan  = +∞) nor bounded below (since lim→−2 tan  = −∞). Graphically the
solution has vertical asymptotes at  = ±2.
Now we turn our attention to bounded solutions of an autonomous equation 0 = ().

Since non-equilibrium solutions are either strictly increasing or decreasing there are two

cases to consider as  → , namely, increasing solutions that are bounded above and de-

creasing solutions that are bounded below. We consider increasing solutions bounded above.

Decreasing solutions bounded below can be treated in a similar way.
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Let  = () be an increasing solution of 0 = () that is bounded above on its interval
of definition     . Exercise ?? shows that such a solution must exist for all   , i.e.,

 = +∞. Let  denote the limit
lim

→+∞
() = 

Because () is increasing and approaches a limit (in other words, its graph approaches a
horizontal asymptote) the derivative 0() must approach 0. Thus,

lim
→+∞

0() = lim
→+∞

 (()) = 0

On the other hand, because () is a continuous function of  we have that

lim
→+∞

0() = lim
→+∞

 (()) = 

µ
lim

→+∞
()

¶
= ()

We conclude that  () = 0. In other words, the limit  is a root of () and hence is an
equilibrium of the differential equation.

We have shown that an increasing solution of an autonomous equation, bounded above,

must approach an equilibrium as → +∞ Conversely, if there is an equilibrium  greater

than the initial value 0 of an increasing solution, then the solution is certainly bounded

above (take  = ). In summary, an increasing solution is bounded above if and only if

there is an equilibrium greater than its initial value 0

Similar facts about decreasing functions that are bounded below can be derived in an

analogous way. We summarize these findings in the following theorem.

Theorem 3.2 (Asymptotic Dynamics) Assume () is continuously differentiable
for all  and consider the initial value problem

0 = ()

(0) = 0

Let  = () be a non-equilibrium solution (i.e., assume (0) 6= 0) and let     

be its maximal interval of existence.

If (0)  0 then  = () is strictly increasing and one of the following alter-
natives holds:

(a) if there is no equilibrium greater than 0, then lim→ () = +∞;
(b) if there is equilibrium greater than 0, then  = +∞ and lim→+∞ () = 

where  is the smallest such equilibrium.

If (0)  0 then () is strictly decreasing and one of the following alternatives
holds:

(c) if there is no equilibrium smaller than 0, then lim→ () = −∞;
(d) if there is equilibrium  smaller than 0, then  = +∞ and lim→+∞ () =

 where  is the largest such equilibrium.

In cases (a) and (c),  may be finite or +∞. In these cases, the solution “blows up” (or
“blows down”) in either a finite amount of time or as → +∞ respectively.

Using Theorem 3.2, we can prove the conjectures made in Examples 3.3 and 3.4.



82 CHAPTER 3. NONLINEAR FIRST ORDER EQUATIONS

Example 3.6 For the equation

0 =
1

3

¡
1− 3

¢
in Example 3.3, () = (1− 3) 3 has only one root, namely  = 1. Since (0)  0 for
an initial value 0  1 the solution, by part (d) of Theorem 3.2, decreases to  = 1 as
 → +∞. Since (0)  0 for an initial value 0  1, the solution, by part (b) of Theorem
3.2, increases to  = 1 as → +∞.
For the equation

0 = 2 − 1
in Example 3.4, () = 2 − 1 has two roots namely −1 and 1. Moreover, () is negative
between these roots and positive elsewhere. Therefore, a solution with initial value 0  −1,
by part (b) of Theorem 3.2, increases to  = −1 as  → +∞ The solution for an initial

value 0 between −1 and 1, by part (d) of Theorem 3.2, decreases to  = −1 as  → +∞

Finally, the solution for an initial value 0  1, by part (a) of Theorem 3.2, increases without
bound as →  (Exercise 3.117 shows  is finite in this case.)

A similar investigation can also be made of non-equilibrium solutions for decreasing 

(i.e., as → ). The result is that non-equilibrium solutions either approach an equilibrium

as → −∞ or “blow up” (or “down”) as → .

The monotonicity and limiting properties of solutions described in Theorem 3.2 are called

the asymptotic dynamics of the equation 0 = (). Using this theorem, all we need to do
in order to determine the asymptotic dynamics of an autonomous equation is find the roots

of () and determine the sign of () between the roots.

3.1.2 Phase Line Portraits

In this section we seek a convenient graphical way to summarize the asymptotic dynamics

of an autonomous equation. We do this by means of the phase line portrait. We begin with

an example.

-1

0

1

2

3

x2 - 1

x

x

-1

-1

1

1

Figure 3.4. The phase line portrait

for the equation 0 = 2 − 1.

Consider the equation 0 = 2 − 1 in Example 3.4,
for which () = 2 − 1. From the graph of () in
Figure 3.4 we see that the two roots −1 and 1 divide
the -axis into three disjoint intervals :

  −1 −1    1 and 1  

On the interval−1    1 where () is negative (i.e.,
where its graph is below the -axis), place an arrow

pointing to the left. This arrow indicates that solutions

with initial values in this interval are decreasing. On

the two half-line intervals   −1 and   1 where
() is positive (i.e., where its graph of () is above
the -axis) place an arrow pointing to the right. This

arrow indicates that solutions with initial values in these intervals are increasing. The result

appears in Figure 3.4. Extracting the -axis from this graph, we obtain a line divided into
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subintervals with orientations indicated by arrows. This line is the “phase line portrait”

associated with the equation 0 = 2 − 1. It summarizes the asymptotic dynamics of this
equation.

We can apply the procedure used to obtain the phase line portrait of the equation 0 =
2 − 1 to any autonomous equation 0 = (). All that we need know are the roots of ()
and the signs of () between the roots. This even includes the case when () has infinitely
many roots, provided they are isolated. A root is isolated if it can be placed at the center

of an interval in which there are no other roots. The function () = sin, with roots at
integer multiples of , is an example.

We assume from now on that the roots of () are isolated.

Definition 3.2 The phase line portrait associated with an autonomous equation 0 = ()
consists of those subintervals of the -axis created by the equilibria (i.e., the roots of ())
together with arrows pointing to the right if () is positive on a subinterval or to the left if
() is negative on a subinterval.

-0.2

0.2

x2(1 - x2)

x

x

-1 1

-1 10

Figure 3.5. The phase line

portrait for the equation 0 =
2 (1− 2) 

The phase line portrait summarizes the asymptotic dy-

namics of an autonomous equation. If the initial value 0
lies in a subinterval with an arrow pointing to the right,

then the solution with this initial value strictly increases

and approaches the right hand end point of the subin-

terval (which may be +∞) as  increases. If the initial
value 0 lies in a subinterval with an arrow pointing to the

left, then the solution with this initial condition strictly

decreases and approaches the left hand end point of the

interval as  increases (which may be −∞). (Note: the
asymptotic dynamics for decreasing  are summarized in

the phase portrait obtained by reversing the orientation

arrows.)

Example 3.7 The roots of () = 2(1 − 2) are −1 0 and 1. These three roots are the
equilibria of the equation

0 = 2(1− 2)

and they determine four subintervals of the -axis. The sign of () on each of these intervals
can be deduced from the formula () = 2(1− 2) or from the graph shown in Figure 3.5.1

Either way we obtain the phase line portrait shown in Figure 3.5.

From the phase line portrait we see, for example, that an initial condition 0  1 implies
the solution () is decreases to 1 as → +∞. Or, an initial condition satisfying 0  0  1
implies () is increases to 1 as → +∞ and approaches 0 as → −∞.

There is a connection between the phase line portrait of the equation 0 = () and the
graphs of solutions  = () in the  -plane. Equilibrium points are the (horizontal) projec-
tions of the horizontal line plots of the equilibria onto the (vertical) -axis. The subintervals

1Sometimes test points selected from the subintervals are useful. For example, in this case we calculate

(12) = 316  0 and conclude that () is positive on the subinterval between 0 and 1.
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of the phase line portrait are the projections of non-equilibrium solution graphs onto the -

axis. Thus, the subintervals in the phase line portrait are the ranges of non-equilibrium solu-

tions. This is illustrated in Figure 3.6 for the equation 0 = 2−1. In Figure 3.6 arrows have
been added to the graphs of the solutions, indicating the direction of increasing , so that one

can see how the monotonicities of solutions determine the orientations in the phase line por-

trait.

-5 -3 -1 1 3 5

-2.5

2.5

t

x

Figure 3.6. Horizontal projections

of solution graphs of an equation

0 = () produce the phase line
portrait on the (vertical) -axis.

The oriented subintervals in the

phase line portrait are the orbits of

the equation.

Definition 3.3 The range of a solution  = () of an
autonomous equation 0 = (), together with an orien-
tation in the direction of increasing , is called the orbit

associated with the solution.

The roots of (), which are points on the phase
line portrait, are the orbits associated with equilibrium

solutions. Notice, however, that many different non-

equilibrium solutions project to the same orbit. In gen-

eral, infinitely many solutions share the same orbit.

An example is seen in Figure 3.6 where all solutions

with initial values between −1 and 1 project onto the
same orbit, namely the subinterval −1    1. The
equation 0 = 2 − 1 has infinitely many solutions, but
only five orbits: two equilibrium (point) orbits and three

non-equilibrium (subinterval) orbits.

Example 3.8 Orbits of the equation

0 = 2(1− 2)

are displayed the phase line portrait in Figure 3.5. There are four non-equilibrium orbits,

namely the four intervals

  −1 −1    0 0    1 1  

oriented to the left, right, right, and left respectively. There are also three equilibrium orbits

at the equilibria  = −1, 0, and 1 for a total of seven orbits.

x



 

  







Figure 3.7. Phase line portrait for

0 = sin

In the following example there are infinitely many equi-

libria and non-equilibrium orbits.

Example 3.9 The roots of () = sin are

 =   = 0 ± 1 ± 2  .
These equilibrium orbits of the equation 0 = sin deter-
mine infinitely many non-equilibrium orbits, namely the

intervals between integer multiples of  i.e.    

( + 1)  = 0 ±1 ±2  . The phase line portrait
appears in Figure 3.7.
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Phase line portraits for linear autonomous equations are particularly simple, as we see in the

next example.

Example 3.10 If  6= 0 the linear equation
0 = + 

has one equilibrium  = − and two non-equilibrium orbits, namely the intervals  

− and −  . If  = 0 and  6= 0, there is no equilibrium. As a result there is only
one orbit, namely the whole -axis, with a right orientation if   0 and a left orientation
if   0. (If both  = 0 and  = 0, then every point is an equilibrium and the equilibria are

not isolated.)

0 = +  phase line portrait

  0 −→ − 


←−

  0 ←− − 


−→

 = 0   0 −→
 = 0   0 ←−

An (isolated) equilibrium separates two non-equilibrium orbits in a phase line portrait.

As a result there are a limited number of possible orbit configurations near this equilibrium

(in fact, only three). The possibilities are listed in Figure 3.8.

Equilibrium Type Phase Line Portrait

attractor −→  ←−
repeller ←−  −→
shunt

½ −→  −→
←−  ←−

Figure 3.8. The phase line portraits in the neighborhood of an isolated equilib-

rium.

Definition 3.4 Consider an autonomous equation 0 = () where () is continuously
differentiable for all . Assume the roots of () are isolated.
An equilibrium is called an attractor (or a sink) if the orientation arrows of both adjacent

orbits point towards it.

An equilibrium is called a repeller (or a source) if the orientation arrows of both adjacent

orbits point away from it.

An equilibrium is called a shunt if the orientation arrows of both adjacent orbits point

in the same direction.

For linear equations 0 =  +  these definitions of an attractor and a repeller are the

same are those given in Chapter 2. However, attractors and repellers of linear equations

have a property that attractors and repellers of a nonlinear equation might not have. For

linear equations all orbits move toward an attractor and all non-equilibrium orbits move

away from a repeller. This is not necessarily true for nonlinear equations.

For example, from the phase line portrait of the equation 0 = 2(1−2) in Figure 3.5 we
see that the equilibrium  = −1 is a repeller, the equilibrium  = 0 is a shunt and the equi-
librium  = −1 is an attractor. Here is another example.
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rx(1-x/K)

x

x
0

K

K

Figure 3.9. The graph of () =
(1−) together with the phase
line portrait of logistic equation.

Example 3.11 The parabolic graph of the quadratic

function

() = 
³
1− 



´


appears in Figure 3.9 for positive constants  and .

From this graph we obtain the phase line portrait in Fig-

ure 3.9 for the logistic equation

0 = 
³
1− 



´


The equilibrium  = 0 is a repeller and the equilibrium
 =  is an attractor.

From the geometric way by which the graph of ()
is used to construct phase line portraits, we obtain straightforward geometric tests for the

three different types of equilibria in Definition 3.4. See Figure 3.10.

Theorem 3.3 (Geometric Test) Suppose that  =  is an isolated equilibrium of

0 = (). Then  is :

an attractor (or a sink) if and only if the graph of () decreases through ;
a repeller (or a source) if and only if the graph of () increases through ;
a shunt if and only if the graph of () has a (local) extremum at .

xe

x
xe

x

xe

x
xe x

Figure 3.10. If the graph of () decreases or increases through the equilibrium
 as in the upper two graphs, then the equilibrium is an attractor or a repeller

respectively. If the graph of () has an extremum at the equilibrium , as in

the lower two graphs, then the equilibrium is a shunt.

The graph of () = 2(1− 2) shown in Figure 3.5 illustrates this theorem. The graph
increases through the root −1 has a (local) minimum at the root 0 and decreases through
the root 1. For the differential equation 0 = 2(1−2) this implies the equilibrium  = −1
is a repeller,  = 0 is a shunt, and  = 1 is an attractor.
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Another example is provided by the graph of () =  (1− ) in Figure 3.9, which
is seen to increase through the root 0 and decrease through the root . Theorem 3.3 implies
 = 0 is a repeller and  =  is an attractor for the logistic equation 0 =  (1− ).
The monotonicity of a function () at a point  =  is related to its derivative 

evaluated at this point, which we denote by

()



¯̄̄̄
=

or sometimes more concisely by




¯̄̄̄




If | 6= 0 then the function () cannot have an extremum at  and it either decreases
through  (if |  0) or increases through  (if |  0). Thus, we can use the
derivative of (), evaluated at an equilibrium , to determine whether  is an attractor

or a repeller, provided this derivative does not vanish.

Definition 3.5 Suppose  is an equilibrium of 0 = (). If

()



¯̄̄̄
=

6= 0

then  is called hyperbolic.

This definition is consistent with that given in Chapter 2 for a linear autonomous equation

0 =  + , since in this case () =  +  and  =  From the geometric test in

Theorem 3.3 we obtain a derivative test for the equilibrium type.

Theorem 3.4 (Derivative Test) If  is a hyperbolic equilibrium of 0 = (), then

()



¯̄̄̄
=

 0 implies  is an attractor

()



¯̄̄̄
=

 0 implies  is a repeller.

If the derivative of () evaluated at an equilibrium  equals 0 (that is to say, if the
equilibrium is non-hyperbolic), then nothing can be deduced from this theorem.

For example, for () = 2(1− 2) we find




= 2− 43

and consequently




¯̄̄̄
−1
= 2,





¯̄̄̄
0

= 0




¯̄̄̄
1

= −2

From Theorem 3.4 we conclude that  = −1 is a repeller and  = 1 is an attractor. The
equilibrium  = 0 is non-hyperbolic, however, and we cannot conclude anything about it
from this theorem. (From the geometric test we can see, however, that  = 0 is a shunt.)
Do not make the mistake of concluding that a non-hyperbolic equilibrium

must necessarily be a shunt. Although | = 0 is a necessary condition, it is not
sufficient to imply that () has an extremum at . Here is an example.
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Example 3.12 The equilibria of the equation

0 = 3 − 4

are the roots of

() = 3 − 4

namely 0 and 1 Since




¯̄̄̄
1

= −1  0

the equilibrium  = 1 is a hyperbolic attractor. Since





¯̄̄̄
0

= 0

the equilibrium  = 0 is non-hyperbolic (and Theorem 3.4 does not apply). However, ()
does not have an extremum at 0 and hence  = 0 is not a shunt. The graph in Figure 3.11
shows that () is increasing through 0 and therefore by Theorem 3.3 the non-hyperbolic

equilibrium  = 0 is a repeller.

-0.1

0.1

x
1-1

Figure 3.11. The graph of () =
3 − 4 together with the phase

line portrait of 0 = 3 − 4.

Both adjacent orbits approach an attractor as → +∞.
For this reason an attractor is called asymptotically stable

or, more commonly, simply stable. In applications a vari-

able located at a stable equilibrium returns to that same

equilibrium when slightly perturbed away. This is in con-

trast to a repeller for which such a perturbation results

in motion away from the equilibrium. For this reason a

repeller is called unstable. A shunt is also called unsta-

ble (because both adjacent orbits do not approach it as

 → +∞.) or semi-stable (because one adjacent orbit ap-
proaches it and the other does not). For more on stability

see Exercises 3.192 and 3.193.

3.1.3 The Linearization Principle

The derivative test in Theorem 3.4 is related to the “linearization principle”, one of the most

important principles in applied mathematics. Linearization is a procedure for studying solu-

tions (or orbits) of an equation 0 = () near a hyperbolic equilibrium  by approximating

() with its tangent line at .
Since () = 0 at an equilibrium , the equation of the tangent line to () at  is

 =  (− ) where

 =
 ()



¯̄̄̄
=



The graph of this tangent line approximates the graph of () near the tangent point and
therefore

() ≈  (− ) (3.3)
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for  near . Another way to arrive at this approximation is to recall the formulas for the

coefficients in the Taylor series expansion of  () centered at :

() =  () +
 ()



¯̄̄̄
=

(− ) +
¡
(− )

2¢
where 

¡
(− )

2¢
denotes all terms of powers of (− ) of order 2 and higher. We obtain

the same approximation (3.3) by ignoring all the higher order terms in (− ) and noting
that  () = 0 (because  is an equilibrium).

xe

x

f(x)

Figure 3.12. The graphs of ()
and its tangent line produce the

same phase line portrait near a hy-

perbolic equilibrium 

This suggests we may learn about solutions of

0 = () (3.4)

near an equilibrium  from the solutions of the approxi-

mating linear equation

0 =  (− )  (3.5)

In fact the phase portraits near  of these two equations

are identical if  6= 0 See Figure 3.12. The equilibrium 
is an attractor for both equations if   0; it is a repeller
for both equation if   0.
We call linear differential equation (3.5) the lineariza-

tion of the equation (3.4) at the equilibrium  We can

simplify the linearized equation by a change of variables.

Let  = −. Then 0 = 0 and the linearization becomes

0 =  where  =
 ()



¯̄̄̄
=

 (3.6)

Referring to Example 3.10 we see that the linear equation 0 =  has an attractor at

the equilibrium  = 0 if   0 and a repeller at  = 0 if   0. This fact and Theorem
3.4 imply that a hyperbolic equilibrium  of 

0 = () has the same type as that of the
equilibrium  = 0 of its linearization. This is the Linearization Principle.

Theorem 3.5 (Linearization Principle) An autonomous equation 0 = () has
an attractor (or repeller) at a hyperbolic equilibrium  if its linearization (3.6)

at  has an attractor (or repeller) at  = 0, that is to say, if   0 (or   0).

Example 3.13 The logistic equation

0 = 
³
1− 



´
,   0   0

has two equilibria  = 0 and  To apply the Linearization Principle at each of these

equilibria we evaluate the derivative




= 

³
1− 2 



´
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of () =  (1− ) at each equilibrium. Since |0 =   0, the linearization at
 = 0 has a repeller at 0. Since | = −  0, the linearization at  =  has an

attractor at 0. By the Linearization Principle the logistic equation has a repeller at  = 0
and an attractor at  = .

The Linearization Principle does not hold for a non-hyperbolic equilibrium  (i.e., when

 = 0). That is to say, the linearization at a non-hyperbolic equation cannot be used in
general to determine the phase portrait near the equilibrium. For example, graphs of 2, 3

and −3 show the equilibrium  = 0 is a shunt for 
0 = 2, a repeller for 0 = 3 and an

attractor for 0 = −3. Yet all three equations have the same linearization 0 = 0 at 0.

3.1.4 Local Equilibrium Bifurcations

Differential equations that arise in applications often contain unspecified numerical constants

called parameters or coefficients. The “radioactive decay” equation

0 = −
has one parameter, . The logistic equation

0 = 
³
1− 



´


has two parameters,  and . The “spruce budworm” equation

0 = 
³
1− 



´
− 

2

+ 2

has four parameters  ,  and .

The graph of () and consequently the phase line portrait of an autonomous equation
0 = () depend on the values assigned to the parameters appearing in (). In applica-
tions it is often important to understand how changes in parameter values alter the phase

line portrait. Parameters may change, for example, from naturally occurring events or from

deliberate (or inadvertent) manipulations by humans. Moreover, in applications parameters

have to be estimated numerically (e.g., from data) and therefore we must investigate the

phase line portrait throughout a statistical confidence interval for these estimates. Bifurca-

tion theory is the study of how changes in parameters alter the phase line portrait and the

asymptotic dynamics of an equation.

To introduce some basic ideas, consider the homogeneous linear autonomous equation

0 =  (3.7)

where  is a constant. The phase line portrait is depends on the sign of . Specifically, the

equilibrium  = 0 is an attractor if   0 and it is a repeller if   0. (See Figure 3.8.)
Thus, the phase line portrait changes in a significant way when the parameter  is increased

(or decreased) through 0. Such a radical change in the phase line portrait of an equation is
called a “bifurcation”. Thus, in the linear equation (3.7) a bifurcation occurs when  passes

through 0. This critical value 0 of the parameter  is called a “bifurcation value”.
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The phase line portrait of the linear equation 0 = − + , however, is unaltered if  is

changed. The equilibrium  =  is an attractor for all . In this case, we say that the phase

portraits remain “qualitatively equivalent” and that no bifurcation occurs.

To make the concept of bifurcation more precise we need a definition. We have been

considering autonomous equations 0 = () for which the roots of () (the equilibria) are
isolated. From now on we assume more, namely that () has at most a finite number of
roots (in which case they are necessarily isolated). Between each pair of consecutive roots,

the function () is either positive or negative. The sign of () determines the orientation
direction of the orbit between two consecutive roots in the phase line portrait. The set of

roots of () and the sequence of signs of () between consecutive roots characterize the
phase line portrait.

Definition 3.6 Assume () is continuously differentiable for all  and has at most a finite
number of roots. The number of equilibria of 0 = () and the orientation directions of the
non-equilibrium orbits (more precisely, the sequence of signs of () between consecutive equi-
libria) determine the “structure of the phase line portrait” (or the “orbit structure”)

of the equation.

Two differential equations might differ considerably, but still have the same orbit struc-

ture. For this situation we have the following terminology.

Definition 3.7 Two phase line portraits are said to be qualitatively equivalent if they

have the same orbit structure as defined in Definition 3.6.

Example 3.14 The function () = (1− )− has only the root 1. Since





¯̄̄̄
1

= −−1  0

the equilibrium  = 1 of the differential equation

0 = (1− )−

is an attractor. Figure 3.13 shows the phase line portrait for this equation. The phase line

portrait of the equation 0 = − also appears in Figure 3.13. By Definitions 3.6 and 3.7 the
phase portraits of these two equations are qualitatively equivalent.

Equation Phase Line Portrait

0 = (1− ) − −→ 1 ←−
0 = − −→ 0 ←−

Figure 3.13

If two differential equations do not have the same number of equilibria, then their phase

portraits cannot have the same orbit structure. Thus, for the qualitative equivalence of two

phase line portraits it is necessary that they have the same number of equilibria. Having

the same number of equilibria is not sufficient for qualitative equivalence, however, because

the non-equilibrium orbit orientations might not be identical. The next example illustrates

this.
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Example 3.15 Figure 3.14 shows the phase line portraits of the logistic equation

0 = (1− 


)

and the equation

0 = 2(1− 


)

where   0 and   0. Both have equilibria  = 0 and . However, the orientation of

the non-equilibrium orbits differ and therefore the phase line portraits are not qualitatively

equivalent.

Equation Phase Line Portrait

0 = (1− 

) ←− 0 −→  ←−

0 = 2(1− 

) −→ 0 −→  ←−
Figure 3.14

Sometimes phase portraits remain qualitatively equivalent as a parameter in an equation

is changed. For example, the phase line portraits of the linear equation 0 = −+  remain

qualitatively equivalent for all values of . Bifurcation theory, on the other hand, is concerned

with the loss of qualitative equivalence as a parameter is changed. Here is an example.

Example 3.16 The equation

0 = 2 −  (3.8)

has no equilibria if   0. If   0 this equation has two equilibria  = ±√. The phase
line portraits for both cases appear in Figure 3.15. The phase line portraits have the same

orbit structure and therefore are qualitatively equivalent for all negative values of . The

same is true for all positive values of . However, the phase line portraits for negative  are

not qualitatively equivalent to those for positive . They do not have the same number of

equilibria. Thus, there is a change in orbit structure as  passes through 0.

0 = 2 −  Phase Line Portrait

  0 −→
  0 −→ −√ ←− √

 −→
Figure 3.15

In the preceding example a “bifurcation” occurs at the “bifurcation value”  = 0 because
the orbit structure of the equation changes as the parameter  passes through 0. This

motivates a general definition of a bifurcation value for an autonomous differential equation

with a parameter.

Consider the equation

0 = ( ) (3.9)
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where a parameter  is included in the variable list of the function  . There may be other

parameters in an equation, but we specify as  only the parameter whose effect on the phase

line portrait we want to study. This parameter we designate as the “bifurcation parameter”.

As the bifurcation parameter  is allowed to vary over a designated interval, we require that

our basic assumptions hold:  is continuously differentiable (with respect to ) and has (at

most) a finite number of roots.

Definition 3.8 The phase line portrait of equation (3.9) is stable at 0 if its orbit structure

remains unchanged for all values of  in an interval centered on 0. If the phase portrait of

(3.9) is not stable at 0, then a bifurcation occurs at  = 0 and 0 is called a bifurcation

value.

A bifurcation occurs at 0 = 0 for the linear equation 
0 =  because the orbit structure

is an attractor for   0 and a repeller for   0. Any interval centered on 0 = 0 contains
both negative and positive values of  and therefore, by Definition 3.8, the phase portrait is

unstable at 0 = 0. In Example 3.16 0 = 0 is a bifurcation value for equation (3.8) for the
same reason.

One graphical way to describe bifurcations of an equation (3.9) is to plot the equilibria

as a function of the parameter . This is the same as plotting the graph described by the

equation

( ) = 0

in the  -plane. The resulting graph is called an equilibrium diagram or, if bifurcations

occur, a bifurcation diagram.

0.5 1.0 1.5 2.0

-1

0

1

p

xe

unstable

stable

Figure 3.16. The bifurcation dia-

gram for 0 = 2−  in which the

equilibria  = ±√ are plotted
against .

If, in addition, the equilibria type is indicated on the

bifurcation diagram graph, then phase line portraits can

be constructed from the graph at a selected value of . For

example, one might simply label the graph with letters or

words; or one might indicate attractors (the stable equilib-

ria) by solid lines and repellers and shunts (the unstable

equilibria) by dashed lines. For example, Figure 3.16 shows

the bifurcation diagram for the equation (3.8) in the Ex-

ample 3.16. This is the graph of the equation 2 −  = 0
in the  -plane. For   0 the repeller  =

√
 is plotted

as a dashed line and the attractor  = −√ is plotted as
a solid line.

One goal of bifurcation theory is to categorize different

kinds of bifurcations. We consider only the three most

basic types. The bifurcation in Figure 2.16 (Example 3.16)

is called a blue-sky bifurcation (or a saddle-node bifurcation or a tangent bifurcation).2

A blue-sky bifurcation is characterized by the following properties. For  values on

one side of the bifurcation value 0 there are two equilibria (typically a repeller

2We will learn the reason for this odd name in Chapter 8 (Section 8.5). We could also refer to this type of

bifurcation as a blue-sky bifurcation, a term that colorfully captures the fact that the two equilibria involved

suddenly appear, as if out of nowhere, as  passes through the critical value 0.
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and an attractor). These two equilibria merge to a single equilibrium  as 

approaches 0 in the limit. For  on the other side of 0 there are no equilibria

(at least near ).

xe

p

stable

stable

unstable
unstable

p0

p0

Figure 3.17. Blue-sky bifurcations.

As  passes through 0 the two equilibria “collide” and “annihilate each other”. The bifur-

cation diagram of a blue-sky bifurcation has a parabolic shape which opens either to the

right or the left and has its “nose” at the bifurcation value 0, as in Figure 3.17. This char-

acterization of a blue-sky bifurcation applies in a neighborhood of the bifurcation point (the

“nose” of the bifurcation diagram. See Remark 1 below.

The next example illustrates another basic type of bifurcation.

Example 3.17 The equation

0 = − 3

has equilibrium  = 0 for all values of  and the equilibria  = ±√ for   0 Since
( ) = − 3 and

(0 )


= 

the equilibrium  = 0 is an attractor for   0 and a repeller for   0. For   0

(±√ )


= −2  0

and both equilibria  = ±√ are attractors. For  = 0 the equation reduces to 0 = −3
whose only equilibrium is the attractor x = 0. A bifurcation occurs at 0 = 0 because the orbit
structure for   0, consisting of a single attractor, is different from that for   0, which
consists of two attractors and a repeller. All these facts are summarized by the bifurcation

diagram in Figure 3.18. This graph is found by solving the equation −3 = 0 and plotting
the solutions  = 0 and  = 2. Notice the pitchfork shape of the graph.

The bifurcation in this example, drawn in Figure 3.18, is a typical pitchfork bifurcation.
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A pitch-fork bifurcation is characterized by the following characteristics. There

are three equilibria for  on one side of 0 and only one on the other side of

0. The three equilibria merge to a single equilibrium  as  approaches 0.

typically the equilibria on the upper and lower branches of the pitchfork have

the same stability properties, i.e., are all stable or unstable, and the equilibria on

the middle branch have the opposite stability property from those on the outer

branches.

A pitchfork bifurcation diagram may open to the right (as in Figure 3.18) or to the left. See

Exercises 3.94, 3.95, and 3.96.

x

p

0 = − 3 Phase Line Portrait

  0 → 0 ←
 = 0 → 0 ←
  0 → −√ ← 0 → √

 ←

Figure 3.18 The pitchfork bifurcation of − 3.

The following example illustrates a third type of basic bifurcation.

Example 3.18 The equation

0 = − 2

has equilibria  = 0 and  =  for all values of  Since ( ) = − 2 and

(0 )


= 

the equilibrium  = 0 changes from an attractor when   0 to a repeller for   0. Since

( )


= −

the equilibrium  =  is a repeller for   0 and an attractor for   0 (exactly the opposite
of the situation for the equilibrium  = 0). For  = 0 the equation reduces to 0 = −2
whose only equilibrium is a shunt at x = 0.
The orbit structure for  6= 0 is different from the orbit structure for  = 0 and therefore

a bifurcation occurs at 0 = 0. The bifurcation diagram in Figure 3.19 summarizes all these

facts.
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x

p

Phase Line Portrait

  0 ←−  −→ 0 ←−
 = 0 ←− 0 ←−
  0 ←− 0 −→  ←−

Figure 3.19. The transcritical bifurcation of 0 = − 2.

The bifurcation in the preceding example is called transcritical.

A transcritical bifurcations is characterized by the crossing of two equilibrium

branches in the bifurcation diagram. There are two equilibria on each side of the

bifurcation value 0 which merge to a single equilibrium  at 0. Moreover, the

equilibrium type on each branch changes as  passes through 0 This is called an

exchange of stability and it is a typical feature of transcritical bifurcations.

Remark 1 The descriptions above for the three basic bifurcations (as based on numerical

counts of equilibria) are to be viewed as characterizations only when one focuses in a neigh-

borhood of the bifurcation point in the bifurcation diagram. If one zooms out and looks at a

more global picture of the bifurcation diagram, then there might well be other equilibria for

parameter values  near 0 For this reason, the three types of bifurcations defined above —

blue-sky, pitchfork, and transcritical — are called local bifurcations.

Furthermore, from a global point-of-view there can be more than one (local) bifurcations

in a bifurcation diagram. The next example illustrates this.

Example 3.19 Consider the equation

0 = 3− 3 − 

The roots of the cubic polynomial 3 − 3 −  and hence the equilibria of this equation are

not easily found algebraically. However, as we will see, it is not necessary to calculate the

roots in order to draw the bifurcation diagram.

The bifurcation diagram is the graph in the  -plane associated with the (equilibrium)

equation

3− 3 −  = 0

In principle, we want to solve this equation for  and graph the result as a function of . A

simpler way to obtain this graph, however, is to do the just opposite: solve the equation for
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 in terms of  and graph  as a function of  We can then obtain the desired bifurcation

diagram by reflecting this graph through the 450 line  =  Thus, we solve for

 = 3− 3

and graph this cubic polynomial in Figure 3.20a. The bifurcation diagram, obtained by re-

flecting this graph through the line  =  is shown in Figure 3.20b.

From the bifurcation diagram we observe that there are two saddle node bifurcations. One

is located at  = 2 and the other at  = −2. We also see that there is one equilibrium for

  −2 and one equilibrium for   2. For  between −2 and 2, however, there are three
equilibria.

To determine the type of equilibria in the bifurcation diagram we can apply the derivative

test. From () = 3− 3 −  we obtain




= 3

¡
1− 2

¢


It follows that





¯̄̄̄


= 3
¡
1− 2

¢ ½
 0 for those equilibria   −1 and   1
 0 for those equilibria −1    1

From this we have the following phase line portraits

For   −2 : −→ ◦ ←−
For −2    2 : −→ ◦ ←− ◦ −→ ◦ ←−

For   2 : −→ ◦ ←−
The bifurcation diagram in Figure 3.20 graphically summaries this information.

p = xp

p

x

x

23p x x 

3

3 3

3

3

3

3

3

‘

Figure 3.20. The bifurcation diagram for 0 = 3− 3 −  in (b) is obtained by

reflecting the graph of the cubic  = 3 − 3 in (a) through the line  = The

solid line consists of stable equilibria (attractors). The dashed line consists of

unstable equilibria (repellers).
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The method we used to obtain the bifurcation diagram in Example 3.19 is often a con-

venient one. The problem of drawing the bifurcation diagram associated with a first order

equation 0 = ( ) is the problem of drawing the graph defined by the equilibrium equa-

tion ( ) = 0 in the  -plane. Ideally we can do this by algebraically solving the equation
for  and graphing the answer as a function of . However, since we are concerned with non-

linear equations, it is usually not easy to solve this equation for  However, it is frequently

the case that the parameter  appears in the equation in a simpler algebraic way than 

does In such a case we can usually more easily solve the equation for , instead of . If we

do this and plot the answer  as a function of  in the  -plane, we obtain the sought after

bifurcation diagram by reflecting the resulting graph through the line  = 3.

In applications bifurcations often play an important and crucial role. Here is an example.

The equation

0 = 
³
1− 



´
− 

2

+ 2
(3.10)

has been used to describe the dynamics of spruce budworm populations. The variable 

denotes the number or density of the budworm population. Outbreaks of this defoliating

insect have caused major deforestations in Canada and the United States. One explanation

that has been given for the occurrence of outbreaks is based on the multiple bifurcations

that occur in the equation (3.10).

As an example, consider equation (3.10) with  = 001,  = 1, and  = 1 and  =  as a

parameter :

0 =  (1− )− 2

001 + 2
 (3.11)

To obtain the bifurcation diagram for this equation we use the procedure described above.

That is, we solve the equilibrium equation

 (1− )− 2

001 + 2
= 0

for the parameter

 =
1

 (1− )

2

001 + 2

and plot the result in the  -plane. This plot is shown in Figure 3.21a. We obtain the

bifurcation diagram in Fig 3.21b by reflecting the graph through the  =  line. In the table

below appear phase line portraits at three selected  values in the bifurcation diagram.

 = 3  = 5  = 7

←− 0 −→  ←− ←− 0 −→  ←−  −→  ←− ←− 0 −→  ←−
In Figure 3.21b we observe three bifurcations associated with equation (3.11). A trans-

critical bifurcation occurs at  = 0. For   0 the equilibrium  = 0 is an attractor (and the
budworm population goes extinct), whereas for   0 an exchange of stability occurs and
there is a positive attractor (and the budworm persists). The remaining two bifurcations

3Another way to accomplish the same thing is to relect the graph through the vertical -axis and then
rotate the result 900 clockwise.
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in Figure 3.21b are blue-sky bifurcations similar to those in Figure 3.20 in Example 3.19.

Because of these blue-sky bifurcations, the attractor undergoes discontinuous changes as 

passes through the two bifurcation values located approximately at  ≈ 384 and 555. For
example, if  is increased from small values (where the attractor is also small) to a value

larger than 555, then the attractor discontinuously jumps to a higher level. This indicates
a spruce budworm “outbreak”.

The bifurcation diagram in Figure 3.21b contains another important feature. If some

kind of control measures are put into effect to decrease  in an attempt to reverse the spruce

budworm outbreak and infestation, the budworm population (now at the higher equilibrium

level with   555) will not return to the lower equilibrium level until  is decreased below

the smaller critical value 384 At that point there is a collapse of the population to the lower
attractor. Interestingly,  = 384 (at which the outbreak is eradicated) is less than  = 555
(at which the outbreak occurs). This phenomenon is called hysteresis. It occurs in many

other applications as well.

0.1 0.3 0.5 0.7 0.9
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(b)

r

Figure 3.21. (a) shows the plot of  as a function of . (b) shows the plot of 

as a function of  i.e. the bifurcation diagram for the equation (3.11). Dashed

lines indicate unstable equilibria (repellers).

3.2 Separable Equations

In Sec. 3.1 we learned how to study the solutions of an autonomous differential equation

0 = () by constructing phase line portraits. It is also sometimes useful to have formulas
for solutions. In this section we learn a method that can (at least in principle) produce

formulas for the general solution of an autonomous equation (and, in fact, for a more general

class of equations called separable).
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Formally, the four steps are

0() = (())

1

(())
0() = 1





Z () 1

(())
 = 1Z () 1

(())
 = + 

A more concise, shorthand way of writing this method is




= ()

1

()
 = Z

1

()
 =

Z
Z

1

()
 = + 

The last equation, if the anti-differentiation can be carried out, yields an equation in  and

 It implicitly defines solutions . An explicit formula for solutions can be found if this

equation can be algebraically solved for . These formulas, explicit or implicit, yield the

general solution when all equilibrium are included. (Sometime an equilibrium will in fact be

contained in the calculated formula, but sometimes not.)

We can also use this same method on some non-autonomous equations. Here is an

example. The equation

0 = −2 (3.12)

is a particular case of the equation

0 = −   0   0 (3.13)

which arises in a model for the spread of AIDS in a population infected with the human

immunodeficiency virus HIV. We can find solution formulas for equation (3.12) as follows.

First we note that  = 0 is an equilibrium (it is a root of the right hand side of the equation).
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For non-equilibrium solutions we calculate




= −2

1


 = −2Z
1


 = −

Z
2+ 

ln || = −2 + 

|| = −
2+

 = ±−2

 = −
2

where  = ± is an arbitrary, nonzero constant. The solution  = 0 is not included in
this formula (because of the division by  in the first step of the solution method). We can

include the equilibrium solution in the formula, however, by allowing  to equal 0, with the
result that the general solution is given by the formula

 = −
2

, where  is an arbitrary constant. (3.14)

The procedure used to solve equation (3.12) is called the Separation of Variables Method.

This name derives from the first step in which the dependent variable  and the independent

variable  are separated to opposite sides of the equation (including the “differentials” 

and ). This key step in the method is possible for equation (3.12) because the right hand

side of the equation ( ) = −2 is “multiplicatively separable”, i.e., it is a product of
two factors, one depending only on  and the other only on . The method of separating

variables can be applied to any equation 0 = ( ) for which ( ) is multiplicatively
separable in this way. This suggests the following definition.

Definition 3.9 The first order equation 0 = ( ) is called separable if ( ) is multi-
plicatively separable in the variables  and , that is to say, if it can be written in the factored

form ( ) = ()().

We can find a formula for the general solution of a separable equation




= ()()

as follows. We first take note of the equilibrium solutions, which are the roots of  () = 0.
For non-equilibrium solutions, we write




= ()()

1

()
 = ()Z

1

()
+ 1 =

Z
()+ 2Z

1

()
 =

Z
()+ 
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where the two constants of integration 1 and 2 have been put together as the single arbitrary

constant  = 2 − 1. If the two integrals can be calculated (by hand and/or with the help

of integral tables or a computer), the resulting equation in  and  defines a set of solutions.

Theorem 3.6 The general solution of a separable equation 

= ()() consists of the

equilibria (roots of  () = 0) together with the solutions  defined by the equationZ
1

()
 =

Z
()+ 

where  is an arbitrary constant. This is the “implicitly” defined general solutions. If this

equation can be algebraically solved for , then the resulting formula is the “explicit” general

solution.

With a formula for the general solution in hand (implicit or explicit), one can solve any

initial value problem

0 = ()()

(0) = 0

Unless the initial condition 0 is an equilibrium, we obtain a solution formula by choosing

the arbitrary constant  so that the general solution formula satisfies the initial condition.

Alternatively, we can instead solve directly the initial value problem (without first calcu-

lating the general solution) by using definite integrals in the Separation of Variables Method.

We proceed as follows. If 0 is an equilibrium (i.e., a root of ()), the solution is this equi-
librium: () = 0. If 0 is not an equilibrium, then we calculate




= ()()

1

()
 = ()Z 

0

1

()
 =

Z 

0

()

By carrying out the indicated definite integrals (using the Fundamental Theorem of Calculus)

we arrive at a formula for the solution of the initial value problem.

Example 3.20 For example, we can find a formula for the solution of the initial value

problem

0 = −2
(1) = 10
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by the steps




= −2

− 1
2
 = 

−
Z 

10

1

2
 =

Z 

1



1


− 1

10
= − 1

 =
10

10− 9 

The next example uses separation of variables to find a formula for the solution of the

initial value problem for the famous logistic equation.

Example 3.21 Consider the initial value problem

0 = 
³
1− 



´


(0) = 0

The roots of () =  (1− ) are 0 and . If 0 = 0 the solution is the equilibrium
solution  = 0. Similarly, if 0 =  then the solution is the equilibrium solution  = . If

0 does not equal 0 or , then the solution is a non-equilibrium solution. To find a formula
for this solution we use the separation of variables method as follows.




= 

³
1− 



´
1


¡
1− 



¢ = Z 

0

1


¡
1− 



¢ = Z 

0

Z 

0

µ
1


+

1


1− 


¶
 = (− 0)

ln

¯̄̄̄


1− 


1− 0


0

¯̄̄̄
= (− 0)¯̄̄̄



1− 


¯̄̄̄
=

¯̄̄̄
0

1− 0


¯̄̄̄
(−0)

This equation defines the solution  implicitly. To find an explicit formula we must solve

this equation for  Eliminating the absolute value signs we obtain



1− 


= ± 0

1− 0


(−0)
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Which sign “+” or “−” should we use? Setting  = 0 and  = 0 shows that the “+” sign
is required. Solving for  we get, after some algebraic manipulations, the explicit solution

() =
0

0 + ( − 0) −(−0)
 (3.15)

The solution formula (3.15) shows that solutions with positive initial conditions tend to

 as → +∞, while solutions with negative initial conditions tend to −∞. We can obtain
these conclusions in a simpler way from the phase line portrait of the equation (see Example

3.15 and Figure 3.14). On the other hand, more details about the solutions are available

from the solution formula (for example, numerical values for  at specific numerical values

of ).

The initial value problem in Example 3.21 involves an autonomous equation. The next

example involves a non-autonomous, separable equation.

Example 3.22 For all constant growth rates   0 all solutions of the logistic equation

0 = 
³
1− 



´
with positive initial conditions 0  0 tend to the carrying capacity   0 as → +∞. The
equation

0 =  (1 + cos )
³
1− 



´
(3.16)

is a modification of the logistic equation in which the growth rate oscillates between 2 and 0
with period 2 and an average of . This modification accounts for oscillations in birth and
death rates that might be due, for example, to seasonal fluctuations in life cycles, food and

water supplies, temperature, etc.

Figure 3.22 shows the graphs of some numerically computed solutions for the case  = 025
and = 1. These graphs indicate that solutions with positive initial conditions tend to = 1
as  → +∞. This suggests a general conjecture: solutions of the modified logistic equation

(3.16) with positive initial conditions 0  0 tend to  as  → +∞. We can prove this
conjecture using the solution formula obtained by separating variables.

10 20 30

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 t 

x

Figure 3.22. Solutions of (3.16) for  = 025 and  = 1 and a selection of initial
conditions
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First note  = 0 and  are equilibrium solutions. For 0 6= 0 and 0 6=  we separate

variables as follows. Z 

0

1¡
1− 



¢

 =

Z 

0

 (1 + cos) Z 

0

µ
1


+

1

 − 

¶
 =  (+ sin )|0

ln

¯̄̄̄


 − 

¯̄̄̄¯̄̄̄
0

=  (+ sin )

ln

Ã¯̄̄̄


 − 

¯̄̄̄ ¯̄̄̄
0

 − 0

¯̄̄̄−1!
=  (+ sin ) 

The last equation implicitly defines the solution  To find an explicit formula we solve this

equation for : ¯̄̄̄


 − 

¯̄̄̄ ¯̄̄̄
0

 − 0

¯̄̄̄−1
= (+sin )¯̄̄̄



 − 

¯̄̄̄
=

¯̄̄̄
0

 − 0

¯̄̄̄
(+sin )



 − 
= ± 0

 − 0
(+sin )

By setting  = 0 we see “+” is the appropriate choice of sign. Solving for  we obtain the

explicit solution formula4

 = 
0

0 + ( − 0) −(+sin )
 (3.17)

This formula also gives the equilibrium solutions when 0 = 0 and 0 = .

From (3.17) we find

lim
→+∞

 = lim
→+∞


0

0 + ( − 0) · 0 = 

when 0  0, as conjectured above.
We give one more example to illustrate a final point. Whether or not one needs a solution

formula for a differential equation depends on the questions one wants to answer about the

solution. Solution formulas do not always provide an easy way to answer some questions

(which can be answered more easily other ways).

Example 3.23 We can find a formula for the general solution of the autonomous equation

0 =
1

3

¡
1− 3

¢
4A word of caution: some computer programs that perform symbolic calculus do not successfully obtain

this general solution. This is because they use
R
1
 = ln+  instead of

R
1
 = ln ||+ .
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by separating variables :

3

1− 3
 = Z

3

1− 3
 =

Z
+ 

The integral on the left hand side can be calculated using a computer program, a table of

integrals, or by hand (using partial fraction decomposition). From this calculation we obtain

ln

¯̄̄̄
¯
√
2 + + 1

− 1

¯̄̄̄
¯+√3 tan−1

µ
2+ 1√

3

¶
= +  (3.18)

This equation implicitly defines all non-equilibrium solutions. (The only equilibrium is  =
1.) The equation cannot be algebraically solved explicitly for . Moreover, because of the
complexity of equation (3.18), we cannot easily use it to determine what happens to  as

 → +∞. The answer, however, is rather easily obtained by applying the methods of Sec.
3.1.2 to () = (1− 3) 3 to obtain the phase line portrait

−→ 1 ←−

All solutions approach the equilibrium  = 1 as  → +∞ and do so in a strictly

monotonic fashion.

3.3 Approximation Formulas By Perturbation Meth-

ods

Consider the initial value problem

0 = ( ) (3.19)

(0) = 0

Under the assumptions of the Fundamental Existence and Uniqueness Theorem 1.1 (i.e.,

when  and  are continuous at  = 0 and  = 0) there is a unique solution () to
this problem. When formulas for the solution () cannot be feasibly obtainable, we can
attempt to approximate solutions in some way. For example, in Chapter 1 we learned how

to approximate the solution numerically and also how to approximate its graph.

Another approach is to obtain a formula for a function that, while not a solution itself,

is a good approximations approximation to the solution (). There are many methods
available to calculate approximation formulas, each designed for certain types of differential

equations and for approximations valid under certain conditions. Many of these methods

are based, in one way or another, on series representations of the solution that are truncated

to obtain and approximations. Power series and Fourier series as examples.

In this section we will consider only one representative example of an approximation pro-

cedure, one that is based on truncated power series, i.e. on Taylor polynomials. This method
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is a classic method which has been historically, and continues to be today, of widespread

use in the analysis of differential equations. It is designed to approximate solutions of a

differential equation by constructing Taylor polynomials in a specific coefficient that appears

in the equation.

Before we explain what this means, let’s recall some basics about Taylor polynomials

from your calculus course.

Consider a function  =  () near a point  =  The  degree Taylor polynomial of

 () centered at  =  is

 = 0 + 1 (− ) + 2 (− )2 + · · ·+  (− )

where the coefficients in this polynomial are given by the formulas

 =
1

!





¯̄̄̄
=



This notation is probably that used in your calculus course. Of course, the letters  and

 can be different. What’s important is that  is the independent variable and  is the

dependent variable.

In our use of Taylor polynomials, the independent variable will be  and the center will

be  = 0 We will also use the letter  for the coefficients, instead of . If  =  () is the
dependent variable, then the  degree Taylor polynomial of  () centered at  = 0 is

 = 0 + 1+ 2
2 + · · ·+ 

 (3.20)

where the coefficients in this polynomial are given by the formulas

 =
1

!





¯̄̄̄
=0

 (3.21)

The approximation method we consider is applicable for differential equations in which

 appears as a coefficient:

0 =  (  )  (3.22)

In this equation, we consider  to be a small parameter (hence the choice of the Greek letter

). Thus, this equation can be consider a “perturbation” of the equation obtained when

 = 0.
For example,

0 = −+ 2

is an example of an autonomous, nonlinear equation which is a perturbation of the linear

equation

0 = −
Another example, is the non-autonomous perturbation

0 = 

µ
1− 

 (1 +  sin )

¶
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of the logistic equation

0 = 
³
1− 



´


Our goal is to approximate solutions of such perturbed equations, as functions of  for

small values of . Often we want to approximate the unique solution to an initial value

problem. Other times, it might be a solution with some other specified property that we

wish to approximate (for example, a periodic solution).

Since  appears in the differential equation, the solutions  of the equation depend on .

The procedure we use to calculate perturbation approximations will be to construct Taylor

polynomials of  in terms of  (centered at  = 0), as given by (3.20) and (3.21). This
will be, yet again, an application of the Method of Undetermined Coefficients (Chapter

2, Section 2.2) applied by substituting the Taylor polynomial (3.20) into the differential

equation, performing the required operations on both sides of the equation, and equating

the results in order to determine the coefficients 0 1  .

Remark 2. Since the solution  of the differential equation is a function of  (as well as

being a function of the coefficient ), it follows that the coefficients the Taylor polynomial

(3.20) are functions of  :

 () = 0 () + 1 () + 2 () 
2 + · · ·+  () 

 (3.23)

Remark 3. Recall that two polynomials in  (or more generally, two power series in )

are identical if and only if the coefficients of like powers of  are identical. When applying the

Method of Undetermined Coefficients to the Taylor polynomial (3.23), you will need to equate

two polynomials in  (obtained from the left and right sides of the differential equation).

You do this by equating coefficients of like powers of  (or, as it turns out, as many as

possible, since the polynomials will not necessarily have the same degree). The result will

be (differential) equations to solve for the undetermined coefficients 0 ()  1 ()    ().
Remark 4. It turns out that, although the procedure is straightforward in principle,

the details of the perturbation method described here generally become formidable and

intractable for high degree perturbation approximations. For that reason we will focus our

attention on low degree perturbation approximations only.

Remark 5. When the coefficients 0 ()  1 ()    () in (3.23) are calculated by
the Method of Undetermined Coefficients so as to approximate a solution of the equation

(3.22), the Taylor polynomial  () is called the 
 degree perturbation approximation of

the solution. This method is therefore called a perturbation approximation method.

As an example, consider the initial value problem

0 = −+ 2

(0) = 1
(3.24)

We seek the first order perturbation approximation

1() = 0() + 1() (3.25)

to the (unique) solution. We calculate the coefficients 0() and 1() by substituting this
expression into the differential equation (3.24) and equating coefficients of like powers of .

For notation simplification, we drop the functional notation “()”.
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From the left hand side we get

01 = 00 + 01 (3.26)

From the right hand side we get

−1 + 21 = − (0 + 1) +  (0 + 1)
2


Both of these are polynomials in  and in order to equate them (i.e., equate the coefficients

of like powers of ) we need to write the right side of the equation as a polynomial in . In

this example, this is a straightforward algebraic calculation:

−1 + 21 = − 0 +
¡−1 + 20

¢
+ (201) 

2 +
¡
21
¢
3

Since this is a cubic polynomial in , there is no way we can make it identical to the left side

(3.26) which is a first degree polynomial in  So we match all coefficients we can, namely

the zero and first order  coefficients, leaving the 2 and 3 unmatched on the right side.

(This is what makes this an approximation and not an exact solution.) We obtain the two

(differential) equations

00 = −0
01 = −1 + 20

for the two coefficients 0 = 0 () and 1 = 1 (). Notice that these are differential equations.
Remark 6. Since the coefficient matching only involve  terms up to order one (as will

always be the case when calculating 1 ()), we could have ignored the 
2 and 3 terms on

the right side of the differential equation and written

−1 + 21 = − 0 +
¡−1 + 20

¢
+ · · ·

where the dots denote all the higher order powers in . That is to say, in so far as calculating

1 () is concerned, there is no need to waste our time in calculating higher order  terms on
the right side of the differential equation. (This observation can say a lot of work in future

problems.)

Remark 7. Also notice that the second equation for 1 involves 0. Strictly speaking

this is a system of two differential equations for two unknowns. We won’t take up the study

of systems of equations in later chapters. However, we can deal with this system in the

following way. Since the first equation for 0 does not involve 1 we can solve it for 0 We

can then use the answer in the second equation, which then becomes a single equation of 1

We have not yet involved the initial condition in the approximation method. We do so

now, in order to obtain initial conditions for the differential equations for 0 and 1.

We apply (yet again) the Method of Undetermined Coefficients to the initial condition

(0) = 1 in (3.24). That is, we substitute 1 () into the initial condition to obtain

0(0) + 1(0) = 1 + 0 · 
The reason the initial condition 1 has been written as 1 + 0 ·  is to emphasize that we are
treating it as a (constant) polynomial in  so that we can match coefficients of like powers

of . The results are 0(0) = 1 and 1(0) = 0, which lead us to the two initial value problems

00 = −0 (3.27)

0(0) = 1
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and

01 = −1 + 20 (3.28)

1(0) = 0

to solve for the coefficients 0 and 1 respectively. (Notice the “lowest order” initial value

problem (3.27) for 0 is the same as the original initial value problem (3.24) with  = 0.)
As pointed out in Remark 7 above, we now solve these two initial value problems sequen-

tially, calculating 0 first and using it in the differential equation (3.28) for 1. The (linear

homogeneous) initial value problem (3.27) has the solution

0() = −

This yields the (linear nonhomogeneous) initial value problem

01 = −1 + −2

1(0) = 0

whose solution is

1() = − − −2

Using these coefficients 0 and 1 we obtain the first order approximation

1() = − +
¡
− − −2

¢
 (3.29)

to the solution of the initial value problem (3.24).

1 2 3 4
t

0.2

0.4

0.6

0.8

1.0

x1 = e-t + (e-t - e-2t)/2

x0 = e-t

x

Figure 3.23

Remark 8. We recall that Taylor polynomials

are “nested” That is if

 = −1 + 


This, if

2 = 0 + 1+ 2
2

is a second degree perturbation approximation,

then

0 = 0

1 = 0 + 1

The graphs in Figure 3.23 of the first order

approximation 1() (with  = 12) and the ze-
roth order approximation 0() = 0 = − as approximations to the solution of the initial
value problem (3.24) with  = 12 show the extent of the accuracy of these approximations
to the exact solution of the initial value problem (whose graph is computer estimated in

Figure 3.23 as well). Also notice that 1 () is a more accurate approximation than is 0 (),
which is to be expected. We expect higher order perturbation to be more accurate than

lower order approximations.
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One can also use the perturbation method to approximate a solution of differential equa-

tion that has a desired property (rather than satisfying an initial condition). For example,

we might be interested in approximating a periodic solution of a differential equation. We

can use the perturbation method to do this by requiring that the coefficients  in (3.23)

to be periodic functions. This requires solving the linear differential equations for periodic

solutions  = (), rather than for specified initial conditions. See Exercises 3.158 and 3.159
for examples.

3.4 Chapter Summary

A great deal can be learned about the solutions autonomous equation 0 = (), without
having to calculate a formulas for solutions, by means of phase line portraits. A phase line

portrait summarizes the monotonicity properties of solutions and their asymptotic properties,

as well as the classification of its equilibria (as attractors, repellers, and shunts). We learned
several ways to construct phase line portraits, including a graphical method based on a plot

of () and a method based on the Derivative Test for equilibria. Phase line portraits form
the basis of bifurcation theory, which is the study of how phase line portraits depend on a

parameter  that appears in the differential equation. A bifurcation point 0 is a value of  at

which the phase line portrait significantly changes in a way made precise by the notion of the

qualitative equivalence of phase line portraits. We studied three basic types of bifurcations

(blue-sky, pitchfork, and transcritical) and how they can be graphically represented in a

bifurcation diagram.

Autonomous equations are an important special case of separable equations. It is possible

to find solution formulas for separable equations (including autonomous equations) by the

Separation of Variables Method provided appropriate integrals can be calculated. In general

methods are available for calculating solution formulas only for special types of differential

equations, such as linear and separable equations. In place of solution formulas, one can

instead calculate formulas for approximations to solutions. In this chapter we looked at

one example of solution approximation based on Taylor series methods. The perturbation

method calculates approximations to solutions of differential equations that contain a small

parameter.

3.5 Exercises

Exercise 3.1 If  = () is a solution of an autonomous equation 0 = () for all  show
 = ( + ) is also a solution for any constant  This shows that “translations” ( + )
of solutions of autonomous equations are also solutions. This is a defining characteristic of

autonomous equations.

Find all equilibria of the equations below. Find exact solutions, if possible. Otherwise

use a computer or calculator to obtain numerical estimates.

Exercise 3.2 0 = 2 + 2− 3
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Exercise 3.3 0 = 43 − 42 − + 1

Exercise 3.4 0 = ln
¡
2
1+

¢
Exercise 3.5 0 = −1 + 3 (1 + 2)

−1

Exercise 3.6 0 = − 2− −

Exercise 3.7 0 = 1− − ln (1 + )

How many equilibria do the following equations have? You might find different answers

for different values of . (Hint: use geometric methods to study the roots of the equilibrium

equation.)

Exercise 3.8 0 =  − 2   0

Exercise 3.9 0 = − −
2
  6= 0

Exercise 3.10 0 = − − 2 (1 + 2)
−1

   1

Exercise 3.11 0 = 4 − −   0

For which initial values 0 are the solutions of the following equations strictly increasing

and for which are they strictly decreasing? Justify your answers using theorems in the text.

Exercise 3.12 0 = (1− 4)

Exercise 3.13 0 = ln (2 + 14)

Exercise 3.14 0 =  − 2 where    are positive constants.

Exercise 3.15 0 =  (1− )  where  are positive constants.

Exercise 3.16 0 = 62 − 5+ 1

Exercise 3.17 0 = (1− ) (1− −)

For each equation below find all equilibria. Sketch a graph of () and use it to draw
the phase line portrait. Identify the type of each equilibrium.

Exercise 3.18 0 = 3 − 1

Exercise 3.19 0 = 3 − 

Exercise 3.20 0 = 3 − 2

Exercise 3.21 0 = − −
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For each equation below find all equilibria. Use the Derivative Test to determine which

are hyperbolic attractors and which are hyperbolic repellers. Otherwise use the Geometric

Test. Draw the phase line portrait. ( is a constant.)

Exercise 3.22 0 = −+ cos

Exercise 3.23 0 = 2(− 1)3(2− )

Exercise 3.24 0 = (+ 1)(− 05)4

Exercise 3.25 0 = (1− )

Exercise 3.26 0 = (1− 2)(1− 1−)

Exercise 3.27 0 = 2 − 

Exercise 3.28 0 = −3 + (1 + )2 − 

Exercise 3.29 0 = − 2(1 + 2)−1

Exercise 3.30 Find all equilibria of the equation 0 =  sin and determine which are
hyperbolic. Identify the type of all equilibria. Draw the phase line portrait.

Exercise 3.31 Find all equilibria of the equation 0 = sin2  and determine which are hy-
perbolic. Identify the type of all equilibria. Draw the phase line portrait.

For each of the phase line portraits drawn below, write down a first order differential

equation of the form 0 = (). There are infinitely many possible answers for each portrait.
The simplest approach is to use a polynomial for  ().

Exercise 3.32 −→ −3←− 3 −→

Exercise 3.33 ←− −3 −→ 3←−

Exercise 3.34 −→ 0 −→ 2←−

Exercise 3.35 ←− 1←− 10 −→

Exercise 3.36 −→ 0 −→ 1 −→

Exercise 3.37 ←− −2←− 5←−

Exercise 3.38 −→ ←−  −→

Exercise 3.39 ←−  −→ ←−

Exercise 3.40 −→ 1←− 2 −→ 3←−

Exercise 3.41 ←− 1 −→ 2 −→ 3←−
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Exercise 3.42 −→ ←−  −→ ←− ←−

Exercise 3.43 −→  −→  −→ ←− ←−

Exercise 3.44 The velocity  ≥ 0 of a falling object satisfies the equation

0 = 98− 0
2

where 0  0 is the (per unit mass) coefficient of friction. Draw the phase line portrait for
 ≥ 0. Classify the positive equilibrium. Is this equilibrium hyperbolic?

Exercise 3.45 Let  = () denote the temperature of an object. According to a modified
Newton’s Law of Cooling  satisfies the differential equation

0 =  (− )

where  is the constant environment temperature,  is a positive constant, and  is an odd

integer  ≥ 1. Draw the phase line portrait. Classify the equilibrium. Is the equilibrium
hyperbolic?

Exercise 3.46 The concentration  = () of a substrate in a container in which an enzyme
is present (in constant concentration   0) satisfies the differential equation

0 =  ( − )− 

+ 


All coefficients , ,  and  are positive constants. In this exercise let  =  =  =  = 1
and = 2 Draw the phase line portrait for  ≥ 0. Classify the equilibrium. Is the equilibrium
hyperbolic?

Find the linearization of the following equations at each of their equilibria.

Exercise 3.47 0 = 3 − 

Exercise 3.48 0 = sin

Exercise 3.49 0 =  (1− )  where  are positive constants

Exercise 3.50 0 =  − 2, where    are positive constants

Exercise 3.51 0 = 3 (1 + 2)
−1

Exercise 3.52 0 =
√
2− 42 (1 + 2)

−1

Exercise 3.53 0 = (1− )−  where 0 ≤  ≤ 14

____________________________________
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Exercise 3.54 The velocity  ≥ 0 of a falling object satisfies the equation
0 = 98− 0

2

where 0  0 is the (per unit mass) coefficient of friction. Find this equation’s positive
equilibrium, and then find the linearization at this equilibrium. What kind of equilibrium

does the linearization have? If applicable, use the Linearization Principle (Theorem 3.5) to

classify the positive equilibrium.

Exercise 3.55 Let  = () denote the temperature of an object. According to a modified
Newton’s Law of Cooling  satisfies the differential equation

0 =  (− )

where  is the constant environment temperature,  is a positive constant, and  ≥ 1 is an
odd integers. What is the equilibrium and what is the linearization at the equilibrium? If

applicable, use the Linearization Principle (Theorem 3.5) to classify the equilibrium.

Exercise 3.56 The concentration  = () of a substrate in a container in which an enzyme
is present (in constant concentration   0) satisfies the equation

0 =  ( − )− 

+ 


All coefficients , ,  and  are positive constants. In this exercise let  =  =  =  = 1
and  = 2 Find this equation’s positive equilibrium, and then find the linearization at this
equilibrium. If applicable, use the Linearization Principle (Theorem 3.5) to classify the

positive equilibrium.

Which pairs of equations have qualitatively equivalent phase line portraits? Which do

not and why?

Exercise 3.57

½
0 = 2− 3
0 = 3− 2

Exercise 3.58

½
0 = 2 + 3
0 = 3 + 2

Exercise 3.59

½
0 = +    0
0 = −2+ 1  6= 0

Exercise 3.60

½
0 = −+ 

0 = +    0

Exercise 3.61

½
0 = − −

0 = −

Exercise 3.62

½
0 = − −

0 = 
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Exercise 3.63

½
0 = (− 1)(+ 2)2
0 = (− 2)3(+ 1)10

Exercise 3.64

½
0 = (2− 1)(− 2)3
0 = (2− 1)2(− 2)3

Exercise 3.65

½
0 = 1− 2−2
0 = 2− 2−2

Exercise 3.66

½
0 = 1 + + 2   2
0 = +    0

Exercise 3.67

½
0 = −1 + 5− 2

0 = (1− )

Exercise 3.68

½
0 =  

2−1
2+1

0 = 4 − 1

Exercise 3.69

½
0 = 1− + 2 − 3

0 = −

Exercise 3.70

½
0 = 1− 4

0 = 1− 3

Exercise 3.71

½
0 = (1 + 2)
0 =  (1− 2)

Exercise 3.72

½
0 = −2 + sin 2
0 = 1

1+

Exercise 3.73

½
0 = 1
0 = −

Exercise 3.74

½
0 = (1 + sin2 )( − 1)
0 = 

Draw the bifurcation diagram for each equation below, over the indicated range of the

parameter . Locate and classify all bifurcations. Determine the stability or instability of

each equilibrium and indicate the result on your diagram.

Exercise 3.75 0 = − 2 −∞    +∞

Exercise 3.76 0 = − 1− (− 1)2 −∞    +∞
Exercise 3.77 0 =  (2 − 1− )  −∞    +∞

Exercise 3.78 0 = (− 1) (− (− 1)2) −∞    +∞
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Exercise 3.79 0 = (− 1) (− 2)  −∞    +∞

Exercise 3.80 0 = (2 − 1) (− 2)  −∞    +∞

Exercise 3.81 0 = 2 + (− 1)(− 4) −∞    +∞

Exercise 3.82 0 = (− )2 −∞    +∞

Exercise 3.83 0 = −  0    +∞

Exercise 3.84 0 =  (− 1)2  −∞    +∞

Exercise 3.85 0 =  (− 1)3  −∞    +∞

Exercise 3.86 0 = + (1− )(− 2) −∞    +∞

Exercise 3.87 0 = − (1− 1
27
2) −∞    +∞

Exercise 3.88 0 = − 3 −∞    +∞

Exercise 3.89 0 = − 4 −∞    +∞

Exercise 3.90 0 = − −
2
 0    +∞

Exercise 3.91 0 = 2
³
− −

2
´
 0    +∞

Exercise 3.92 Show all phase line portraits of the logistic equation 0 =  (1− ),
  0,   0, are qualitatively equivalent.

Exercise 3.93 A logistically growing population () satisfies the differential equation 0 =
 (1− )    0   0 If the population is harvested at a constant rate   0 then
0 =  (1− ) −  Draw a bifurcation diagram using   0 as a parameter. Identify
any bifurcations that occur. Sketch the relevant phase line portraits. What are the biological

implications of the bifurcation diagram?

Exercise 3.94 Show the bifurcation diagram of the equation 0 = − − 3 is a pitchfork

that opens to the left. Describe the stability properties of the branches.

Exercise 3.95 Show the bifurcation diagram of the equation 0 = − + 3 is a pitchfork

that opens to the right. Describe the stability properties of the branches.

Exercise 3.96 Write down a differential equation whose bifurcation diagram is a pitchfork

that opens to the left in which a repeller is exchanged between the branches.
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Exercise 3.97 Definition 3.7 of qualitatively equivalent phase portraits is based upon the

geometry of the portraits. It turns out that although this definition works well for first order

equations, it is too simplistic for systems of equation (and higher order equations). For

these “higher dimensional” problems a more general definition is needed. One common

definition is based upon the topological notion that two phase portraits are equivalent if one

can be “continuously distorted” into the other. Mathematicians make this notion precise

by using homeomorphisms. A homeomorphism is a continuous function  :  →  that

has a continuous inverse. Two equations are said to have “qualitatively equivalent” (or

“topologically equivalent”) phase portraits if by making a change of variables from  to ()
one phase portrait is mapped to the other such that orbits go to orbits with their orientations

preserved. Analytically this can be tested as follows. Consider two autonomous first order

equations

0 = ()

0 = ()

and let  = ( 0) and  = ( 0) be the solutions with initial value (0) = 0. The phase

portraits are qualitatively equivalent if there exists a homeomorphism () such that

(( 0)) = ( (0))

for all  in the domains of the solutions.

(a) Show

() =

⎧⎨⎩ 2 if   0
0 if  = 0
−2 if   0



defines a homeomorphism.

(b) Use the homeomorphism in (a) to show the phase portraits of the equations

0 = −
0 = −2

are qualitatively equivalent.

Exercise 3.98 Using the homeomorphism in Exercise 3.97 as a guide construct a homeo-

morphism () and use it to show the phase portraits of the two linear equations

0 =   6= 0
0 =   6= 0

are qualitatively equivalent if  and  have the same sign.

Find formulas for the general solution of the following equations. Implicit formulas are

acceptable when explicit formulas are not possible.

Exercise 3.99 0 = 1 + 2
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Exercise 3.100 0 = 1− 2

Exercise 3.101 0 = − −1

Exercise 3.102 0 = 1− 4

Exercise 3.103 0 = cot

Exercise 3.104 0 = 2(1− )

Find formulas for the solutions of the following initial value problems.

Exercise 3.105 0 = −4, (1) = 1
Exercise 3.106 0 = 1 + 2, () = 1

Exercise 3.107 0 = −−1−, (0) = −1
Exercise 3.108 0 = (4 − 1)−3, (0) = √2
Exercise 3.109 0 = − −1, (0) = 12

Exercise 3.110 0 = − −1, (0) = 2

Find explicit formulas for the solutions of the following initial value problems.

Exercise 3.111 0 = − −1, (0) = −12
Exercise 3.112 0 = − −1, (0) = −3
Exercise 3.113 The velocity  = () ≥ 0 of a falling object subject to constant force of
gravity and a quadratic law for the frictional force of air resistance satisfies the equation

0 = 98− 0
2

Here 98 (meters/sec2) is acceleration due to gravity and 0 is the (per unit mass) coefficient
of friction.

(a) Find an explicit formula for the general solution of this equation.

(b) If the object is dropped, then (0) = 0. Find a formula for the solution of this initial
value problem.

(c) Use your answer in (b) to calculate the limiting velocity lim→+∞ ().

Exercise 3.114 A modified Newton’s Law of Cooling yields the equation

0 =  (− ) |− |

for the temperature of an object. Here the constant  is the environmental temperature. The

positive constants  and  depend on properties of the object (its material, geometry, etc.).

(a) Find a formula for the general solution when  = 13
(b) Let 0   be the initial temperature of the object. Find a formula for the solution of

the initial value problem.

(c) Use your answer in (b) to calculate the long term temperature of the object, i.e.,

lim→+∞ 
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Exercise 3.115 Suppose () is a continuously differentiable function of  and suppose
 = () is a solution of the autonomous equation 0 = (). Show that if ((∗)) = 0 for
some value of  = ∗ then () must be an equilibrium. (Hint: note that (∗) is a root of
() and apply Theorem 1.1 to the initial value problem 0 = () (∗) = (∗))

Exercise 3.116 Find the solution of the initial value problem 0 = 2 −  (0) = 0 and

determine its maximal interval of existence     . Show that if 0  1 then   +∞

Exercise 3.117 Find the solution of the initial value problem 0 = 2 − 1 (0) = 0 and

determine its maximal interval of existence     . Show that if 0  1 then   +∞

Find formulas for the general solutions of the following equations.

Exercise 3.118 0 = 2

Exercise 3.119 0 = −1

Exercise 3.120 0 = −22

Exercise 3.121 0 = +

Exercise 3.122 0 = − 2

Exercise 3.123 0 = 2 tan

Exercise 3.124 0 = (2 − 3+ 2)

Exercise 3.125 0 = (+ 1)−4

Exercise 3.126 0 = (2 − 2) cos 

Exercise 3.127 0 = 

Find formulas for the solutions of the following initial value problems.

Exercise 3.128 0 = 2, (0) = 1

Exercise 3.129 0 +
√
 = 0, (1) = 2

Exercise 3.130 0 = (+ 1)−4, (0) = −1

Exercise 3.131 0 = + (0) = 0

Exercise 3.132 0 = 2− (1) = 

Exercise 3.133 0 = 2(2 + 2) (0) = 0

Exercise 3.134 Find a formula for the solution of the initial value problem (0) = 0  0
for equation (3.13). Use your formula to calculate lim→+∞ ().
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Exercise 3.135 Suppose () is a solution of 0 = ()() and suppose ((∗)) = 0 for
some ∗. Show () must be an equilibrium.

Find the first order perturbation approximation 1() = 0() + 1() for the solution of
the following initial value problems.

Exercise 3.136 0 = (1 + −), (0) = 2

Exercise 3.137 0 = (sin +  cos ), (0) = −1

Exercise 3.138 0 = 2−  sin , (0) = 1

Exercise 3.139 0 = −+ −2, (0) = −7

Exercise 3.140 0 = − 2 +  sin  (0) = 1

Exercise 3.141 0 = − 2 + − (0) = 1

Exercise 3.142 0 = 1 +  (1− )   (0) = 1

Exercise 3.143 0 = 2 +  (1− )   (0) = 0

Exercise 3.144 0 = sin ()   (1) = −1

Exercise 3.145 0 = sin ()   (1) = −2

Exercise 3.146 0 = 1−  exp ()   (0) = 0

Exercise 3.147 0 = 1−  exp ()   (0) = 1

Exercise 3.148 0 = −+ 3  (0) = 2

Exercise 3.149 0 = −+ 4  (0) = −1

Exercise 3.150 0 = + 1+3


1+
  (0) = 3

Exercise 3.151 0 = +1
1+(+1)

  (0) = 0

Exercise 3.152 Consider the initial value problem

0 = 4− 1
4
2 +  sin(2)

(0) = 4

(a) Find the coefficients 0() 1() in the first order perturbation approximation 1() =
0() + 1().
(b) Use a computer to graph the solution with  = 1, together with the perturbation

approximation obtained in (a). How do they compare?
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Find the initial value problems for the coefficients 0() 1() 2() in the second order
perturbation approximation 2() = 0() + 1() + 2()

2 to the solution of the following

initial value problems. Solve these initial value problems and construct the approximation

2()

Exercise 3.153 0 = −(1 +  sin ), (0) = 0

Exercise 3.154 0 = − 2, (0) = 0

Exercise 3.155 Find the recursive formulas for the coefficients () of the 
 order per-

turbation approximation () =
P

=0 ()
 of the solution of the initial value problem

0 = −+  sin  (0) = 1

Show all coefficients () except 0() and 1() are equal to 0 and that therefore the solution
has the form  () = 0() + 1().

Exercise 3.156 Consider the initial value problem

0 = 

µ
+  sin

µ
2




¶
− 

¶
 (0) = 0

obtained from Newton’s Law of Cooling for an object placed in an environment with a sinu-

soidally fluctuating temperature +  sin (2 ).
(a) Using the amplitude  of the environmental temperature oscillations as a small para-

meter, find the initial value problems for the coefficients () in the second order perturbation
approximation 2 () = 0() + 1()+ 2()

2 of the solution.

(b) Solve the initial value problems for 1() and 2().
(c) Show all coefficients () ≡ 0  ≥ 2, and therefore that the first order perturbation

approximation in fact is the exact solution.

Exercise 3.157 Consider an object falling under the influence of gravity. If we assume

the acceleration due to gravity is a constant  and air resistance exerts a frictional force

proportional to the object’s velocity  = () then 0 =  −  where   0 is the coefficient
of friction. Suppose also present is an additional small frictional force that is proportional

to 2. Then 0 = − − 2 where   0 is a small constant. Assume the object is dropped,
so that we have the initial condition (0) = 0
(a) Find the first order perturbation approximation 1() = 0() + 1() to the initial

value problem for 

(b) An approximation to the terminal velocity  of the object is the limit as → +∞ of

the first order perturbation approximation found in (a). Find this approximation.

(c) Draw the phase line portrait associated with the equation 0 =  −  − 2.

(d) Find a formula for the terminal velocity .

(e) Compare your answers in (b) and (d). (Hint: find the first terms in the Taylor series

of your answer in (d), with respect to , and compare it to your answer in (b).)
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Exercise 3.158 Consider the differential equation

0 = 

µ
1− 2

9


¶
− (1 +  sin 2) 

(a) Show the coefficients of the first order perturbation approximation 1() = 0() +
1() satisfy the differential equations

00 = 0

µ
1− 2

9
0

¶
− 1

01 = 1

µ
1− 4

9
0

¶
− sin 2

(b) In order to approximate periodic solutions  () we require that 0 () and 1 () be
periodic solutions of the equations in (a). Find all periodic solutions of the equation for

0 (). (Hint: equilibria are periodic solutions).
(c) For each periodic solution 0 () from (b) find a periodic solution of the equation for

1 () in (a).
(d) Use your answers in (b) and (c) to construct first order perturbation approximations

to periodic solutions  ().
(e) Use a computer program to obtain graphs of the periodic solutions when  = 05 and

compare them with the graphs of the perturbation approximations obtained in (d).

Exercise 3.159 Consider the differential equation

0 = 
³
1− 



´
+  sin 2

with   0,   0 and  ≥ 0. This equation models a population that normally grows
according to the logistic equation 0 =  (1− ), but which is periodically harvested and
seeded with sinusoidal rate  sin 2.
(a) When  = 0 there are two equilibria,  = 0 and . Draw the phase line portrait

What do solutions with (0)  0 do as → +∞?
(b) For small   0 find the first order approximation to a periodic solution 1() =

0() + 1() near .
(c) Show the first order approximation

(1) has period 1;
(2) has average ;

(3) has amplitude proportional to, but less than, .

(d) Use the first order approximation in (b) show the population survives indefinitely for

small  but goes extinct for large enough .

For which initial values 0 are the solutions of the following equations strictly increasing

and for which are they strictly decreasing?

Exercise 3.160 0 = 1− −,   0

Exercise 3.161 0 = (− )(− ),   = constants satisfying  ≤ 
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For each of the following equations find all equilibria and determine which are hyperbolic.

Use the derivative test in Theorem 3.4 to determine which are attractors and which are

repellers. Sketch a graph of the right hand side () and use it to obtain the phase line
portrait. Identify the type of all equilibria. ( is a constant.)

Exercise 3.162 0 = cos2 

Exercise 3.163 0 = (− 1)(− ),   0

Exercise 3.164 0 = −1 − ,  = constant

Exercise 3.165 0 = tan

Find the linearization of the following equations at each of their equilibria.

Exercise 3.166 0 = 2(1− )

Exercise 3.167 0 =  (1− )2

Exercise 3.168 0 = − −,  6= 0   0

Exercise 3.169 0 =  − −,   0   0

For each of the equations below:

(a) find all equilibria and draw the phase line portrait;

(b) classify all equilibria;

(c) determine which equilibria are hyperbolic and which are nonhyperbolic;

(d) find the linearization at each equilibrium and classify its equilibrium;

(e) apply the linearization principle (Theorem 3.5), if possible, to classify the equilibria.

If the Linearization Principle does not apply, explain why.

Exercise 3.170 0 = 3 (2− 2) (1 + 2)
−1

Exercise 3.171 0 = (1− ) (1 + 4)
−1



Exercise 3.172 0 = + 4

Exercise 3.173 0 = + −

Write down autonomous first order differential equations, using polynomials for  (),
that have the following phase portraits.

Exercise 3.174 −→ 0 −→ 1 −→ 2←−

Exercise 3.175 ←− −2 −→ −1←− 0 −→ 1 −→

Exercise 3.176 −→ ←− for   0 and ←−  −→ for   0
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Exercise 3.177 −→  −→ for   0 ←− ←− for   0

Which pairs of equations have qualitatively equivalent phase portraits?

Exercise 3.178

½
0 = 7 (1− 2) (1 + 2)

−1

0 = (+ 1)5(15− )3(2 + )

Exercise 3.179

½
0 = −
0 = −

Exercise 3.180

½
0 = 1 + 

0 = −

Exercise 3.181

½
0 = 1− 

0 = −

Determine the bifurcation points for the following equations. Determine the type of

bifurcation that occurs. Draw a bifurcation diagram.

Exercise 3.182 0 = 3(− )

Exercise 3.183 0 = + (− 1)2(+ 1)2

Exercise 3.184 0 = + −
2

Exercise 3.185 0 = 
³
+ −

2
´

Exercise 3.186 0 = 1 + (− 1)2 − 

Exercise 3.187 0 = −  (1 + 2)
−1

   0

Exercise 3.188 Find all the equilibria of the equation 0 = − + 2 where . Show all

equilibria are hyperbolic for all . Using phase line portraits, explain why a bifurcation occurs

at 0 = 0

Exercise 3.189 Find the recursive formulas for the coefficients () of the series represen-
tation

 =
∞X
=0

()


of the solution  of the initial value problem

0 = ( ()− ) (0) = 0

with  () = (1 +  sin ). Here   0   0   0 are positive constants and  is a small

constant. Show all coefficients () except 0() and 1() are equal to 0.
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Exercise 3.190 Find the recursive formulas for the coefficients () of the perturbation
approximation

() =
X
=0

()


to the solution of the initial value problem

0 = (1 +  cos ) (0) = 1

where  is a small constant.

Exercise 3.191 A tank full of water has the shape of an inverted circular cone of height 

with a very small hole at the bottom out which water is draining. The circular top of the

tank has radius . Suppose the rate at which water drains out the bottom hole at any time

is proportional to the square root of the depth of the water in the tank at that time.

(a) Derive an initial value problem for the depth  = () of water in the tank at time
. Let   0 denote the constant of proportionality and 0  0 the initial depth of water.
(HINT: the volume of water at time  is () = 2()()3 where () is the radius of the
circular surface of the water at time . Apply the balance law, 0 = inflow rate − outflow
rate, to the volume of water.)

(b) Classify the differential equation derived in (a). Discuss the application to this equa-

tion of the Fundamental Existence and Uniqueness Theorem 1.

(c) Determine the dynamics of the equation derived in (a) as time  increases. Discuss

your answer with respect to the emptying of the water out of the tank.

(d) Using a computer program explore the behavior of the solutions of the model derived in

(a). Formulate conjectures about the amount of time  it will take for the tank to empty

of water and how this length of time depends on the initial water depth 0. (For example: is

 proportional to 0? If not, what are some properties of the dependence?)

(e) Solve the initial value problem in (a). (An explicit solution is not necessary.)

(f) Use your answer in (d) to determine a formula for .

(g) Use your answer in (e) to address your conjectures in (c).

(h) A conical tank of height 9 meters is initially completely full with 100 cubic meters of

water. After one half hour the depth of water in the tank is 8 meters. How long will it take

for the tank to be half full? To be empty?

Exercise 3.192 An equilibrium  of 
0 = () is called stable if any solution  = ()

that starts close to  remains close for all  ≥ 0. Formally,  is stable if for any   0
there exists a   0 such that |0 − |   implies that |()− |   for all   0. Prove
 = 0 is stable as an equilibrium solution of the linear equation 0 =  if  ≤ 0
Exercise 3.193 An equilibrium  of 

0 = () is called asymptotically stable if it is
stable and, in addition, there is a 0  0 such that |0 − |  0 implies that |()− |→ 0
as  → +∞ Prove  = 0 is asymptotically stable as an equilibrium solution of the linear

equation 0 =  if   0

Exercise 3.194 Prove the equilibrium  = 0 is stable as a solution of the equation 0 =
−3 provided  ≥ 0 Hint: find a formula for the general solution.
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Exercise 3.195 Prove the equilibrium  = 0 is asymptotically stable as a solution of the
equation 0 = −3 provided   0 Hint: find a formula for the general solution.
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Chapter 4

Systems and Higher Order Equations

Many applications involve more than one first order differential equation for more than one

unknown function. For example, suppose one is interested in two quantities  and  that

change over time. If these quantities effect each others rates of change, then we could have

two differential equations of the form

0 = ( ) (4.1)

0 = ( )

x

Compartment 1 Compartment 2

y
rl x 

r2 y 

r3 y 

Figure 4.1

that describe how  and  effect their rates of

change 0 and 0. Examples include the interac-
tion of a predator species with a prey, a reaction

between two chemicals, and the motions of two

planetary bodies.

A common situation that gives rise to a system

of equations involves the amounts of a substance,

 and , present in two different locations or “com-

partments”. If the movement of the substance into

and out of the compartments includes exchanges

between between the compartments, then a system

of the form (4.1) arises from the balance laws

0 = inflow rate − outflow rate

0 = inflow rate − outflow rate.

For example, if the flow rates for each compartment are proportional to the amounts present

in the compartment then a typical compartment model diagram appears in Figure 4.1. This

diagram, together with the balance laws, yield the system

0 = −1+ 2 (4.2)

0 = 1− (2 + 3) 

of differential equations. A specific application As a specific example, the system

0 = −2+ 2 (4.3)

0 = 2− 5

129
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results when the coefficients are give the values 1 = 2 = 2 and 3 = 3.
Problems involving three or more quantities changing in time will lead to systems of

three or more differential equations. Examples include ecological communities involving

three or more species, reactions involving several chemical compounds, the motions of many

planetary objects, and compartmental systems with three or more compartments (such as

models of epidemics which classify individuals according to different categories with regard

to the disease: susceptible, infected, recovered, etc.).

The point-of-view for the following chapters on systems of first order differential equations

will be this: does a known theorem or method of analysis for single first order equations

remain valid for systems of first order equations? If not, can it be adapted so as to work

in some way? We will therefore use the definitions, theorems, and analytic methods learned

for single equations as guidelines for a study of systems of equations. We begin, in this

chapter by considering the Fundamental Existence and Uniqueness Theorem and see in what

why is generalizable to systems of equations. We will also see how to adapt the numerical

approximation methods used for single equations to systems of equations.

We also need to keep in mind that higher order differential equations can be written as

equivalent first order systems. Therefore, whenever we learn something about systems of

first order equations we automatically learn something about higher order equations. As we

advance through our study of systems, we will occasionally pause to remind ourselves of this

fact and have a look at higher order equations.

In the Chapter we saw how to convert a higher order equation to an equivalent first

order system. For example, the second order equation

00 + 0 +  = 0

is equivalent to the system

0 =  (4.4)

0 = −− 

of first order equations. As an application we recall that studies of an object in motion, as

described by Newton’s Laws of Motion, often give rise to second order differential equations.

For example the equation (called the “simple harmonic oscillator” equation)

00 +



 = 0 (4.5)

arises in the study of the oscillatory motion of a mass  attached to a spring suspended

from the ceiling and set in vertical motion in the absence of frictionless forces. The system

0 =  (4.6)

0 = − 




is equivalent to this second order equation.

The association between higher and systems of first order equations allows us to ap-

ply to higher order equations any solution formulas, approximation techniques, methods of
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analysis, and general results derived for systems of equations. Treating higher equations

within the context of systems provides a unified approach and an efficiency in presentation.

It also provides a natural setting for several important concepts, such as phase space and

the“dimension” of a dynamical system. (As a practical matter, most programs for solving

differential equations require the user to write a higher equation as an equivalent system.)

On the other hand, we will see in 7 that in some circumstances there are shortcut methods

for treating higher equations that do not utilize an equivalent first order system.

4.1 The Fundamental Existence and Uniqueness The-

orem

A solution of a system of first order equations

0 = (  ) (4.7)

0 = (  )

is a pair of functions  = (),  = (). More precisely we have the following definition.

Definition 4.1 A solution pair of the system (4.7) is a pair of functions  = (),  = ()
that are differentiable and reduce both equations to identities on an interval     , i.e.,

0() ≡ ( () ())

0() ≡ ( () ())

for all values of  from the interval.

Note that for a second order equation

00 = (  0)

Definition 4.1, when applied to the equivalent first order system

0 = 

0 = (  )

implies that a solution () and its derivative () = 0() are differentiable, that is to say,
that () is twice differentiable on the interval     .

For example, the formulas

 = 2−

 = −

define a solution pair for the system (4.3) for all . To see this we first calculate the derivative

0 = −2−
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and find that it is identical to

−2+ 2 = −2 ¡2−¢+ 2 ¡−¢
for all , and secondly we calculate the derivative

0 = −−

and find that it is identical to

2− 5 = 2 ¡2−¢− 5 ¡−¢
for all .

As another example, the simple harmonic oscillator system

0 =  (4.8)

0 = −

is equivalent to the simple harmonic oscillator equation

00 +  = 0 (4.9)

The two functions

 = cos 

 = − sin 

constitute a solution pair for all . This is true because 0 = − sin  identically equals , and
0 = − cos  identically equals − for all . Or equivalently 00 +  = − cos + cos  = 0 for
all .

The system (4.2) describes the rates at which a pesticide is exchanged between a stand

of trees and its soil bed. Knowing these rates is not sufficient, however, to determine the

amounts of pesticide in the trees and soil at future times. We must also know the initial

amounts present, i.e., (0) = 0 and (0) = 0. The equations

0 = −1+ 2

0 = 1− (2 + 3) 

(0) = 0 (0) = 0

constitute an initial value problem for the first order system (4.2).

It is probably not surprising that two initial conditions are necessary in order to specify a

unique solution of a system of two first order differential equations. This is because, roughly

speaking, two integrations are needed to solve the two differential equations, and as a result

two constants of integration arise in the general solution. Or put another way, the differential

equations specify the rates of change of  and , but to determine (predict) future values of

 and  initial conditions are required.
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An initial value problem for a second order equation 00 + 0 +  = 0, or its equivalent
first order system (4.4), consists of the two initial conditions (0) = 0 and (0) = 0(0) = 0.

For example, the initial value problem for the simple harmonic oscillator system is

0 = 

0 = − (4.10)

(0) = 0 (0) = 0

The equations

0 = (  )

0 = (  ) (4.11)

(0) = 0 (0) = 0

describe an initial value problem for the general first order system (4.7). The following

theorem is an extension to systems of the basic existence and uniqueness Theorem 1.1 (Sec.

1.2) for single equations.

Theorem 4.1 (Fundamental Existence and Uniqueness Theorem) Suppose (  )
and (  ) and all the (partial) derivatives

(  )




(  )




(  )




(  )


(4.12)

are continuous in   and  on intervals

     1    1 2    2

and that the initial conditions lie in these intervals. Then the initial value prob-

lem (4.11) has a unique solution pair (), () on some interval      that

contains 0.

As an example, for system (4.3) the functions (  ) = −2+2 and (  ) = 2−5
are linear in  and  and therefore continuous for all  and  (and ). Moreover, their partial

derivatives




= −2 


= 2




= 2




= −5

are all constant and therefore continuous for all  and  (and ). It follows from Theorem 4.1

that any initial value problem (0) = 0, (0) = 0 for system (4.3) has a unique solution

 = (),  = () on an interval containing 0.
Theorem 4.1 applies to the equivalent system of a second order equation and therefore

provides the existence and uniqueness of solutions for initial value problems associated with

second order equations.



134 CHAPTER 4. SYSTEMS AND HIGHER ORDER EQUATIONS

For example, by Theorem 4.1 the initial problem (4.10) for the simple harmonic oscillator

has a unique solution. This is because (  ) =  (  ) = − and the derivatives



= 0




= 1




= −1 


= 0

are continuous functions for all   and .

As a second example, consider the system

0 = 

0 = −− 
¡
2 − 1¢ 

where  is a constant. This system is equivalent to the second order equation

00 + 
¡
2 − 1¢0 +  = 0 (4.13)

(Exercise 4.31.) This famous equation, called the van der Pol equation, arises in the theory

of electric circuits. Since (  ) =  (  ) = −−  (2 − 1)  and the derivatives



= 0




= 1




= −1− 22 


= − ¡2 − 1¢

are continuous for all  and  all initial value problems (0) = 0 
0(0) = 0 have unique

solutions (on an interval containing 0 = 0).
In order to apply the Fundamental Existence and Uniqueness Theorem 4.1 it is necessary

to verify that the functions  and  and all of their partial derivatives (4.12) are continuous at

the initial conditions. However, it is often not necessary to calculate these partial derivatives.

Instead, one can rely on theorems from calculus for this purpose. For example, we know from

calculus that sums, differences, products, and composites of continuous and differentiable

functions are themselves continuous and differentiable (and so are quotients, at least where

the denominator does not equal 0).
While we will emphasize and focus on systems of two first order equations in this first

course on differential equations, we point out that the Fundamental Existence and Unique-

ness Theorem 4.1 is straightforwardly extendable to systems of any size/dimension, i.e., to

systems of any number of equations.

For example, for systems of three equations

0 =  (   )

0 =  (   )

0 =  (   )

the Fundamental Theorem for the existence and uniqueness of a solution to an initial value

problem

 (0) = 0  (0) = 0  (0) = 0
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requires that   and  and their derivatives with respect to (the state variables)   and 

at the initial be continuous at the initial condition:  = 0 0 = 0 0 = 0 0 = 0.

More generally, an initial value problem of a (so-called -dimensional) system of  equa-

tions in  unknowns 1 2     

0 =  ( 1 2     ) (4.14)

(0) = 0

where 0 and the  initial conditions 
0
1 

0
2, ... , 

0
 are specified real numbers. The Fun-

damental Existence and Uniqueness Theorem for this system requires that each function 
and all of its partial derivatives with respect to each  are continuous at  = 0 and  = 0 .

It is often notationally convenient to write systems of equations using vector and matrix

notation. This will be particularly true in the subsequent chapters on linear systems. To do

this we introduce the notation

̃ $ col ( ) =

µ




¶
̃ ( ̃) $ col ( (  )   (  )) =

µ
 (  )
 (  )

¶


Then we write the -dimensional system (4.7) as

̃0 = ̃ ( ̃) (4.15)

where by ̃0 we mean the vector of derivatives

̃0 $ col (0 0) =
µ

0

0

¶


The notation (4.15) can, in fact, be used for systems of any dimension. For example, the

initial value problem (4.14) can be written as

̃0 = ̃ ( ̃)

̃ (0) = ̃0

where

̃ $ col () =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠  ̃ ( ̃) $ col ( ( ̃)) =

⎛⎜⎜⎜⎝
1 ( ̃)
2 ( ̃)
...

 ( ̃)

⎞⎟⎟⎟⎠

̃0 $ col
¡
0
¢
=

⎛⎜⎜⎜⎝
01
02
...

0

⎞⎟⎟⎟⎠ 
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4.2 Approximation of Solutions

In this section we extend the numerical approximation methods and graphical techniques in

Chapter 1 to systems of first order equations.

4.2.1 Numeric Approximations

Consider the problem of numerically approximating the solution  = ()  = () of the
initial value problem

0 = (  )

0 = (  )

(0) = 0 (0) = 0

at points  between the initial time 0 and a chosen end point 

0  1  2  · · ·  −1   = 

To do this we follow the method used in Sec. 1.3 to approximate the solution of a single

first order equation. To get an approximation at the first point 1 we integrate both of the

equations

0() = ( () ()) (4.16)

0() = ( () ())

from  = 0 to  = 1. By the Fundamental Theorem of Calculus, together with the initial

conditions (0) = 0 (0) = 0 we obtain

(1) = 0 +

Z 1

0

( () ())

(1) = 0 +

Z 1

0

( () ()) (4.17)

We can use methods for approximating integrals to obtain numerical estimates for (1)
and (1). For example, the left hand rectangle rule applied to both integrals yields the
approximations

(1) ≈ 0 + (1 − 0)(0 0 0)

(1) ≈ 0 + (1 − 0)(0 0 0)

If we denote these approximations by 1 and 1, i.e.,

1 = 0 + (1 − 0)(0 0 0)

1 = 0 + (1 − 0)(0 0 0)

then we have the first step of the Euler Algorithm for systems.
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As in Sec. 1.3, the left hand rectangle rule yields approximations +1, +1 to the solution

values (+1), (+1) at the time +1, assuming we have approximations ,  at time .
Specifically, integrating the equations in (4.16) from  =  to +1 we have

(+1) = () +

Z +1



( () ()) (4.18)

(+1) = () +

Z +1



( () ())

and from the left hand rectangle rule

(+1) ≈  + (+1 − )(  )

(+1) ≈  + (+1 − )(  )

Thus, approximations to the solutions at  = +1 are given by the quantities

+1 =  + (  )

+1 =  + (  )

where  = +1 −  are the step sizes. In practice, equally spaced step sizes are usually

chosen. If  = +1 −  denotes a fixed step size, we obtain the Euler Algorithm for systems

+1 =  + (  ) (4.19)

+1 =  + (  ) for  = 0 1 2 3  .

Example 4.1 As an example, the Euler Algorithm formulas for the initial value problem

0 = −2+ 2
0 = 2− 5 (4.20)

(0) = 1 (0) = 0

are

0 = 1 0 = 0

+1 =  +  (−2 + 2) (4.21)

+1 =  +  (2 − 5) 
To approximate the solution pair at  = 2 using step size  = 04 the Euler Algorithm
sequentially generates approximations to the solution at the four points

1 = 04, 2 = 08, 3 = 16, 4 =  = 2.

We obtain the approximations 1, 1 at 1 = 04 from (4.21) using  = 0 as follows:

1 = 0 +  (−20 + 20) = 1 + 04× (−2 + 0) = 02
1 = 0 +  (20 − 50) = 0 + 04× (2− 5× 0) = 08
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Using these approximations for 1 2 we can now calculate the approximations 2, 2 at

2 = 08 using  = 1 in (4.21):

2 = 1 +  (−21 + 21) = 02 + 04× (−04 + 16) = 068
2 = 1 +  (21 − 51) = 08 + 04× (04− 4) = −064

Continuing this process two more times, we obtain approximations at 3 = 16 and 4 = 2.
The results are (to 6 significant digits)

3 = 2 +  (−22 + 22) = −0376000
3 = 2 +  (22 − 52) = 118400

4 = 3 +  (−23 + 23) = 0872000
4 = 3 +  (23 − 53) = −148480

5 = 4 +  (−24 + 24) = −101344
5 = 4 +  (24 − 54) = 218240

Thus, the Euler approximations to the solution pair at time  = 2 with step size  = 04 are
(to 6 significant digits)

(2) ≈ −101344 (2) ≈ 218240

 (2) ≈ (2) ≈
0.400 − 1.01344 2.18240

0.200 0.0858994 0.0429496

0.100 0.0972613 0.0486307

0.050 0.102810 0.0514046

0.025 0.105551 0.0527742

Table 4.1. Euler Algorithm approximations

to the solution of (4.20)

with decreasing step sizes.

A reduction of the step size  will increase

the accuracy of the Euler approximations, but

at the same time will increase the number of

steps and hence the amount of numerical calcu-

lations we must perform. The Table 4.1 below

shows the approximations obtained by halving

the step size several times.

The Euler Algorithm for systems has the

same order of convergence for the Euler Algo-

rithm for a single equation, namely (). Re-
call that this means the errors (|( )− | and
|( )− |) are bounded by a constant multiple
of the step size  and that they tend to zero at

the same rate that  tends to zero. Thus, if the step size  is decreased by a certain factor

(one half, one tenth, etc.), then we can expect the errors to decrease by (roughly speaking)

this same factor.

For example, in Table 4.1 the errors are approximately halved with each halving of the

step size ; see Exercise 4.26.

The Euler Algorithm is straightforwardly extended to systems of any number of first

order equations. The formulas for the initial value problem

̃0 = ̃ ( ̃) (4.22)

̃ (0) = ̃0
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are

̃+1 = ̃ + ̃( ̃)

The order of convergence remains the same, namely order one ().
In Sec. 1.3.2 we used the trapezoid rule for approximating integrals to derive the Modified

Euler Algorithm for a first order equation. If the trapezoid rule is used to approximate the

integrals in (4.18) we obtain the Modified Euler Algorithm for systems :

+1 =  +


2

¡
(+1 

∗
+1 

∗
+1) + (  )

¢
+1 =  +



2

¡
(+1 

∗
+1 

∗
+1) + (  )

¢
where

∗+1 =  + (  )

∗+1 =  + (  )

This algorithm is second order, i.e., converges at a rate (2).

  

0.0 1.00000 0.00000

0.4 0.84000 − 0.32000
0.8 0.80800 − 0.69120
1.2 0.89990 − 1.17094
1.6 1.13062 − 1.83362
2.0 1.53648 − 2.78217

Table 4.2

 (2)≈ (2)≈
0.400 1.536480 − 2.78217
0.200 0.110248 0.0544010

0.100 0.108662 0.0543216

0.050 0.108363 0.0541779

0.025 0.108293 0.0541430

Table 4.3

Table 4.2 The Modified Euler Algorithm approximations to the solution of the

initial value problem (4.20) using step size  = 04
Table 4.3 The rate at which the approximations converge as the step size 

decreases. In comparison with the Euler Algorithm approximations in Table 4.1,

this rate is considerably faster. (See Exercise 4.27.)

The Modified Euler Algorithm extends to -dimensional systems (4.22) straightforwardly:

̃+1 = ̃ +


2

³
̃(+1 ̃

∗
+1) + ̃( ̃ )

´
where

̃∗+1 = ̃ + ̃( ̃)

The order of convergence is  (2) regardless of the size of the system.
Runge-Kutta Algorithms, discussed in Sec. 1.3.2, are also available for systems of equa-

tions. For example, the fourth order Runge-Kutta Algorithm is a widely used algorithm.
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4.2.2 Graphic Approximations

-1.0

-0.5

0.0

0.5

1.0

x

s = 0.3

s = 0.4
s = 0.2

s = 0.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

t-1

0

1

2

y

Figure 4.2. Broken line approximations to

the graphs of the solution components  and

 of the initial value problem (4.20) using the

Euler Algorithm with a decreasing sequence

of step sizes 

As we did for first order equations, we can use

numerical approximations to draw approximate

graphs of the solution pairs. For the solution

component  = () this is done by draw-
ing straight line segments between the pairs of

points (0 0) and (1 1), (1 1) and (2 2),
and so on. Similarly, for the solution component

 = () this is done by drawing straight line
segments between the points ( ). As the step
size  is decreased, these broken line graphs will

converge to the graphs  = () and  = ()
respectively.

In Figure 4.2 appear graphical approxima-

tions to the solutions  and  of the initial

value problem (4.20). Notice how these bro-

ken line graphs get smoother in appearance and

converge to a smooth curve as the step size 

decreases.

In practice one should compute approximate

solution graphs for several decreasing step sizes until the graphs appear unchanged upon

any further decreases. Then one has some confidence that the approximate graphs have

sufficiently converged so as to provide an accurate approximation to the graph of the solution.

In Figure 4.3 appear computer drawn graphs of the solutions  and  of the initial value

problem

0 = 

0 = −− 1
2
(2 − 1) (4.23)

(0) = 2 0(0) = 0

(This first order system is equivalent to the van der Pol equation (4.13) with  = 12.)
The graphs were constructed using the Modified Euler Algorithm for two steps sizes. Since

the step sizes result in indistinguishable graphs, we conclude that the graphs are accurate

approximations.

So far we have graphically represented solutions of initial value problems (4.11) by draw-

ing two graphs, one for each component  and  of the solution pair. Another way is to draw

a three dimensional graph using a (  )-coordinate axis and plotting points ( () ()).
See Figure 4.4. While sometimes useful, such three dimensional graphs are often difficult to

draw and use.
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Figure 4.3. Graphs of the solution components  and  of the initial value problem

(4.23) obtained using the Modified Euler Method with step sizes  = 005 and
0025
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20

Figure 4.4. Three dimensional graphs of the solution of the initial value problems

(4.20) (left) and (4.23) (right).

For certain kinds of differential equations — namely autonomous equations — another useful

graphical representation of solutions is available. For systems of autonomous equations a

powerful method is to plot the pair (() ()) in the  -plane. This amounts to projecting
the three dimensional pictures into the  -plane (parallel to the -axis). We study this

method in the next section.

4.3 Phase Plane for Autonomous Systems

x

y

-1.0

-1.0

1.0

1.0

Figure 4.5. The phase plane orbit

associated with the solution (4.25)

of the system (4.24)

Consider the system

0 =  (4.24)

0 = −

(This first order system is equivalent to the second order

equation 00 +  = 0) The trigonometric functions

 = sin   = cos  (4.25)

form a solution pair of this system. The graphs of these

trigonometric functions should be familiar to the reader.
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However, instead of graphing each function individually

suppose we plot the points ( ) = (sin  cos ) in the  -
plane for each . The resulting set of points is the circle of

radius 1 centered at the origin. This is because

2 + 2 = sin2 + cos2  = 1

for all . As  increases the point ( ) given by (4.25) moves continuously around the unit
circle in a clockwise manner. Therefore, we place arrows pointing clockwise on the unit circle

to indicate the direction of the motion along this circular path as  increases. See Figure

4.5. The (clockwise oriented) unit circle is another graphical way to represent the solution

(4.25). This circle is an example of an “orbit” associated with the solution of a system of

differential equations.

Definition 4.2 If  = ()  = () is a solution pair (on an interval     ) of an

autonomous system

0 = ( ) (4.26)

0 = ( )

then the set of points (() ()) in the  -plane is called the orbit associated with this

solution. An orbit is assigned an orientation in the direction of increasing . The  -

plane is called the phase plane and the set of all orbits, together with their orientations, is

called the phase plane portrait (or simply its phase portrait) of the system (4.26).

Another solution of the system (4.24) is the constant pair ( ) = (0 0). The orbit
associated with this solution is a single point, namely the origin in the phase plane. A

constant solution is called an equilibrium and its orbit is called an equilibrium point (or a

rest point or a critical point).

Geometrically the orbit of a solution is the projection onto the  -plane of the three

dimensional graph of the solution obtained by plotting the points ( () ()) (as in Figure
4.4). This is the analog of the one dimensional case of a single autonomous equation 0 = ()
where the orbit of a solution is obtained by projecting the two dimensional graph of the

solution ( ()) onto the -axis (see Chapter 3.1). Mathematically, the orbit is the range of
the solution pair considered as a function: → (() ()).
Autonomous systems (4.26) arise often in applications and a major goal is to determine

and sketch their phase portraits.

Example 4.2 The formulas

 = 1 cos + 2 sin 

 = −1 sin + 2 cos 

1 2 = any constants

turn out to define the general solution of the system (4.24). Note that

2 + 2 = (1 cos + 2 sin )
2 + (−1 sin + 2 cos )

2

=
¡
21 + 22

¢ ¡
cos2 + sin2 

¢
= 21 + 22
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Thus, every orbit associated with this system is a circle centered at the origin and the phase

portrait consists of the collection of all such circles. See Figure 4.6.

x

y

-1.0

-1.0

1.0

1.0

Figure 4.6. The phase portrait of

the system (4.24) consists of all

circles centered at the origin, ori-

ented clockwise.

As in the previous example, one approach to drawing

phase portraits is to find formulas for solutions and plot

a selection of orbits using the formulas. This approach

is feasible only for specialized systems for which solution

methods are available (linear systems are an example, as

we will see in Chapter 6).

Another method for sketching phase portraits, a

method that does not require finding formulas for solu-

tions, uses slope fields. At a point ( ) on an orbit




=




=

( )

( )

gives the slope of the tangent line to the orbit curve. See

Figure 4.7. (We exclude equilibria, at which the ratio is

undefined. If  vanishes at the point, and  doesn’t, then

the tangent is vertical and the slope is “infinite”.) In other

words, each point in the ( )-plane is associated with a unique slope ( )( ) and
an orbit associated with the system (4.26) must have that slope at each of points through

which it passes. The association of a slope with each point in the plane is called a slope field.

Graphically, we represent the slope field by drawing a small line segment through each point

with the assigned slope.

X

y

(x,y)

f(x,y)

g(x,y)

Figure 4.7

As  increases the orbit passes through a point ( ) in
one of two directions. The direction is that of the vector with

components ( ) and ( ), i.e., the vector

̃ =

µ
( )
( )

¶
.

We denote this direction by an arrow on the slope field line

segment. The resulting association of directed line segments

with each point ( ) is called the vector field (or direction
field) associated with the system (4.26)1

The vectors usually are not drawn to scale. That is to say,

the arrows indicate the direction, but not the length of the

vector ̃ = col(( ) ( )).
The orbits of an autonomous system must “fit” the vector

field in the sense that when an orbit passes through a point

it must do so in the direction and with the slope assigned to that point by the vector field.

Thus, from a sufficiently detailed sketch of the vector field one can usually visualize typical

orbits and hence the phase portrait.

1The vectors are usually not drawn to scale. That is to say, the arrows indicate the direction, but not

the length of the vector (( ) ( )).
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Figure 4.8. The vector field

associated with the system

(4.24).

For example, Figure 4.8 shows the vector field associated

with the system (4.24) whose orbits are circles centered at the

origin, as we saw in Figure 4.6.

Example 4.3 Figure 4.9 shows a sketch of the vector field of

the system

0 = −+ 

0 = −2− 

together with a selection of orbits. Notice the orbits appear

to tend toward the origin as  → +∞. From these selected

graphs it seems reasonable to conjecture that all orbits of this

system tend toward the origin as → +∞ The reader can test

this conjecture by further computer exploration of orbits. (Note, however, that no amount

of computer exploration will rigorously prove this conjecture, since there are infinitely many

orbits and only a finite number can be numerically calculated.)

Example 4.4 Figure 4.10 shows the vector field of the system in (4.23) and some typical

orbits. From these graphs it appears that orbits beginning near the origin spiral outward and

orbits beginning far from the origin spiral inward and that both types of orbits approach a

closed loop as → +∞.
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y

Figure 4.9
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Figure 4.10

It can be useful in sketching direction fields, and thereby analyzing basic properties of the

orbits of an autonomous system (4.26), to determine where in the phase plane the direction

field points horizontally and where it points vertically. The direction field will point vertically

if the first component of the vector (0 0) equals 0. This will occur at, and only at, points
in the plane for which

( ) = 0

In general this algebraic equation for  and  describes a curve (or curves) in the phase

plane. This curve is called an -nullcline of the autonomous system. At each point on the

-nullcline the direction field points vertically, and hence the orbit passing through any such

point is moving upward or downward.
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Similarly, the equation

( ) = 0

describes a curve (or curves) called a -nullcline. At each point lying on a -nullcline the

direction field points either left or right.

A point in the phase plane that lies on both nullclines (i.e., at which the -nullcline and

the -nullcline intersect) is an equilibrium point, since clearly the autonomous system (4.26)

is satisfied at such a point.

The  and -nullclines divide the phase plane into regions or sectors inside of which

the sign of 0 remains fixed (either positive or negative) and inside of which the sign of 0

remains fixed (either positive or negative). Therefore, we can assign one of the four compass

directions NE (northeast), SE (southeast), SW (southwest) or NW (northwest) to each of

the regions determined by the nullclines. These directions, together with the nullclines and

equilibria, usually provide one with a pretty good idea about the geometry of the system’s

orbits.

Example 4.5 The nullclines of the autonomous system

0 = 2 + 2 − 1
0 = − 

are the curves given by the equations

-nullcine: 2 + 2 = 1
-nullcline:  = 

We recognize the -nullcline as the circle of radius 1 with center at the origin. The direction
field is vertical at points on this circle. The -nullcline is the straight line  =  The

direction field is horizontal at points on this line.

Whether the direction field points vertically up or down at a point on the circle (the

-nullcline) is determined by the sign of 0, i.e. by sign of  − , at the point. Thus, the

direction field points vertically downward at those points ( ) that lie on the circle and above
the line  =  (the -nullcline). The direction field points vertically upward at those points

( ) that lie on the circle and below the line  =  (the -nullcline).

Whether the direction field points horizontally to the right or to the left a point on the

line  =  (the -nullcline) is determined by the sign of 0, i.e. by sign of 2 + 2 − 1, at
the point. Thus, the direction field points horizontally to the right at those points ( ) that
lie on the line  =  and outside of the circle (the -nullcline). The direction field points

horizontally to the left at those points ( ) that lie on the line  =  and inside the circle

(the -nullcline).

Finally, the four regions created by the two nullclines have a unique compass direction

associated with them. They are as in the table below. For example, at points in the region

outside the circle 2 + 2 = 1 and above the line  =  the direction field points because at
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such points 0 is positive and 0 is negative. See Figure 4.11.

Outside the circle 2 + 2 = 1
Above the line  = 

¾
SE

Outside the circle 2 + 2 = 1
Below the line  = 

¾
NE

Inside the circle 2 + 2 = 1
Above the line  = 

¾
SW

Inside the circle 2 + 2 = 1
Below the line  = 

¾
NW

There are exactly two points at which the - and -nullcines intersect, i.e. where the straight

line  =  and the circle 2+2 = 1 intersect. Thus, there are exactly two equilibrium points
for this autonomous system. A little algebra shows that the coordinates of the equilibria are

(1 1) =

Ã
−
√
2

2
−
√
2

2

!

(2 2) =

Ã√
2

2


√
2

2

!


Taking all of this information together we can make some reasonable conjectures about

orbits of this system. For example, consider an initial point that lies in the region marked

NE. The orbit starting at this point will, of course, move in the NE direction. One possibility

is that it remains in this region, forever moving in the NE direction as  → +∞ in which

case the orbit leaves the window in Figure 4.11. Another possibility is that the orbit intersects

and crosses inside the circle, at which it then moves NW. It moves NW until is crosses the

line  =  and enters the SW region. It could then leave the circle and move SE until it

again crosses the line  =  re-entering the NE region! This route suggests the possibility

of a spiral type motion, located around the equilibrium (1 1).
Both the possibilities described above are illustrated by an orbit in Figure 4.12 (which also

shows the direction field using the grid method). The initial point shown as an open circle

produces an orbit that remains in region NE and leaves the window of the plot. The initial

point shown as a solid circle produces the spiral path described above.

Other orbit paths can be deduced from initial conditions in other regions.
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Figure 4.11
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Figure 4.12
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4.4 Chapter Summary

A first order system consists of two (or more) first order differential equations for two (or

more) solutions. Higher order equations and systems are equivalent to first order systems.

The Fundamental Existence and Uniqueness Theorem 4.1 is a generalization to systems of

equations of the Fundamental Existence and Uniqueness Theorem 1.1 (Sec. 1.2) for single

first order differential equations. Algorithms (Euler, Modified Euler, and Runge-Kutta)

for numerically approximating solutions of initial value problems also extend to systems

of equations. We can graph solutions of systems in several ways. Each component of the

solution can be graphed separately or, in the case of two equations, both components can

simultaneously be graphed as functions of  in three dimensional space. For the important

special case of autonomous systems a solution pair (() ()) when graphed in the  -
plane, produces an orbit. The set of all orbits constitute the phase plane portrait of the

system. Vector fields are useful for studying phase portrait.

4.5 Exercises

Which of the following are solution pairs of the system (4.3) and which are not? Justify your

answers.

Exercise 4.1

½
 = −6

 = −2−6

Exercise 4.2

½
 = −6

 = 2−6

Exercise 4.3

½
 = 4− + 4−6

 = 2− + 8−6

Exercise 4.4

½
 = 2− + 3−6

 = − − 6−6

Which of the following are solution pairs of the harmonic oscillator system (4.8) and

which are not? Justify your answers. (, 1 and 2 are constants.)

Exercise 4.5  = 2cos   = −2 sin 

Exercise 4.6  = sin   = cos 

Exercise 4.7  = sin 2  = cos 2

Exercise 4.8  = 2 sin   = 2 cos 

Exercise 4.9  = cos + sin   = − sin + cos 

Exercise 4.10  = cos − sin   = sin − cos 
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Exercise 4.11  =  sin   =  cos 

Exercise 4.12  = 1 sin + 2 cos   = 1 cos − 2 sin 

Exercise 4.13 (a) Derive an equivalent first order system for the second order equation

00 +  = 0 where   0 and   0 are positive constants. (b) Show that  = cos,
 = − sin is a solution pair of the system for all  where  =

p


For each system below, determine those initial conditions 0 0 and 0 for which Theorem

4.1 applies. Explain your answer. What do you conclude for these initial conditions? What

do you conclude for other initial conditions? (, , , , 1 and 2 are constants.)

Exercise 4.14

½
0 = (1− )−  (1 + )−1

0 = − +  (1 + )−1

Exercise 4.15

½
0 = (1−  (1 + )−1)
0 = (−1 + )

Exercise 4.16

½
0 = + 

0 = + 

Exercise 4.17

½
0 = 1 (1− − )
0 = 2 (1− − ) 

Exercise 4.18

½
0 = (1− 

2+sin 
)− 

0 = − + 

Exercise 4.19

½
0 = (2 + cos )(1− )− 2 (1 + 2)

−1

0 = − + 2 (1 + 2)
−1

For each second order equation below, determine those initial conditions 0 0 and 0
for which Theorem 4.1 applies. (First find an equivalent first order system.) Explain your

answer. What do you conclude for these initial conditions? What do you conclude for other

initial conditions?

Exercise 4.20 00 +  = sin  (a forced simple harmonic oscillator)

Exercise 4.21 00 + 0 +  = cos  (a forced oscillator with friction)

Exercise 4.22 200 + 0 +  = 0 (a Legendre equation)

Exercise 4.23 00 + 0 + 3 = 0 where  and  are constants (Duffing equation)

Exercise 4.24 00 + (2 − 1)0 +  =  sin  where   and  are constants.

Exercise 4.25 00 +  sin = 0, where  6= 0 and  are constants.
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Exercise 4.26 Formulas for the solution pair of the initial value problem (4.20) are

 () =
1

5
−6 +

4

5
−  () =

2

5
− − 2

5
−6

Use these formulas to calculate the (absolute value of) the errors of the Euler approximations

to (2) and (2) using step sizes  = 04, 02, 01, 005, 00025. At what rate do the errors
decrease? Is this rate appropriate for the Euler Algorithm?

Exercise 4.27 Repeat Exercise 4.26 using the Modified Euler Algorithm.

Exercise 4.28 Formulas for the solution pair of the initial value problem

0 = −+ 

0 = − 2
(0) = 1 (0) = 0

are

 () =
1

10

³
5 +
√
5
´
−

1
2(3−

√
5) +

1

10

³
5−
√
5
´
−

1
2(3+

√
5)

 () =
1

5

√
5−

1
2(3−

√
5) − 1

5

√
5−

1
2(3+

√
5)

Use these formulas to calculate the (absolute value of) the errors made by the Euler approx-

imations to (1) and (1) using step sizes  = 025 0125 00625, 003125, 0015625. At
what rate do the errors decrease and is this rate appropriate for the Euler Algorithm?

Exercise 4.29 Repeat Exercise 4.28 using the Modified Euler Algorithm.

Exercise 4.30 (a) Use a computer to graph each component () and () of the solution
pair of the initial value problem

0 = −3+ 

0 =
1

2
− 

(0) =
1

2
 (0) = 0

for 0 ≤  ≤ 5 What are the differences and similarities between these two graphs?
(b) What changes occur in the graphs of () and () if the initial condition (0) = 0 is

changed to (0) = −12?
Exercise 4.31 (a) Derive an equivalent system for the general van der Pol equation

00 + 
¡
2 − 1¢0 +  = 0

in which  is a constant.

(b) Use a computer to graph the solution () of the initial value problems (0) = 2
0(0) = 0 for 0 ≤  ≤ 50 when  = −1
(c) In what fundamental way does the graph change if  = 1?
(d) Draw the graph of () for some other values of  At what value of  does the change

in (c) appear to occur?
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For each system below draw by hand the vector field direction at each of the indicated

points.

Exercise 4.32

½
0 = 

0 = − at ( ) = (1 1)  (1 0) (0−2) (−1−1) (−12 0) 

Exercise 4.33

½
0 = −+ 

0 = −2− 
at ( ) = (1 1)  (−1−1) (−2 1) (1 12)  (−12 12) 

For each system below use a computer to obtain the vector field for the indicated rectangle

in the ( )-plane and the orbits through each of the given points.

Exercise 4.34

½
0 = −2+ 2
0 = 2− 5 for −1    1, −1    1. Obtain orbits passing

through the points ( ) = (0 1) and (−1 0) 

Exercise 4.35

½
0 = 2− 

0 = −3− 2 for −2    2, −2    2 Obtain orbits passing

through the points ( ) = (0 1) and (05 1) 

Exercise 4.36

½
0 = −
0 = −+ ¡1− 1

3
2
¢

for −25    25, −25    25 Obtain orbits

passing through the points ( ) = (2 1) and (2 2) This system is equivalent to the Rayleigh
equation 00 − ¡1− (0)2 3¢0 +  = 0.

Exercise 4.37

½
0 = −
0 = −+ (1− 23) 

for −5    5, −5    5 Obtain orbits

passing through the points ( ) = (−2−12) and (−2 12).
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Exercise 4.38 Without using a computer, match each system with its vector field.

(a)

½
0 = −2− 

0 = −− 

(d)

½
0 = 2 + 2

0 = 2 − 2

(b)

½
0 = 

0 = − 
(c)

½
0 = − 

0 = 

(d)

½
0 = 2 + 2

0 = 2 − 2
(f)

½
0 = 2 −  + 1
0 =  − 

(1)

-4 -2 2 4

-4

-2

2

4

 x 

y

(2)

-4 -2 2 4

-4

-2

2

4

 x 

y

(3)

-4 -2 2 4

-4

-2

2

4

 x 

y

(4)

-4 -2 2 4

-4

-2

2

4

 x 

y

(5)

-4 -2 2 4

-4

-2

2

4

 x 

y

(6)

-4 -2 2 4

-4

-2

2

4

 x 

y

Identify and sketch the - and -nullclines for the following systems. Sketch the vector

field by using the nullclines and the regions they define in the  -plane (or the portion of

the plane indicated). Using your sketch, draw some typical orbits.

Exercise 4.39

½
0 = −
0 = 

Exercise 4.40

½
0 = 

0 = 

Exercise 4.41

½
0 = −+ 

0 = + 

Exercise 4.42

½
0 = − 

0 = + 

Exercise 4.43

½
0 = (1− )
0 = (1− )

for  ≥ 0  ≥ 0

Exercise 4.44

½
0 = (1− )
0 = (−1 + )

for  ≥ 0  ≥ 0
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Exercise 4.45 The equations

0 =  (1 − 11− 12)

0 =  (2 − 21− 22)

with positive coefficients ,  are called the “Lotka-Volterra competition” equations. They

describe the dynamics of two populations  and  in competition with one another over a

limited resource. Only solutions in the first quadrant  ≥ 0,  ≥ 0 are of interest.
(a) What kind of curves are the nullclines?

(b) Study the possible configurations of the nullclines in the first quadrant. For each

possibility sketch the vector field.

(c) Use your results in (b) to sketch several typical orbits for each possible nullcline

configuration you found in (b).

(d) Use a computer to sketch the vector field of an example for each possible nullcline

configuration you found in (b). Also use the computer to graph typical orbits for each exam-

ple.

(e) Discuss the implications of your results in (c) and (d) with regard to the long term

fate of both populations.

Exercise 4.46 The equations

0 =  (1 − 11− 12)

0 =  (−2 + 21)

with positive coefficients ,  are called the “Lotka-Volterra predator-prey” equations. They

describe the dynamics of a predator population  and its prey population  Only solutions

in the first quadrant  ≥ 0,  ≥ 0 are of interest. Repeat Exercise 4.45 for this system of

equations.

Exercise 4.47 The system

0 = 

0 = −(2 − 1) −  ,

is equivalent to the second order equation 00+ (2 − 1)0+ = 0 (the van der Pol equation).
(a) Find and sketch the nullclines for   0. Use the nullclines to sketch the vector field.
(b) Repeat (a) for   0.

Exercise 4.48 Find and sketch the nullclines of the system

0 = 

0 = −3 − 

This system is equivalent to the second order equation 00+3+ = 0 (the Duffing equation).
Use the nullclines to sketch the vector field.
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Verify that the pairs below solve the system

0 = −2+ 

0 = − 2

Exercise 4.49  () = −  () = −

Exercise 4.50  () = −3  () = −−3

Exercise 4.51  () = − + −3  () = − − −3

Exercise 4.52  () = 1
− + 2

−3  () = 1
− − 2

−3 for any constants 1 and 2

Verify that the pairs below solve the system

0 = 4− 2
0 = 7− 5

Exercise 4.53  () = 2−3  () = 7−3

Exercise 4.54  () = 2  () = 2

Exercise 4.55  () = 2−3 − 2  () = 7−3 − 2

Exercise 4.56  () = 21
−3 + 2

2  () = 71
−3 + 2

2

Exercise 4.57 Show the pair () = 3 + 2 cos − 2 sin , () = −2 sin − 2 cos  solves the
system

0 = 

0 = −+ 3
for all .

Exercise 4.58 Show the pair () = 1

 () = 1

2
solves the system

0 = −√
0 = −2

for   0

Theorem 4.1 applies to which initial value problems below? To which does it not apply?

Explain your answers. What conclusions can you draw in each case?

Exercise 4.59

⎧⎨⎩ 0 = sin(+ )
0 = sin(− )
(0) = 1 (0) = 0
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Exercise 4.60

⎧⎨⎩ 0 = (1 + ) (1− )−1

0 = (1 + ) (1− )−1

(0) = 0, (0) = 0

Exercise 4.61

⎧⎨⎩ 0 = (1 + ) (1− )−1

0 = (1 + ) (1− )−1

(0) = 0, (0) = 1

Exercise 4.62

⎧⎪⎪⎨⎪⎪⎩
0 =

√
− − 

0 =
√
+ + 

(1) = 0, (1) = 0
where −1  0  1

For which initial conditions 0 0 and initial times 0 does Theorem 4.1 apply for the

systems below. For which does this theorem not apply? Explain your answers. What

conclusions can you draw in each case?

Exercise 4.63

½
0 = (1 + ) (1− )−1

0 = (1 + ) (1− )−1

Exercise 4.64

½
0 = + 

0 = + 

Exercise 4.65

½
0 =

√
− − 

0 =
√
+ + 

Exercise 4.66

½
0 = ln(1− − )
0 = ln(1 + + )

For which initial conditions (0) = 0, (0) = 0 do the following systems have unique

solutions? On what intervals do those solutions exist?

Exercise 4.67

½
0 =  cos − 2
0 = 2− 3 sin 

Exercise 4.68

½
0 = 1


+  −  cos 

0 = 5− 1
1−

Exercise 4.69

½
0 = 2 + 

0 = − 

Exercise 4.70

½
0 = −2 + 

0 = − 

For which initial conditions (0) = 0, 
0(0) = 0 do the following equations have unique

solutions? On what intervals do those solutions exist?
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Exercise 4.71 the mass-spring equation 00 +  = 0 where   0 and   0 are
constants.

Exercise 4.72 the forced mass-spring equation 00 +  = sin  where   0 and   0
are constants.

Exercise 4.73 the Legendre equation 200 + 0 +  = 0

Exercise 4.74 00 − (1− 2)
−1

0 − 2 = 

Exercise 4.75 Show the initial value problem (0) = 0 
0(0) = 0 for the second order

equation 00 + ()0 + () = () has a unique solution on the whole interval     

if the coefficients () and () and the nonhomogeneous term  () are continuous on the
interval     .

Consider the following initial value problem

0 = + 2

0 = −− 

(0) = 1 (0) = 0

Exercise 4.76 Use a computer program to approximate the solution at  = 1 using Euler’s
Algorithm with step sizes  = 01 005 0025 00125 and 000625 Which digits in these
approximations do you think are accurate and why?

Exercise 4.77 Repeat Exercise 4.76 using the Modified Euler Algorithm.

Exercise 4.78 Repeat Exercise 4.76 using the Runge-Kutta Algorithm.

Exercise 4.79 Use a computer program to plot the vector field for this system.

Exercise 4.80 Use the Euler Algorithm for 0 ≤  ≤ 20 with step size  = 01 to study the
orbits in the phase plane. What do you conjecture all orbits do as  → +∞? Repeat using
the Modified Euler Algorithm and the Runge-Kutta Algorithm.

Exercise 4.81 Repeat Exercises 4.76-4.80 for the initial value problem

0 = +  − 005(2 + 2)

0 = −+  − 005(2 + 2)

(0) = 01 (0) = 00

Consider the following initial value problem

0 = + 05

0 = − 

(0) = 1 (0) = 0
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Exercise 4.82 Use a computer program to approximate the solution at  = 1 using Euler’s
Algorithm with step sizes  = 01 005 0025 00125 and 000625 Which digits in these
approximations do you think are accurate and why?

Exercise 4.83 Repeat Exercise 4.82 using the Modified Euler Algorithm.

Exercise 4.84 Repeat Exercise 4.82 using the Runge-Kutta Algorithm.

Exercise 4.85 Use a computer program to plot the vector field for this system of equations.

Exercise 4.86 Use the Euler Algorithm for 0 ≤  ≤ 20 with step size  = 01 to study the
orbits in the phase plane. What do you conjecture all orbits do as  → +∞? Repeat using
the Modified Euler Algorithm and the Runge-Kutta Algorithm.



Chapter 5

Linear Systems of First Order

Equations

Systems of linear, first order differential equations (or “linear systems”) constitute an im-

portant class of equations. There are at least two reasons for this. First of all, linear systems

often arise in applications, as we will see. Secondly, it will turn out that one of the basic

methods for the analysis nonlinear equations involves a linearization principle which requires

a thorough knowledge of linear systems.

Recall that higher order differential equations can be equivalently written as linear first

order systems. It follows that whatever we learn about first order systems will automatically

tell us something about higher order equations. In this chapter we will therefore learn about

linear higher order equations as well as about linear first order systems.

Our focus in this chapter will be on linear systems of two first order differential equations

in two unknowns. Much of what we will learn, however, is applicable to any number of

linear equations (in the same number of unknowns). This fact will be enhanced by our use

of matrix notation

Linear systems in two unknowns (what we will call “two dimensional systems”) are those

in which both dependent (or “state”) variables  and  appear linearly. That is to say, the

right hand sides ( ) and ( ) in the general system

0 =  (  )

0 =  (  )

are linear functions of  and . That is to say, a (two dimensional) linear system has the

form

0 = ()+ () + 1() (5.1)

0 = ()+ () + 2()

We call () () () and () the coefficients of the system (5.1) and 1() and 2() the
nonhomogeneous terms (or forcing functions).

Note that the linearity of a system is a property of the dependence of the equations on the

state variables  and . No constraint is placed on the independent variable  (in particular,

 is not required to appear linearly). Also note that linearity is not about properties of

157
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solutions of the system (in other words, to say a system is linear is not to say that its

solutions are linear functions). Instead, linearity means that the rates of change 0 and 0 of
the state variables are linear functions of the state variables  and .

Examples of linear systems include the systems (4.2)

0 = −1+ 2

0 = 1− (2 + 3) 

and (4.3)

0 = −2+ 2
0 = 2− 5

in Chapter 4 (which arise from a pesticide application described there) and the system

0 = 

0 = − 


− 


 +  ()

which is equivalent to the linear second order equation

00 + 0 +  =  () .

The latter example includes the system

0 = 

0 = − 




which is equivalent to the famous simple harmonic oscillator equation

00 +  = 0.

A convenient way to work with linear systems and their solutions is to use matrix notation.

We place the state variables  = () and  = (), and their derivatives, into the matrices
(column vectors) µ





¶
=

µ
 ()
 ()

¶


µ




¶0
=

µ
0 ()
0 ()

¶


Constructing the column vector µ
1 ()
2 ()

¶
and recalling the definition of matrix multiplication and addition, we see thatµ

() ()
() ()

¶µ




¶
+

µ
1 ()
2 ()

¶
=

µ
()+ () + 1 ()
()+ () + 2 ()

¶
and that the general linear system (5.1), in matrix format, becomesµ





¶0
=

µ
() ()
() ()

¶µ




¶
+

µ
1()
2()

¶
 (5.2)
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If both  () are absent µ




¶0
=

µ
() ()
() ()

¶µ




¶
(5.3)

then the system is called homogeneous. If at least one  () is present, then the system is

called nonhomogeneous. Further notational simplification results if we introduce the notation

̃ =

µ




¶
  () =

µ
() ()
() ()

¶
 ̃ () =

µ
1 ()
2 ()

¶


Then the nonhomogeneous and homogeneous linear systems can be respectively written as

̃0 =  () ̃+ ̃ () and ̃0 =  () ̃

The matrix  () is called the coefficient matrix of these systems
In fact, a linear system of any number of state variables can by written in this notationally

identical form. For  equations in  unknowns, the state vector ̃ is ×1, coefficient matrix
 () is × and the nonhomogeneous (or forcing) term ̃ is × 1. The same is true of any
linear differential equation of any order .

5.1 The Fundamental Existence and Uniqueness The-

orem

The initial value problem

0 = ()+ () + 1()

0 = ()+ () + 2() (5.4)

(0) = 0 (0) = 0

for a linear system, in matrix notation, takes the form

̃0 =  () ̃+ ̃ ()

̃ (0) = ̃0

where

̃0 =

µ
0
0

¶
.

This is a special case of the initial value problem (4.11) considered in the Sec. 4.1 and, as a

result, to which the Fundamental Existence and Uniqueness Theorem 4.1 in Chapter 4, Sec.

4.1 applies. An application of that theorem requires that.

(  ) = ()+ () + 1()

(  ) = ()+ () + 2()
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and the derivatives




= ()




= ()




= ()




= ()

be continuous functions of   and  at 0 0 and 0. Since  and  are linear in  and , they

certainly are continuous as functions of  and . To obtain the requirement of continuity

in  we need only to assume that the four coefficients () () () and () and the two
nonhomogeneous terms 1 () and 2 () are continuous at  = 0.

In matrix terminology, when we say the coefficient matrix  () and the nonhomogeneous
term ̃ () are continuous at  = 0 we mean all of their components are continuous at

0. Under this assumption, the Fundamental Theorem 4.1 guarantees that the initial value

problem (5.4) has a unique solution pair on some interval containing 0.

It turns out that for linear systems (just as it did for single linear equations) that a

stronger conclusion is possible, namely, that the unique solution exists on an entire interval

on which all coefficients are continuous. (This fact is a corollary of the Variation of Constants

Formula which we will study in Sec. 5.3 below.) The following theorem is the Extended

Fundamental Existence and Uniqueness Theorem for linear systems.

Theorem 5.1 Suppose the coefficient matrix  () and the nonhomogeneous term
̃ () are continuous on an interval     . For any initial time 0 in this interval

and for any initial condition ̃0, the initial value problem

̃0 =  () ̃+ ̃ ()

̃ (0) = ̃0

has a unique solution ̃ () on the entire interval     

In particular, if the coefficient matrix and nonhomogeneous term of a linear system are

continuous for all  as is often the case in applications, then solutions of initial value problems

exist for all  An important case of this occurs when the components of the coefficient matrix

and nonhomogeneous term are constants (in which case the system is called autonomous).

Example 5.1 The initial value problem

0 = −2+ 2
0 = 2− 5

 (0) = 1  (0) = 0

has a constant coefficient matrix and nonhomogeneous term

 () =

µ −2 2
2 −5

¶
 ̃ () =

µ
0
0

¶
which are, therefore, continuous on the interval −∞    +∞. By Theorem 5.1 this initial
value problem has a unique solution and it exists on the interval −∞    +∞.
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Example 5.2 The initial value problem

00 +  = sin 

(0) = 0 0(0) = 0

is equivalent to the initial value problem

0 = 

0 = −+ sin  (5.5)

 (0) = 0 0(0) = 0

Since

 () =

µ
0 1
−1 0

¶
 ̃ () =

µ
0
sin 

¶
are continuous on the interval −∞    +∞. By Theorem 5.1 this initial value problem,

and hence the one for the second order differential equation, has a unique solution and it

exists on the interval −∞    +∞.

5.2 The Structure of General Solutions

5.2.1 Nonhomogeneous Linear Systems

Recall that the general solution (i.e., the set of all solutions) of a single, nonhomogeneous

linear equation

0 =  ()+  ()

has the additive decomposition

 =  + 

where  is the general solution of the associated homogeneous equation

0 =  ()

and  is any particular solution of the nonhomogeneous equation Moreover, the algebraic

structured of  is that of a linear vector space.

Our goal in this section is to establish these facts for the general solution (i.e. the set of

all solutions) of the nonhomogeneous system

̃0 =  () ̃+ ̃ () (5.6)

and its associated homogeneous system

̃0 =  () ̃. (5.7)

As usual, we will focus on systems of two equations (two dimensional systems):

̃ =

µ




¶
  () =

µ
() ()
() ()

¶
 ̃ () =

µ
1 ()
2 ()

¶


When we say  () and ̃ () are continuous on an interval      we mean that all their

entries are continuous on     .
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Theorem 5.2 Assume  () and ̃ () are continuous on an interval     . Then

the general solution of the linear nonhomogeneous system (5.6) on      has

the additive decomposition ̃ = ̃ + ̃ where ̃ = ̃() is the general solution of
the associated homogeneous system (5.7) and ̃ = ̃() is a particular solution
pair of the nonhomogeneous system (5.6).

We justify this theorem by showing that if ̃() is a solution of the nonhomogeneous
system (5.6) then the difference ̃() − ̃() solves (5.7). For a more formal, set theoretic,
proof see Exercise 5.19.

Suppose ̃() solves (5.6). Then since differentiation is a linear operator

(̃()− ̃())
0 = ̃0()− ̃0()
= ̃() + ̃ ()− (̃() + ̃ ()) 

Using the definition of additive inverse and the additive Commutative Law for vectors, we

have

(̃()− ̃())
0 = ̃()−̃()

Finally the Distributive Law for matrix multiplication implies

(̃()− ̃())
0 =  (̃()−̃())

which is nothing more than saying that the difference ̃()− ̃() satisfies (5.7), that is to
say there is a solution ̃() of (5.7) such that

̃() = ̃()− ̃()

and hence ̃ () = ̃ () + ̃ ().

5.2.2 Homogeneous Linear Systems

Assume the coefficient matrix  () (i.e. all of its entries) are continuous on an interval  

  . We claim that the set of all solutions of the homogeneous linear system ̃0 =  () ̃
on      (cf. the Extended Fundamental Theorem 5.1) is a linear vector space. That is

to say, we claim the general solution ̃ is a linear vector space.

To show this, we note:

• The set of continuous functions on an interval      is a linear vector

space

• A subset of a linear vector space is itself a linear vector space (i.e., is a linear
subspace) if and only if it is closed under linear combinations.1

Therefore, we can show ̃ is a linear vector space by showing that it is closed under

linear combinations. This is the same as to say that any linear combination of solutions of a

homogeneous system ̃0 =  () ̃ is a solution. That is the subject of the following theorem.

1A set is closed under linear cominations means that any linear combination of vectors from the set is

also in the set.
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Theorem 5.3 (The Superposition Principle) If ̃1 () and ̃2 () are solutions of
the homogeneous system ̃0 =  () ̃ on     , then for any constants 1 and 2
the linear combination 1̃1 () + 2̃2 () is a solution of the homogeneous system
on     .

To prove this theorem we use the fact that differentiation is a linear operator and make

use of basic rules of matrix algebra to calculate

(1̃1 + 2̃2)
0 = 1̃

0
1 + 2̃

0
2

= 1 ( () ̃1) + 2 ( () ̃2)

= (1 ()) ̃1 + (2 ()) ̃2

= ( () 1) ̃1 + ( () 2) ̃2

=  () (1̃1) + () (2̃2)

=  () (1̃1 + 2̃2)

which shows that the linear combination satisfies ̃0 =  () ̃ on     

Corollary 5.1 Assume the coefficient matrix  () are continuous on an interval
    . The general solution ̃ is a linear vector space.

Remark 1. A linear homogeneous second order equation

2 ()
00 + 1 ()

0 + 0 () = 0

can be converted to an equivalent system with coefficient matrix

 () =

Ã
0 1

− 0()
2()

− 1()
2()

!


 () is continuous on      and hence Theorem 5.3 and Corollary 5.1 apply to the

corresponding linear homogeneous system provided

0 ()  1 ()  2 () are continuous on an interval     

0 () does not equal 0 anywhere on the interval     .

Under these conditions, it follows that the general solution of the second order differential

equation is a linear vector space.

Remark 2. Note that the calculation used above to prove Theorem 5.3 remain valid for

systems, vectors and matrices of any size. Therefore, the general solution of a linear homo-

geneous system of any dimension is a linear vector space.

By definition, a linear vector space has an additive identity (i.e. a zero vector). For

the general solution of a linear homogeneous system, the zero vector is the zero or trivial

solution

̃ () ≡ 0̃ =
µ
0
0

¶
on     
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Since this solution is constant, as a function of , it is also called an equilibrium solution or

simply an equilibrium.

The linear space of continuous functions on an interval      is not finite dimensional.

Our next basic fact about the general solution of linear homogeneous systems is that the

linear (sub)space ̃ is finite dimensional. Furthermore, for two dimensional systems ̃
0 =

 () ̃, i.e., systems with a 2× 2 coefficient matrix

 () =

µ
() ()
() ()

¶
the general solution ̃ is a two dimensional vector space.

Recall the following facts from linear algebra:

1. Two vectors ̃1 and ̃2 from a linear vector space are independent if and only

if they are not constant multiples of each other, or equivalently if and only if

the only linear combination 1̃1 + 2̃2 that equals the zero vector is the trivial

linear combination with 1 = 2 = 0.
2. The span of a set of vectors is the set of all their linear combinations.

3. A vector space is finite dimensional if and only if it is the span of a finite set

of independent vectors. Its dimension is the number of independent vectors that

span it.

To accomplish our goal, we need to show that a two dimensional system has two inde-

pendent solutions ̃1 and ̃2 that span the general solution ̃. We begin with a test for

independence applicable to two solutions of a linear homogeneous system.

Definition 5.1 If

̃1 () =

µ
1 ()
1 ()

¶
and ̃2 () =

µ
2 ()
2 ()

¶
are two solutions of the linear homogeneous system ̃0 =  () ̃ on     , then the 2×2
matrix

Φ () =
¡
̃1 () ̃2 ()

¢
=

µ
1 () 2 ()
1 () 2 ()

¶
is called a solution matrix. Equivalently, a matrix Φ () is a solution matrix if and only if
it satisfies the “matrix” differential equation

Φ0() = ()Φ() (5.8)

Note that, by the rules of matrix algebra, a linear combination 1̃1 ()+ 2̃2 () of ̃1 ()
and ̃2 () can be written as

1̃1 () + 2̃2 () = 1

µ
1 ()
1 ()

¶
+ 2̃2

µ
2 ()
2 ()

¶
=

µ
11 () + 22 ()
11 () + 22 ()

¶
=

µ
1 () 2 ()
1 () 2 ()

¶µ
1
2

¶
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or

1̃1 () + 2̃2 () = Φ () ̃ (5.9)

where we have defined

̃ =

µ
1
2

¶
.

Theorem 5.4 Assume the coefficient matrix  () is continuous on an interval  

  . Two solutions ̃1 () and ̃2 () of the linear homogeneous system ̃0 =  () ̃
on      are independent if and only if

detΦ (0) 6= 0 (5.10)

for some 0 in the interval:   0  . If (5.10 holds for some 0 then in fact

detΦ () 6= 0 for all     

Remark 3. Recall from linear algebra that the independence test (5.10) is the same as

saying that Φ (0) is nonsingular or that it is invertible. That is to say, the inverse matrix
Φ−1 (0) exits:

Φ (0)Φ
−1 (0) = Φ−1 (0)Φ (0) = 

where  is the identity matrix.

Since Theorem 5.4 is an “if and only if” statement, there are two implications to prove:

(a) If ̃1 () and ̃2 () are independent, then detΦ (0) 6= 0 for some 0 in the
interval     .

(b) If detΦ (0) 6= 0 for some 0 in the interval     , then ̃1 () and ̃2 ()
are independent

You are asked to prove (a) in Exercise 5.26. We will establish (b) here.

Suppose ̃1 () and ̃2 () are two solutions on   0   for which detΦ (0) 6= 0. We
want to show they are independent on   0  . That is to say, we want to show the only

linear combination 1̃1 () + 2̃2 () that equals the zero (trivial) solution 0̃ is the trivial
linear combination with 1 = 2 = 0
Suppose

1̃1 () + 2̃2 () ≡ 0̃
on     . How can we deduce that 1 = 2 = 0 must be true? As pointed out above, we
can write this identity as

Φ () ̃ ≡ 0̃
on      and hence

Φ (0) ̃ = 0̃

Since we have assumed detΦ (0) 6= 0 and hence that Φ (0) is invertible, it follows that
̃ = Φ−1 (0) 0̃ = 0̃.

This establishes assertion (b)
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Remark 4. It follows from Theorem 5.4, of course, that if the determinant det Φ (0) = 0,
then the two solutions ̃1 () and ̃2 () are dependent.

Remark 5. An interesting and important fact about solutions of linear systems is that the

determinant det Φ () in Theorem 5.4 is either identically equal to 0 for all  on the interval
     or is never equal to 0 on this interval. You are asked to prove this in Exercise
5.27. Consequently, we can just as well say that two solution pairs are independent on an

interval      if and only if detΦ () 6= 0 for all  in the interval.

Definition 5.2 If

̃1 () =

µ
1 ()
1 ()

¶
and ̃2 () =

µ
2 ()
2 ()

¶
are two independent solutions of the linear homogeneous system ̃0 =  () ̃ on the interval
    , then the 2× 2 matrix

Φ () =
¡
̃1 () ̃2 ()

¢
=

µ
1 () 2 ()
1 () 2 ()

¶
is called a fundamental solution matrix. Equivalently, a matrix Φ () is a fundamental
solution matrix if and only if it is nonsingular (invertible) on the interval      and

satisfies the “matrix” differential equation

Φ0() = ()Φ() (5.11)

Remember that our goal is to show that the general solution ̃ of a linear homogeneous

system is a two dimensional vector space. At this point we know it is a vector space. We have

yet to establish its dimensionality. What remains to prove are the following two assertions:

(i) There exist two independent solutions.

(ii) Any two independent solutions span ̃, i.e., any solution is a linear combi-

nation of the two independent solutions.

The first assertion (i) follows straightforwardly from the Extended Fundamental Exis-

tence and Uniqueness Theorem 5.1 by applying that theorem to two initial value problems.

Let

̃1 =

µ
1
0

¶
 ̃2 =

µ
0
1

¶
denote the familiar canonical basis vectors in the plane (the two dimensional Euclidean vector

space). Choose any point 0 from the interval      of continuity. By Theorem 5.1 each

of the initial value problems

̃0 =  () ̃ ̃0 =  () ̃
̃ (0) = ̃1 ̃ (0) = ̃2

(5.12)
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has a (unique) solution on     . Denote these two solutions by ̃1 () and ̃2 (). They
are independent by the independence test (5.10) in Theorem 5.4 since

detΦ (0) = det
¡
̃1 (0) ̃2 (0)

¢
= det

¡
̃1 ̃2

¢
= det 

= 1

is not equal to 0.
To prove assertion (ii) suppose ̃ () is any solution of the homogeneous system on the

interval      and let ̃1 () and ̃2 () be any two independent solutions (not necessarily
the two obtained above). We have to figure out how to determine two constants 1 and 2
so that this solution ̃ () identically equals the linear combination 1̃1 () + 2̃2 () on the
interval     . Here’s how we do it.

Pick any point 0 in the interval      and choose 1 and 2 by solving the system

of linear algebraic equations

Φ (0) ̃ = ̃ (0)

for

̃ = Φ−1 (0) ̃ (0)

which we can do since ̃1 () and ̃2 () are independent and hence Φ (0) is nonsingular
(invertible). We then form the linear combination (5.9)

Φ () ̃ = Φ ()Φ−1 (0) ̃ (0)

of ̃1 () and ̃2 () by using this ̃. We now claim — and this we prove assertion (ii) — that

this linear combination is identically the same as the solution ̃ ().
That ̃ () and Φ ()Φ−1 (0) ̃ (0) are identical follows from the fact that both are solu-

tions of the linear homogeneous system with the same initial condition at 0. (Substitute

 = 0 into both and you get the same answer!). But the Fundamental Existence and Unique-

ness Theorem says there can only by one solution to an initial value problem. Therefore,

these have to be the same solution:

̃ () ≡ Φ ()Φ−1 (0) ̃ (0)

which says nothing more than that ̃ () is a linear combination of ̃1 () and ̃2 ()  This
establishes assertion (ii), and finishes the proof of the following theorem.

Theorem 5.5 Assume the coefficient matrix  () is continuous on an interval

    . If ̃1 () and ̃2 () of the linear homogeneous system ̃0 =  () ̃ on
     are independent, then the general solution is

̃ () = Φ () ̃ (5.13)

where ̃ is a vector of arbitrary constants.
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As a result of this Theorem we obtain the following corollary about the linear algebraic

structure of the general solution of a linear homogeneous system.

Corollary 5.2 Assume the coefficient matrix  () is continuous on an interval

    . The general solution ̃ () of the linear homogeneous system ̃0 =  () ̃
on      is a two dimensional linear vector space.

Remark 6. In establishing the existence of two independent solutions we solved to two

initial value problems (5.12) with the canonical Euclidean basis vectors ̃. The same proof

goes through if any other pair of independent Euclidean vectors ̃1 and ̃2 are used instead.

All that changes in the proof is that

detΦ (0) = det
¡
̃1 ̃2

¢
which, although not necessarily equal to 1, is nonetheless nonzero since the vectors ̃1 and ̃2
are independent. This change in initial conditions gives rise to a different pair of independent

solutions ̃1 () and ̃2 () and hence a deferent fundamental solution matrix Φ (). This just
amounts to a different basis for the solution space. One cannot accurately speak of the

fundamental solution matrix for a linear homogeneous system (any more than one can speak

of the basis of a vector space).

Remark 7. In following up on Remark 1, we note that Corollary 5.2 implies the general

solution of a linear homogeneous second order equation

2 ()
00 + 1 ()

0 + 0 () = 0

is a two dimensional vector space, under the assumptions in Remark 1, namely, that the

coefficients satisfy the conditions:

2 ()  1 ()  0 () are continuous on an interval     

2 () does not equal 0 anywhere on the interval     .

If one recalls the definition of matrix multiplication from linear algebra, one can see that

a matrix

Φ () =
¡
̃1 () ̃1 ()

¢
=

µ
1 () 2 ()
1 () 2 ()

¶
is a solution matrix of a linear homogeneous system, i.e., that the columns are solutions, can

by mathematically expressed by

Φ0 () =  ()Φ () 

Thus, an equivalent definition of a fundamental solution matrix is a nonsingular (invertible)

matrix Φ () that satisfies this matrix differential equation.
Before looking at some examples, we point out a useful shortcut for calculating the inverse

of an invertible 2× 2 matrix

 =

µ
11 12

21 22

¶
 det = 1122 −2112 6= 0
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The inverse

−1 =
1

1122 −2112

µ
22 −12

−21 11

¶
(5.14)

is obtained by three steps:

1. Interchange the diagonal entries 11 and 22

2. Change the sign of the anti-diagonal entries 12 and 21

3. Divide the resulting matrix (i.e. divide each entry) by det .

In examples and applications, this method is useful for calculating the inverse of the funda-

mental solution matrix Φ (), when needed.

Example 5.3 The linear homogeneous system

0 = −2+ 2
0 = 2− 5

has coefficient matrix

 () =

µ −2 2
2 −5

¶


That

Φ () =

µ
2− −6

− −2−6
¶

is a fundamental solution matrix on −∞    +∞ follows from the calculations

Φ0 () =
µ −2− −6−6
−− 12−6

¶

 ()Φ () =

µ −2 2
2 −5

¶µ
2− −6

− −2−6
¶

=

µ −2− −6−6
−− 12−6

¶
and the nonsingularity test

Φ (0) = det

µ
2 1
1 −2

¶
= −5 6= 0.

Therefore, the general solution is

̃ () = Φ () ̃

=

µ −2− −6−6
−− 12−6

¶µ
1
2

¶
=

µ −21− − 62−6
−1− + 122−6

¶
where 1 and 2 are arbitrary constants.
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Example 5.4 The pair

̃1 () =

µ
cos 
− sin 

¶
is a solution of the linear homogeneous system ̃0 =  () ̃ on −∞    +∞ with the

coefficient matrix

 () =

µ
0 1
−1 0

¶
as the calculations

̃01 () =
µ − sin 
− cos 

¶
 () ̃1 () =

µ
0 1
−1 0

¶µ
cos 
− sin 

¶
=

µ − sin 
− cos 

¶
demonstrate. Similar calculations show that

̃2 () =

µ
sin 
cos 

¶
is another solution of the same system. These two solutions are independent because

detΦ (0) = det
¡
̃1 (0) ̃2 (0)

¢
= det

µ
1 0
0 1

¶
= 1

is nonzero. Therefore

Φ () =
¡
̃1 () ̃2 ()

¢
=

µ
cos  sin 
− sin  cos 

¶
is a fundamental solution matrix and the general solution is

̃ () = Φ () ̃

=

µ
cos  sin 
− sin  cos 

¶µ
1
2

¶
=

µ
1 cos + 2 sin 
−1 sin + 2 cos 

¶
where 1 and 2 are arbitrary constants.

The linear homogeneous system in Example 5.4 is equivalent to the second order differ-

ential equation

00 +  = 0

Therefore, the general solution of this second order equation is

 () = 1 cos + 2 sin 

where 1 and 2 are arbitrary constants.



5.2. THE STRUCTURE OF GENERAL SOLUTIONS 171

In the preceding examples you will no doubt wonder where the independent solutions

and hence the fundamental solution matrices Φ () came from or how they were found.

Unfortunately, for general linear homogeneous systems there is no universal method that will

produce solution formulas. However, for an important restricted class of systems, namely

those with constant coefficient matrices  () =  (i.e., so-called autonomous systems), there

is such a method. We study this method in the next chapter. Both examples above have

constant coefficient matrices (i.e. are autonomous). You will learn in the next chapter how

to find for yourself the independent solutions given in these Examples.

For some examples of fundamental matrices for systems with nonconstant coefficient

matrices  () see the Exercises.
From a formula for the general solution (i.e., if a fundamental solution matrix Φ () is

available) one can calculate formulas for the solution of any initial value problem. The unique

solution of the initial value problem

̃0 =  () ̃

̃ (0) = ̃0

lies somewhere in the general solution

̃ () = Φ () ̃

To find it is simply a matter of determine the correct vector ̃ of arbitrary constants (i.e.,

the solutions “coordinates” in the solution space). This is done by requiring that

Φ (0) ̃ = ̃0

̃ = Φ−1 (0) ̃0

Consequently, the solution of the initial value problem is

̃ () = Φ ()Φ−1 (0) ̃0 (5.15)

Example 5.5 A fundamental solution matrix for the linear homogeneous system with coef-

ficient matrix

 () =

µ −2 2
2 −5

¶
is

Φ () =

µ
2− −6

− −2−6
¶


See Example 5.3). A formula for the unique solution of the initial value problem

̃ (0) =

µ
1
0

¶
is given by (5.15). To use this formula we need the inverse of the fundamental solution

matrix

Φ−1 () =

µ
2− −6

− −2−6
¶−1

=
1

5

µ
2 

6 −26
¶
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From (5.15) we obtain solution formula

̃ () = Φ ()Φ−1 (0) ̃ (0)

=

µ
2− −6

− −2−6
¶
1

5

µ
2 1
1 −2

¶µ
1
0

¶
=

1

5

µ
4− + −6 2− − 2−6
2− − 2−6 − + 4−6

¶µ
1
0

¶
=

µ
4
5
− + 1

5
−6

2
5
− − 2

5
−6

¶


Example 5.6 A formula for the solution of an arbitrary initial value problem

̃ (0) =

µ
0
0

¶
for the linear homogeneous system with coefficient matrix

 () =

µ −2 2
2 −5

¶
is

̃ () = Φ ()Φ−1 (0) ̃ (0)

=

µ
2− −6

− −2−6
¶
1

5

µ
2 1
1 −2

¶µ
0
0

¶
=

1

5

µ
4− + −6 2− − 2−6
2− − 2−6 − + 4−6

¶µ
0
0

¶
=

1

5

µ
0 (4

− + −6) + 0 (2
− − 2−6)

0 (2
− − 2−6) + 0 (

− + 4−6)

¶
or

̃ () =

µ
2
5
(20 + 0) 

− + 1
5
(0 − 20) −6

1
5
(20 + 0) 

− − 2
5
(0 − 20) −6

¶


Example 5.7 Consider the linear homogeneous system with coefficient matrix (as in Exam-

ple 5.4)

 () =

µ
0 1
−1 0

¶


We can, for example, find a formula for the solution of initial value problem

̃ (0) = ̃0 =

µ
1
−2

¶
using the fundamental solution matrix (from Example 5.4)

Φ () =

µ
cos  sin 
− sin  cos 

¶
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and its inverse

Φ−1 () =
µ

cos  sin 
− sin  cos 

¶−1
=

µ
cos  − sin 
sin  cos 

¶
in formula (5.15):

̃ () = Φ ()Φ−1 (0) ̃0

=

µ
cos  sin 
− sin  cos 

¶µ
cos 0 − sin 0
sin 0 cos 0

¶µ
1
−2

¶
=

µ
cos  sin 
− sin  cos 

¶µ
1 0
0 1

¶µ
1
−2

¶
=

µ
cos  sin 
− sin  cos 

¶µ
1
−2

¶
or

̃ () =

µ
cos − 2 sin 
− sin − 2 cos 

¶


Example 5.8 A formula for the solution of an arbitrary initial value problem

̃ (0) =

µ
0
0

¶
for the linear homogeneous system with coefficient matrix

 () =

µ
0 1
−1 0

¶
is

̃ () = Φ ()Φ−1 (0) ̃ (0)

=

µ
cos  sin 
− sin  cos 

¶µ
cos 0 − sin 0
sin 0 cos 0

¶µ
0
0

¶
=

µ
cos  sin 
− sin  cos 

¶µ
1 0
0 1

¶µ
0
0

¶
=

µ
cos  sin 
− sin  cos 

¶µ
0
0

¶
or

̃ () =

µ
0 cos + 0 sin 
−0 sin + 0 cos 

¶


Since the coefficient matrix of the equivalent associated system to the second order equa-

tion

00 + + 0

is that

 () =

µ
0 1
−1 0

¶
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used in the previous example, the solution of any initial value problem

 (0) = 0  (0) = 0

is

 () = 0 cos + 0 sin .

Theorem 5.5 reduces the problem of solving a homogenous system of two linear equations

(i.e., finding a formula for the general solution) to a search for only two independent solutions.

Unfortunately, for general homogeneous systems there is no universal solution method that

will always produce two independent solution pairs. However, for an important restricted

class of homogeneous systems, namely those with constant coefficients (i.e., “autonomous”

systems), there is such a method. We study this method in the next chapter.

A last remark should be familiar from linear algebra.

det

µ
1() 0
1() 0

¶
= 0

for all  and consequently, no solution is independent of the trivial solution 0̃ Only nontrivial
solutions can be independent. This means we can never use the trivial solution to construct

a fundamental solution matrix and the general solution of a linear system.

5.3 The Variation of Constants Formula

In Section 5.2.1 we learned that the general solution of a linear system

̃0 = ()̃+ ̃() (5.16)

has the additive decomposition

̃ = ̃ + ̃

where ̃ is the general solution of the associated homogeneous system

̃0 = ()̃ (5.17)

and ̃ is (any) particular solution of the nonhomogeneous system (5.16).

In Section 5.2.2 we learned that the general solution ̃ of the homogeneous system (5.17)

has the form

̃ () = Φ () ̃

where Φ () is a fundamental solution matrix (i.e., a matrix whose columns are independent
solutions of (5.17)) and ̃ is a column vector of arbitrary constants.

In this section we take up the problem of find a particular solution ̃ of the nonhomo-

geneous system (5.16). We will see that there is a formula that one can use to calculate a

particular solution ̃, provided that a fundamental solution matrix Φ () of the associated
homogeneous system is available. By way of motivating the derivation of this formula, we
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recall the variation of constants formula for  () in the case of a single differential equation
0 =  () namely

 () =  ()
Z

− () () 

Notice that  () plays the role of Φ () since  =  () in this single equation case. We

recognize that this particular solution  (), while not a constant multiple of 
 () is a

function of  times  () (namely
R
− () () ). With this observation in mind, we might,

in the case of a system of equations, search for a particular solution ̃ () that is a function
of  times Φ ()  Specifically, we look for a particular solution of the form

̃ () = Φ () ̃ () (5.18)

where ̃ () is a column vector of yet to be determined functions of . This is, then, an
application of the Method of Undetermined Coefficients as described in Section 2.2.1 of

Chapter 2.Following the steps of that general method, we substitute the guess (5.18) into

the nonhomogeneous equation (5.16) in order to calculate ̃ (). Thus, we equate

̃0 = Φ0 () ̃ () + Φ () ̃0 ()

= ( ()Φ ()) ̃ () + Φ () ̃0 ()

(recall (5.8)) and

()̃ + ̃() = () (Φ () ̃ ()) + ̃()

to get (after using the multiplicative associate law a matrix algebra)

() (Φ () ̃ ()) + Φ () ̃0 () = () (Φ () ̃ ()) + ̃()

or

Φ () ̃0 () = ̃()

Since the fundamental solution matrix Φ () is invertible, we have

̃0 () = Φ−1 () ̃()

̃ () =

Z 

Φ−1 () ̃()

and arrive at the formula

̃ () = Φ ()

Z 

Φ−1 () ̃()

This result, when used in the additive decomposition of the general solution, gives us the

important Variation of Constants Formula for the general solution of a nonhomogeneous

linear systems.2

2The rather self-contradictory name of this formula comes from the guess (5.18), which derives from the

formula for ̃ = Φ () ̃ by replacing the constant ̃ by the function ̃ (), i.e., by letting this constant vary
with time 
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Theorem 5.6 (Variation of Constants Formula) Assume the coefficient matrix

 () and the nonhomogeneous term ̃() are continuous on an interval     .

If Φ() is a fundamental solution matrix of the homogeneous system ̃0 = ()̃,
then the general solution of the nonhomogeneous system

̃0 = ()̃+ ̃()

is given by the formula

̃ () = Φ()̃+ Φ()

Z 

Φ−1()̃() (5.19)

where ̃ is a vector of arbitrary constants.

From the Variation of Constants Formula (5.19) we see that to calculate the general

solution of a nonhomogeneous linear first order system, all we need are two independent

solutions of the associated homogeneous system (5.17), that is to say, to find a fundamental

solution matrix Φ() of the associated homogeneous system. However, in order to obtain an
explicit formula for the general solution, we must carry out the integration in (5.19), which

in practice this might be difficult (if not impossible in closed form).

Remark 8. The integral (anti-derivative) in the Variation of Constants formula (5.19)

is not, of course, unique. However, any specific integral can be used to obtain the general

solution. This is because all integrals differ by a constant, i.e., in (5.19) we could replaceZ 

Φ−1()̃() by

Z 

Φ−1()̃()+ ̃

where ̃ is an arbitrary constant of integration. However, we can then write

̃ () = Φ()̃+ Φ()

µZ 

Φ−1()̃()+ ̃

¶
= Φ()

³
̃+ ̃

´
+ Φ()

Z 

Φ−1()̃()

which still has the form (5.19) since we can just relabel the arbitrary constant ̃+ ̃ by ̃.

Example 5.9 In matrix notation the system

0 = −2+ 2 + −2

0 = 2− 5
has the form (5.16) with

 () =

µ −2 2
2 −5

¶
 ̃() =

µ
−2

0

¶


From Example 5.3 we retrieve the fundamental solution matrix

Φ() =

µ
2− −6

− −2−6
¶
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To use the Variation of Constants Formula (5.19) we calculate

Φ−1() =
µ

2
5
 1

5


1
5
6 −2

5
6

¶
 Φ−1()̃() =

µ
2
5
−
1
5
4

¶
and Z 

Φ−1()̃() =
µ R  2

5
−R  1
5
4

¶
=

µ −2
5
−

1
20
4

¶
Φ()

Z 

Φ−1()̃() =
µ
2− −6

− −2−6
¶µ −2

5
−

1
20
4

¶
=

µ −3
4
−2

−1
2
−2

¶


The general solution is

̃ () = Φ()̃+ Φ()

Z 

Φ−1()̃()

=

µ
2− −6

− −2−6
¶µ

1
2

¶
+

µ −3
4
−2

−1
2
−2

¶
=

µ
21

− + 2
−6 − 3

4
−2

1
− − 22−6 − 1

2
−2

¶


Example 5.10 The second order, linear nonhomogeneous equation

00 +  = cos 2

is an example of the “forced harmonic oscillator”. In the equivalent homogeneous linear

system

 () =

µ
0 1
−1 0

¶
 ̃() =

µ
0

cos 2

¶
From Example 5.4 we retrieve the fundamental solution matrix and its inverse

Φ () =

µ
cos  sin 
− sin  cos 

¶
 Φ−1 () =

µ
cos  − sin 
sin  cos 

¶


from which we make the following calculations

Φ ()

Z 

Φ−1()̃() =

µ
cos  sin 
− sin  cos 

¶Z 
µ
cos  − sin 
sin  cos 

¶µ
0

cos 2

¶


=

µ
cos  sin 
− sin  cos 

¶µ − R  sin  cos 2R 
cos  cos 2

¶
=

µ −1
3
cos 2

2
3
sin 2

¶


(A table of integrals and trigonometric identities is handy here, or an online integrator.)

Using these ingredients in the Variation of Constants Formula (5.19) we calculate

̃ () = Φ()̃+ Φ()

Z 

Φ−1()̃()

=

µ
cos  sin 
− sin  cos 

¶µ
1
2

¶
+

µ −1
3
cos 2

2
3
sin 2

¶
=

µ
1 cos + 2 sin − 1

3
cos 2

−1 sin + 2 cos +
2
3
sin 2

¶
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The general solution of the second order equation is the first component of this vector solution:

 () = 1 cos + 2 sin − 1
3
cos 2 (5.20)

(The second component of the vector solutions is the derivative 0 ()  which follows from the
manner in which we convert second order equations to systems.)

To solve an initial value problem ̃ (0) = ̃0 for a linear nonhomogeneous system is a

matter of appropriately choosing the vector ̃ of arbitrary constants in the general solution.

One can either calculate the general solution by means of the Variation of Constants Formula

(5.19) and then calculate ̃ from the initial condition. Or a more general approach is to derive

a specialized Variation of Constants Formula that directly calculates the unique solution of

the initial value problem. This formula is most conveniently derived from (5.19) by choosing

a specific integral (anti-derivative) in the formula. (See Remark 8.) Specifically, we choose

the integral that equals 0̃ at  = 0, namely, we use the definite integralZ 

0

Φ−1 () ̃ () 

in (5.19) to obtain

̃ () = Φ()̃+ Φ()

Z 

0

Φ−1()̃()

Now we look for the constant vector ̃ that will give us the solution to the initial value

problem ̃ (0) = ̃0. Note that

̃ (0) = Φ(0)̃

(because we chose the specific integral that we did!) and hence we calculate ̃ by solving

Φ(0)̃ = ̃0 for

̃ = Φ−1(0)̃0

Theorem 5.7 (Variation of Constants Formula for Initial Value Problems) As-

sume the coefficient matrix  () and the nonhomogeneous term ̃() are con-
tinuous on an interval     . If Φ() is a fundamental solution matrix of
the homogeneous system ̃0 = ()̃, then the unique solution of the initial value
problem (with   0  )

̃0 = ()̃+ ̃()

̃ (0) = ̃0

is given by the formula

̃ () = Φ()Φ−1(0)̃0 + Φ()

Z 

0

Φ−1()̃() (5.21)
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Example 5.11 Consider the initial value problem

0 = −2+ 2 + −2

0 = 2− 5
 (0) =

1

10
  (0) =

21

20

As in 5.9 we have

Φ() =

µ
2− −6

− −2−6
¶

Φ−1() =
µ

2
5
 1

5


1
5
6 −2

5
6

¶
 Φ−1()̃() =

µ
2
5
−
1
5
4

¶


In the Variation of Constants Formula (5.21) we have (using the Fundamental Theorem of

Calculus) Z 

0

Φ−1()̃() =
µ R 

0
2
5
−R 

0
1
5
4

¶
=

µ
2
5
− 2

5
−

− 1
20
+ 1

20
4

¶

Φ()

Z 

0

Φ−1()̃() =

µ
2− −6

− −2−6
¶µ

2
5
− 2

5
−

− 1
20
+ 1

20
4

¶
=

µ
4
5
− − 3

4
−2 − 1

20
−6

2
5
− − 1

2
−2 + 1

10
−6

¶


The unique solution of the initial value problem is

̃ () = Φ()Φ−1(0)̃0 + Φ()

Z 

0

Φ−1()̃()

=

µ
2− −6

− −2−6
¶µ

2
5

1
5

1
5
−2
5

¶µ
9
4−3
2

¶
+

µ
4
5
− − 3

4
−2 − 1

20
−6

2
5
− − 1

2
−2 + 1

10
−6

¶
=

µ
2− − 3

4
−2 + −6

− − 1
2
−2 − 2−6

¶


Example 5.12 Consider the initial value problem

00 +  = cos 2

 (0) = 0  (0) = 0

As pointed out in Example 5.10 the equivalent linear system to the the second order, linear

nonhomogeneous equation has coefficient matrix and nonhomogeneous term

 () =

µ
0 1
−1 0

¶
 ̃() =

µ
0

cos 2

¶
for which

Φ () =

µ
cos  sin 
− sin  cos 

¶
 Φ−1 () =

µ
cos  − sin 
sin  cos 

¶
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from which we make the following calculations

Φ ()

Z 

0

Φ−1()̃() =

µ
cos  sin 
− sin  cos 

¶Z 

0

µ
cos  − sin 
sin  cos 

¶µ
0

cos 2

¶


=

µ
cos  sin 
− sin  cos 

¶µ − R 
0
sin  cos 2R 

0
cos  cos 2

¶
=

µ
cos  sin 
− sin  cos 

¶µ
1
6
cos 3− 1

2
cos + 1

3
1
2
sin + 1

6
sin 3

¶
=

µ
1
3
cos − 1

3
cos 2

−1
3
sin + 2

3
sin 2

¶


(A table of integrals and trigonometric identities is handy here, or an online integrator.)

Using these ingredients in the Variation of Constants Formula (5.19) we calculate

̃ () = Φ()̃+ Φ()

Z 

Φ−1()̃()

=

µ
cos  sin 
− sin  cos 

¶µ
0
0

¶
+

µ
1
3
cos − 1

3
cos 2

−1
3
sin + 2

3
sin 2

¶
=

µ
1
3
cos − 1

3
cos 2

−1
3
sin + 2

3
sin 2

¶


The solution of the initial value problem associated with the second order equation is the first

component of this vector solution:

 () =
1

3
cos − 1

3
cos 2 (5.22)

(The second component of the vector solutions is the derivative 0 ()  which follows from the
manner in which we convert second order equations to systems.)

Remark 9. Just as we learned when studying single first order equations, shortcut

methods there are sometimes available that we can use to calculate  (). One such method,
for example, was the Method of Undetermined Coefficients that we used in in Section 2.2.1 of

Chapter 2. We will re-visit this method in the next section where we will apply it particularly

to second order equations. In fact, the general solution (5.20) in Example 5.10 and the

solution (5.22) of the initial value problem in Example 5.12 can by calculated quickly by this

shortcut method, with much less effort (and no integration or trigonometric identities) than

by using the Variation of Constants Formula as is done in these in Examples. Shortcuts

apply, however, only to specialized kinds of equations, whereas the Variation of Constants

Formula can always be used.

We have focussed on two dimensional systems in this chapter, i.e., two linear differential

equations in two unknowns. One advantage of matrix notation is that our results, derivations,

and proofs are (usually) independent of the dimension of the system and the size of the

matrices. For example, we can extend Definition 5.2 of a fundamental solution matrix Φ ()
to -dimensional systems in a straight forward manner as follows.
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An  ×  matrix Φ () is a fundamental solution matrix if and only if it is
nonsingular (invertible) on the interval      and satisfies the “matrix”

differential equation

Φ0() = ()Φ() (5.23)

Then the Variation of Constants Formulas (5.19) and (5.21) remain valid for-

mulas for systems of  linear differential equations.

Example 5.13 The three dimensional system

0 = − 2 + 2 + 1
3
cos − 1

3
sin 

0 = −+ 6 − 4 + 2cos  (5.24a)

0 = −+ 7 − 5 + 2cos − 2
3
sin 

can be written in matrix form ̃0 =  () ̃+ ̃ () with

̃ () =

⎛⎝  ()
 ()
 ()

⎞⎠   () =

⎛⎝ 1 −2 2
−1 6 −4
−1 7 −5

⎞⎠   () =

⎛⎝ 1
3
cos − 1

3
sin 

2 cos 
2 cos − 2

3
sin 

⎞⎠ 

A fundamental solution matrix is

Φ () =

⎛⎝  − 0
 −− 2

 −2− 2

⎞⎠ 

You will learn how to calculate this fundamental solution matrix in the next chapter. In the

meantime, you can verify that it is a fundamental solution matrix by showing

Φ0 () =  ()Φ ()

and

detΦ (0) = det

⎛⎝ 1 1 0
1 −1 1
1 −2 1

⎞⎠ = 1 6= 0

The general solution of the associated homogeneous system is

̃ () = Φ () ̃ =

⎛⎝  − 0
 −− 2

 −2− 2

⎞⎠⎛⎝ 1
2
3

⎞⎠
=

⎛⎝ 1
 + 2

−

1
 − 2

− + 3
2

1
 − 22− + 3

2

⎞⎠ 

To find the general solution of the nonhomogeneous system by using the Variation of Con-

stants Formula (5.19), we calculate the inverse

Φ−1 () =

⎛⎝ − −− −

0  −
−−2 3−2 −2−2

⎞⎠
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and

Φ−1 () ̃() =

⎛⎝ − −− −

0  −
−−2 3−2 −2−2

⎞⎠⎛⎝ 1
3
cos − 1

3
sin 

2 cos 
2 cos − 2

3
sin 

⎞⎠ =

⎛⎝ 1
3
− (cos − 3 sin )

2
3
 sin 

5
3
−2 (cos + sin )

⎞⎠
Z 

Φ−1()̃() =

⎛⎝ R  1
3
− (cos − 3 sin ) R  2

3
 sin R  5

3
−2 (cos + sin ) 

⎞⎠ =

⎛⎝ 1
3
− (cos + 2 sin )
1
3
 (− cos + sin )

−1
3
−2 (3 cos + sin )

⎞⎠

̃ () = Φ()

Z 

Φ−1()̃() =

⎛⎝  − 0
 −− 2

 −2− 2

⎞⎠⎛⎝ 1
3
− (cos + 2 sin )
1
3
 (− cos + sin )

−1
3
−2 (3 cos + sin )

⎞⎠
=

⎛⎝ sin 
−1
3
cos 

−1
3
sin 

⎞⎠
The general solution is of (5.24) is

̃ () = ̃ () + ̃ () =

⎛⎝  − 0
 −− 2

 −2− 2

⎞⎠⎛⎝ 1
2
3

⎞⎠+
⎛⎝ sin 
−1
3
cos 

−1
3
sin 

⎞⎠
=

⎛⎝ 1
 + 2

− + sin 
1

 − 2
− + 3

2 − 1
3
cos 

1
 − 22− + 3

2 − 1
3
sin 

⎞⎠ 

5.4 Chapter Summary

If the coefficient matrix  () and nonhomogeneous term ̃ () are continuous on an interval
     then the Extended Fundamental Existence and Uniqueness Theorem for a

two dimensional linear systems ̃0 =  () ̃+ ̃ () guarantees the existence and uniqueness
of a solution on the entire interval     . The general solution has the additive

decomposition ̃ = ̃ + ̃ where ̃ is the general solution of the associated homogeneous

system ̃0 =  () ̃ and ̃ is any particular solution of the nonhomogeneous system. The

general solution ̃ of a two dimensional homogeneous linear system is a two dimensional

linear vector space and, therefore, is the span of any two independent solutions ̃1 () and
̃2 (), a fact that can be written ̃ () = Φ () ̃ where Φ () = col( ̃1 () ̃2 () ) is a
fundamental solution matrix and ̃ is a vector of arbitrary constants. Two solutions ̃1 ()
and ̃2 () are independent if and only if Φ () is invertible on     . A formula for the

general solution of a nonhomogeneous linear system is given by the Variation of Constants

Formula (5.19). Another version of the Variation of Constants Formula (5.21) gives a formula

for the solution of any initial value problem ̃ (0) = ̃0.
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5.5 Exercises

Which of the following systems are linear and which are nonlinear? If the system is linear,

is it homogeneous or nonhomogeneous?

Exercise 5.1

½
0 = −3+ 

0 = + 5

Exercise 5.2

½
0 = (sin )+ 

0 = + (cos ) 

Exercise 5.3

½
0 = 2(1− ) + 3
0 = −+ 2

Exercise 5.4

½
0 = (1− )− 

0 = −+ 

Exercise 5.5

½
0 = − sin + 

0 = 2− 

Exercise 5.6

½
0 = −1 +  − 3
0 = 15−  + 42

Exercise 5.7

½
0 = − 14
0 = − 

  are constants

Exercise 5.8

½
0 =  − 32(− 2) + −

0 = (+ ) + 
 is a constant

For the linear systems below find the coefficient matrix  () and the nonhomogeneous
term ̃(). Write the system in matrix form.

Exercise 5.9

½
0 = 3(− ) + 2(− )
0 = −7− − 

Exercise 5.10

½
0 = 2(05− ) + − 6
0 = 3(2− )

Exercise 5.11

½
0 = (+ 3)− 4+ 2

0 = −+ (− 1) − 
  are constants

Exercise 5.12

½
0 = (2 − 1) (− ) + sin 
0 = +  − cos   is a constant

Consider the linear homogeneous systems with the coefficient matrices() and nonhomo-
geneous (forcing) terms ̃ () below. Use the Extended Existence and Uniqueness Theorem
5.1 to answer the following question: on what (maximal) interval do the solutions of the

indicated initial value problems exist?
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Exercise 5.13  () =

µ
1 2
2 3

¶
 ̃ () =

µ
sin 
cos 

¶
 ̃(0) =

µ
1
−1

¶

Exercise 5.14  () =

µ −035 

3
√
17

¶
 ̃ () =

µ


0

¶
 ̃(0) =

µ
2
0

¶

Exercise 5.15  () =

µ
(1− 2)

−1
1

−1 (1 + 2)
−1

¶
 ̃ () =

µ
(− 3)−1
(+ 3)−1

¶
 ̃(0) =

µ
2
3

¶

Exercise 5.16  () =

µ
(1− 2)

−1
1

−1 (1 + 2)
−1

¶
 ̃ () =

µ
(− 3)−1
(+ 3)−1

¶
 ̃(2) =

µ
2
3

¶

Exercise 5.17  () =

µ
ln  (2 − 2)−1
sin  cos

¶
 ̃ () =

µ
(+ 1)−1

−2

¶
 ̃(1) =

µ −1
0

¶

Exercise 5.18  () =

µ
ln  (2 − 2)−1
sin  cos

¶
 ̃ () =

µ
(+ 1)−1

−2

¶
 ̃(2) =

µ −1
0

¶
Exercise 5.19 The general solutions ̃ and ̃ of (5.6) and (5.7) are sets of solutions.

Define the set

̃ + ̃ = {̃ () + ̃()|̃ ∈ ̃} .
Prove Theorem 5.2 by showing the sets ̃ and ̃+ ̃ are identical using the following method
from set theory: two sets  and  and identical if and only if  ⊆  and  ⊆ .

Exercise 5.20 Consider the linear homogeneous system with coefficient matrix

 () =

µ
3
2

−1
2− 1

22
1
2

¶
on the interval   0
(a) Verify that

̃1 () =

µ


1

¶
 ̃2 () =

µ
2

−
¶

are both solutions for   0
(b) Prove ̃1 () and ̃2 () are independent on the interval   0 and write down a

fundamental solution matrix Φ (). Obtain a formula for the general solution ̃.

(c) Find a formula for the solution of the initial value problem

̃ (1) =

µ
2
0

¶


Exercise 5.21 Consider the linear homogeneous system with coefficient matrix

 () =

µ
0 2
−2 0

¶




5.5. EXERCISES 185

(a) Verify that

̃1 () =

µ
cos (2)
− sin (2)

¶
 ̃2 () =

µ
sin (2)
cos (2)

¶
are both solutions on the interval −∞    +∞.
(b) Prove ̃1 () and ̃2 () are independent on the interval −∞    +∞ and write

down a fundamental solution matrix Φ (). Obtain a formula for the general solution ̃.

(c) Find a formula for the solution of the initial value problem

̃ (0) =

µ
1
−2

¶


Exercise 5.22 (a) Verify that

̃1 () =

µ
4

24

¶
 ̃2 () =

µ −3−3
−3

¶
are both solutions of the linear homogeneous system with coefficient matrix

 () =

µ −2 3
2 3

¶
on the interval −∞    +∞

(b) Prove ̃1 () and ̃2 () are independent on the interval −∞    +∞ and write

down a fundamental solution matrix Φ (). Obtain a formula for the general solution ̃.

(c) Verify that

̃ () =

µ
24 + 3−3

44 − −3

¶
is also a solution of the system on the interval −∞    +∞

(d) Write the solution in (c) as a linear combination of the independent solutions in (a).

Exercise 5.23 (a) Verify that

̃1 () =

µ
2− cos 3

− (cos 3− sin 3)
¶

 ̃2 () =

µ
2− sin 3

− (cos 3+ sin 3)

¶
are both solutions of the linear homogeneous system with coefficient matrix

 () =

µ −4 6
−3 2

¶
on the interval −∞    +∞

(b) Prove ̃1 () and ̃2 () are independent on on the interval −∞    +∞ and write

down a fundamental solution matrix Φ (). Obtain a formula for the general solution ̃.

(c) Verify that

̃ () =

µ −2− (2 cos 3+ sin 3)
− (−3 cos 3+ sin 3)

¶
is also a solution of the system on the interval −∞    +∞

(d) Write the solution in (d) as a linear combination of the independent solutions in (a).
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Exercise 5.24 Given that

̃1 () =

µ −2−5
−5

¶
 ̃2 () =

µ
5

25

¶
are both solutions of the linear homogeneous system with coefficient matrix

 () =

µ −3 4
4 3

¶
use them to solve the following initial value problems.

(a) ̃(0) =

µ −1
2

¶
(b) ̃(0) =

µ
3
1

¶
Exercise 5.25 Given that

̃1 () =

µ
7 cos

¡√
3
¢

2 cos
¡√
3
¢−√3 sin ¡√3¢

¶
 ̃2 () =

µ
2 cos

¡√
3
¢
+
√
3 sin

¡√
3
¢

cos
¡√
3
¢ ¶

are both solutions of the linear homogeneous system with coefficient matrix

 () =

µ −2 7
−1 2

¶
use them to solve the following initial value problems.

(a) ̃(0) =

µ
1
0

¶
(b) ̃(0) =

µ
0
1

¶
Exercise 5.26 Suppose ̃1() and ̃2() are dependent solutions of a linear homogeneous
system ̃0 =  () ̃ with a coefficient matrix  () that is continuous on an interval     .

Prove that

det

µ
1() 2()
1() 2()

¶
= 0

on the interval     . It follows that if

det

µ
1(0) 2(0)
1(0) 2(0)

¶
6= 0

for some 0 in the interval, then the solution pairs are independent.

Exercise 5.27 Suppose ̃1() and ̃2() are solutions of a linear homogeneous system ̃0 =
 () ̃ with a coefficient matrix  () that is continuous on an interval     . Prove

that the determinant

() = det

µ
1() 2()
1() 2()

¶
is either never equal to 0 for      or else it is identically (i.e., always) equal to 0 on
    . (Hint: by direct calculation show the determinant satisfies the first order, linear

homogeneous equation 0 = () where () = () + () and solve the initial value problem
for  ().)
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Exercise 5.28 Use the following two facts about matrix multiplication

 (̃+ ̃) =̃+̃

 (̃) =  (̃) for any real number 

to prove that a linear combination 1̃1 + 2̃2 + · · · + ̃ of any number of solutions ̃1,

̃2, . . . , ̃ of ̃
0 = ()̃ is also a solution.

Exercise 5.29 Find solution formulas for the initial value problems below associated with

the linear homogenous system with coefficient matrix

 () =

µ −2 2
2 −5

¶


in Example 5.3.

(a) ̃ (0) =

µ
1
1

¶
(b) ̃ (0) =

µ
1
2−1
¶

(c) ̃ (0) =

µ
10
−5

¶
(d) ̃ (0) =

µ −5
2

¶
Exercise 5.30 Find solution formulas for the following initial value problems associated

with the simple harmonic oscillator equation 00 +  = 0
(a) (0) = −1 0(0) = 1 (b) (0) = 2 0(0) = −3
(c) () = −1 0() = 1 (d) () = 2 0() = −3

Exercise 5.31 (a) Use the Variation of Constants Formula to find a formula for the general

solution of ̃0 = ̃+ ̃() with

 =

µ
0 1
−1 0

¶
 ̃() =

µ
1
−1

¶


(b) Use the Variation of Constants Formula (5.21) to find a formula for the solution of

the initial value problem

̃(0) =

µ
0
0

¶


Exercise 5.32 (a) Use the Variation of Constants Formula to find a formula for the general

solution of ̃0 = ̃+ ̃() with

 =

µ −2 1
2 −3

¶
 ̃() =

µ
2

2

¶
 Φ() =

µ
−4 −

−2−4 −

¶


(b) Use the Variation of Constants Formula (5.21) to find a formula for the solution of

the initial value problem

(0) =

µ
1
−1

¶
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Exercise 5.33 Consider the nonhomogeneous system

0 = −3+ 4 + −

0 = −6+ 7 + 1
and the fundamental solution matrix

Φ () =

µ
 23

 33

¶


(a) Use the Variation of Constants Formula (5.19) to find the general solution.

(b) Solve the initial value problem (0) = 0 (0) = 0
(c) Solve the initial value problem (0) = 2 (0) = 1

Exercise 5.34 Consider the nonhomogeneous system

0 = −3+ 5 − 1
0 = −2+ 3 + 1

and the fundamental solution matrix

Φ () =

µ
5 cos  5 sin 

3 cos − sin  cos + 3 sin 

¶


(a) Use the Variation of Constants Formula (5.19) to find the general solution.

(b) Solve the initial value problem (0) = 0 (0) = 0
(c) Solve the initial value problem (0) = −2 (0) = 1

Exercise 5.35 Consider the nonhomogeneous system ̃0 = ()̃+ ̃() for   0 when

() =

µ
3
2
−1
2− 1

22
1
2

¶
 ̃() =

µ
2



¶


(a) Verify that

Φ() =

µ
 2

1 −
¶

is a fundamental solution matrix for the associated homogeneous system ̃0 = ()̃.
(b) Use the Variation of Constants Formula (5.19) to find the general solution.

(c) Use the Variation of Constants Formula (5.21 ) to solve the initial value problem

̃(1) =

µ
0
0

¶


Exercise 5.36 Consider the second order equation 00 +  = tan 
(a) Use the Variation of Constants formula (5.19) to find a formula for the general

solution

(b) Use the Variation of Constants formula (5.21) to find a formula for the solution of

the initial value problem (0) = 0 0(0) = 0.
(c) Use the Variation of Constants formula (5.21) to find a formula for the solution of

the initial value problem (0) = 1 0(0) = 0.
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Exercise 5.37 Use the given fundamental solution matrix Φ () and the Variation of Con-
stants Formula (5.19) to find a formula for the general solution of the following systems

(a)

0 = −3
2
+  − 1

2

0 = −2+ 3
2
 + 1

and Φ() =

µ
−2 2

−2 22

¶
(b)

0 = −3
2
+  + 2

0 = −2+ 3
2
 − 1

4

and Φ() =

µ
−2 2

−2 22

¶
(c)

0 = 3+ 5 − 2
0 = −2− 3 + 1 and Φ() =

µ
3 cos − sin  cos + 3 sin 
−2 cos  −2 sin 

¶
(d)

0 = 3+ 5 − 13−5
0 = −2− 3 and Φ() =

µ
3 cos − sin  cos + 3 sin 
−2 cos  −2 sin 

¶
(e)

0 = 5+ 8 + 

0 = −3− 5 and Φ() =

µ
4− 2

−3− −
¶

where  is a constant.

(f)

0 = 0 = 5+ 8 + 

0 = −3− 5 + 2 and Φ() =

µ
4− 2

−3− −
¶

where  is a constant.

Exercise 5.38 Find a formula for the solution of the initial value problem (0) = 1, (0) =
−1 for each system in Exercises 5.37.

Exercise 5.39 The strengths of two opposing armies are  = () and  = () (as mea-
sured, for example, by the number of troops or armaments). In a battle an army’s strength is

reduced. Assume the rate of reduction is proportional to the strength of the opposing army.

During the battle reinforcements arrive at rates 1() and 2() Thus,  and  satisfy the

nonhomogeneous linear system

0 = − + 1()

0 = −+ 2()

Assume the armies are “evenly matched”, by which we mean  = . Let us assume  =  = 1.
Finally, suppose reinforcements arrive at exponentially decreasing rates 1() = − and
2() = − where  and  are positive constants. Under these conditions we have the

system

0 = − + −

0 = −+ −

(0) = 0  0, (0) = 0
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The constants  and  measure how fast the reinforcement rates decrease.

(a) Use a computer to study the solutions of the initial value problem when both armies

are reinforced at the same (decreasing) rate, i.e.,  =  Organize your explorations in the

following way. Choose a value for  =  and have a computer draw graphs of  and 

for a selection of initial conditions 0 6= 0 Repeat this for several choices of  =  Draw

conclusions about the winner of the battle. (Note: an army loses if its strength equals 0 at
some time .)

(b) Given the fundamental solution matrix

Φ () =

µ
 −

− −

¶
of the associated homogeneous system, find a formula for the solution of the initial value

problem when  =  (Note: be careful. You should have two different formulas, one for

 6= 1 and one for  = 1.)
(c) Use your answer in (b) to verify (or disprove) your answers in (a).

Exercise 5.40 Suppose the rates at which two distinct groups move into and out of a city

are proportional to the numbers  = () and  = () present. Specifically, members of group
 are attracted to each other and so their numbers increase at a rate proportional to their

numbers. However, members of group  do not like members of group  and they leave the

city at a rate proportional to the number of  group members present. The fundamental in-

flow/out-flow (compartmental) rule implies 0 = − where  and  are positive constants.
Assume group  feels the same way about its own members and those of group  so that

0 = −+  for positive constants  and . Suppose  =  (i.e., both populations grow at

the same exponential rate in the absence of the other). In fact, take  =  = 1 to arrive at
the initial value problem

0 = − 

0 = −+ 

(0) = 0  0 (0) = 0  0

(a) Use a computer to study solutions of the initial value problem. Do this for  =  = 1.
In the long run can both groups live together in the city? Under what conditions is a group

eventually gone from the city (i.e., is the city totally segregated)? Repeat for  = 4  = 1.
(b) Given the fundamental solution matrix

Φ () =

µ √
1

√
2

−1 2

¶
1 = 1 +

√
 2 = 1−

√


for the associated homogeneous system, find a formula for the solution of the initial value

problem

(c) Use your answer in (b) to verify your answers in (a).
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Exercise 5.41 The system

0 = − 

0 = −+ 

(0) = 0  0 (0) = 0  0

models the numbers of two groups moving into and out of a city. Here  and  are positive

constants. (See Exercise 5.40). Suppose initially there are no members of population  in

the city. Suppose individuals of group  are added to (immigrate into) the city at a constant

rate   0 Then we have the initial value problem

0 = −  + 

0 = −+ 

(0) = 0 (0) = 0  0

(a) Use a computer to study solutions of this initial value problem. Organize your ex-

ploration as follows. Choose and fix an initial condition 0  0 and graph  and  for an

increasing sequence of immigration rates  Repeat this for several choices of 0  0. What
do you conclude about the long term group composition of the city?

(b) Find a formula for the solution of this initial value problem.

() Use your answer in (b) to verify your answers in (a).
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Chapter 6

Autonomous Linear Homogeneous

Systems

We learned in Chapter 5 that a formula for the solutions of general linear systems is available

(namely, the Variation of Constants Formula) provided one can calculate a fundamental

solution matrix Φ () for the associated homogeneous system. Unfortunately, in general

there is no method that will allow us to calculate a fundamental solution matrix for a linear

homogeneous system. (An exception is the case of a single linear equation, i.e., a system of

dimension one, as we saw in Chapter 2).

There is an important special case, however, when methods do exist for calculating a fun-

damental solution matrix of a homogeneous system. This is the special case of autonomous

homogeneous linear systems , that is, for homogeneous linear systems that have a constant

coefficient matrix .

We have two main goals in this chapter. The first is to learn how to calculate a funda-

mental solution matrix for an autonomous linear homogeneous system

̃0 = ̃

We will focus on the two dimensional case (in which case  is a 2 × 2 constant matrix),
i.e. on systems of two linear equations in two unknowns. (We will point out, at appropriate

times, when the methods we learn are applicable to systems of any dimension.) Don’t forget

that whenever we learn something about systems of first order differential equations we

automatically learn something about higher order equations. We will take a close look at

second order equations in Chapter 7.

Our second main goal in this chapter is to study the phase plane portraits of two dimen-

sional autonomous linear systems.

6.1 Review of Eigenvalues

Recall from linear algebra that an eigenvalue of an  ×  matrix  is a (real or complex)

number  such that ̃ = ̃, or equivalently

(− ) ̃ = 0̃, (6.1)

193
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for some vector ̃ 6= 0̃, which is called an eigenvector associated with  ( is then  × 

identity matrix). We’ll refer to  and ̃ as an eigen-pair.

In order that the linear algebraic equation (6.1) to have a nontrivial solution ̃ 6= 0̃, it is
necessary that the matrix −  be singular (non-invertible), i.e., that

det (− ) = 0 (6.2)

The determinant det (− ) is an -degree polynomial in , called the characteristic poly-
nomial of .

For 2× 2 matrices  the characteristic polynomial is quadratic and therefore the eigen-
values can be calculated by the quadratic formula. Specifically, if

 =

µ
 

 

¶
then the characteristic equation (6.2) is

2 − (+ )+ (− ) = 0

An easy way to find the characteristic equation is to notice that +  is the trace of  and

−  is the determinant of  :

+  = tr ()  −  = det

Then the characteristic equation can be written as

2 − tr ()+ det = 0
It follows that the eigenvalues of  are

± =
1

2

µ
tr ()±

q
tr2 ()− 4 det

¶


or in terms of the entries in 

± =
1

2

µ
+ ±

q
(− )2 + 4

¶


Once an eigenvalue  has been calculated, we find an associated eigenvector by solving the

linear algebraic system (6.1) for ̃ 6= 0̃ which is possible because  is an eigenvalue (which
makes the coefficient matrix − singular). For the 2× 2 matrix case the linear algebraic
system (6.1) consists of two (linear) equations in two unknowns, namely, the components of

the vector

̃ =

µ
1
2

¶


Specifically, we must solve the system

(− ) 1 + 2 = 0

1 + (− ) 2 = 0
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for 1 and 2 not both equal to 0 As a practical matter, note that one only needs to solve one

of the equations. (The equations are made dependent by choosing  to be an eigenvalue.)

Thus, one can for example solve the first equation by choosing 2 (or 1) to be any convenient

number and let the equation determine 1 (or 2). Or one can do a similar thing with the

second equation.

Recall that there is not a unique eigenvector associated with an eigenvalue . For example,

any nonzero constant multiple of an eigenvector is also an eigenvector.

For matrices of higher dimension than  = 2 the procedure for calculating eigen-pairs
is the same. The main difficulty for higher dimensional matrices is that the characteristic

polynomial becomes a high degree polynomial and find its roots becomes more difficult.

6.2 The Putzer Algorithm

The Putzer Algorithm is a method for calculation a fundamental solution matrix for an

autonomous linear homogeneous system

̃0 = ̃

of an dimension . Here the coefficient matrix is an  ×  matrix. Although our focus in

this course is on the two dimensional case  = 2, the Putzer Algorithm for  dimensional

systems is just as easy to state.

Recall that there is not a unique fundamental matrix associated with a linear system.

The columns of a fundamental solution matrix form a basis for the linear vector space of

solutions and, as you know from linear algebra, there is not a unique basis for a vector space.

Theoretically, by means of the Fundamental Existence and Uniqueness Theorem 5.1,

one can calculate a fundamental solution matrix Φ () by using for its columns the unique
solutions of the initial value problem

̃0 = ̃

̃ (0) = ̃

where

̃1 =

⎛⎜⎜⎜⎝
1
0
...

0

⎞⎟⎟⎟⎠  ̃2 =

⎛⎜⎜⎜⎝
0
1
...

0

⎞⎟⎟⎟⎠  · · ·  ̃ =

⎛⎜⎜⎜⎝
0
0
...

1

⎞⎟⎟⎟⎠
is the canonical basis of the -dimensional Euclidean vector space. This is exactly what we

did in Section 5.2.2 Chapter 5 for the  = 2 dimensional case when we established the general
existence of independent solutions. The resulting fundamental solution matrix satisfies

Φ (0) = 

where

 = col
¡
̃1 ̃2 · · · ̃

¢
=

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...
...

...

0 0 · · · 1

⎞⎟⎟⎟⎠
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is the ×  identity matrix.

Definition 6.1 A fundamental solution matrix that satisfies Φ (0) =  is called a normal-

ized fundamental solution matrix (normalized at 0).

One advantage of working for a fundamental solution matrix normalized at  = 0 is that

the formula for solutions of initial value problems at  = 0

̃ () = Φ ()Φ−1 (0) ̃0

is simplifies to

̃ () = Φ () ̃0

This simplification also occurs in the Variation of Constants Formula for the solution of

nonhomogeneous systems.

The Putzer Algorithm for autonomous linear homogenous system calculates the normal-

ized fundamental solution matrix under the assumption that one can calculate the eigenvalues

of the coefficient matrix .

Theorem 6.1 (Putzer Algorithm) Let 1 2 3 ... ,  be the eigenvalues of the

× coefficient matrix  with multiplicities included. The fundamental solution

matrix of the autonomous linear homogeneous system ̃0 = ̃ normalized at

0 = 0 is
Φ() = 1()1 + 2()2 + · · ·+ () (6.3)

where the ×  matrices  are calculated sequentially as follows:

1 = 

2 = − 1

3 = (− 2)2
...

 = (− −1)−1

where 1() = 1 and where the remaining  () are the (unique) solutions of the
initial value problems

02 = 22 + 1() 2(0) = 0

03 = 33 + 2() 3(0) = 0

...

0 =  + −1() (0) = 0

Remark 1. The initial value problems for  () for  = 2 3 · · ·   involve first order,
linear nonhomogeneous differential equations, which we studied in Chapter 2. Their solutions

can be found by either the Variation of Constants Formula

 () = 
Z 

0

−−1 () 
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or, since the coefficient  is a constant, by the Method of Undetermined Coefficients.

Remark 2. If an eigenvalue  is complex, then the procedure is to carry out the solution

of the initial value problem for  () as usual, accepting the fact that the answer will be a
complex valued function. Also, the matrix +1 will have complex entries. Nonetheless, the

fundamental solution matrix given by the formula (6.3) will, in the end, have no complex

entries in it. To carry out this calculation you will need to recall how to do complex arithmetic

and use the formulas

 = cos  +  sin  cos (−) = cos  sin (−) = − sin  (6.4)

As an example, if we apply the algorithm in Theorem 6.1 to the  = 2 dimensional case,
then the normalized fundamental solution matrix is

Φ() = 1 + 2() (− 1)

where 2 () is the unique solution of the initial value problem

02 = 22 + 1 2(0) = 0

By the Variation of Constants Formula (or the Method of Undetermined Coefficients) we

obtain

2 () = 2
Z 

0

(1−2) =
½

1
1−2

¡
1 − 2

¢
if 1 6= 2

 if 1 = 2 = 

and, as a result,

Φ() = 1 + 2() (− 1) =

½
1 + 1

1−2
¡
1 − 2

¢
(− 1) if 1 6= 2

 +  (− ) if 1 = 2 = 

In terms of the entries in the coefficient matrix

 =

µ
 

 

¶
the Putzer Algorithm yields the fundamental solution matrix

Φ() =
1

1 − 2

µ
(− 2) 

1 − (− 1) 
2 1 − 2

1 − 2 (− 2) 
1 − (− 1) 

2

¶
if 1 6= 2

(6.5)

Φ() = 
µ
1 + (− )  

 1 + (− ) 

¶
if 1 = 2 =  (6.6)

As a matter of practice, when calculating the fundamental solution matrix for a specific

 = 2 dimension homogeneous system, one can either use these formulas or step through the
algorithm given in Theorem 6.1.

Remark 3. A matrix Φ () is a solution matrix of a first order homogeneous system

̃0 = ̃
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if all of its its columns are solutions of the system, that is to say if

Φ0 () = Φ ()

(recall Definition (5.2) in Chapter 5). The matrix is a fundamental solution matrix normal-

ized at 0 if it satisfies the (matrix) initial value problem

Φ0 () = Φ ()  Φ (0) = 

The Putzer Algorithm gives a formula for the solution of the initial value problem

Φ0 () = Φ ()  Φ (0) =  (6.7)

Example 6.1 (Distinct real eigenvalues) The linear homogeneous system

0 = −2+ 2
0 = 2− 5

has the constant coefficient matrix

 =

µ −2 2
2 −5

¶
whose eigenvalues are

1 = −1 and 2 = −6
By Theorem 6.1, the fundamental solution matrix normalized at 0 = 0 is

Φ() = − + 2() (+ )

where 2 () is the unique solution of the initial value problem

02 = −62 + − 2(0) = 0

namely

2 () = 2
Z 

0

(1−2) = −6
Z 

0

5

=
1

5
− − 1

5
−6

Thus,

Φ() = −
µ
1 0
0 1

¶
+

µ
1

5
− − 1

5
−6

¶µµ −2 2
2 −5

¶
+

µ
1 0
0 1

¶¶
=

1

5

µ
4− + −6 2− − 2−6
2− − 2−6 − + 4−6

¶


(The student should check this answer by showing that it satisfies the initial value problem

(6.7)). Alternatively, one cab arrive at the same answer by using formula (6.5).
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A formula for the solution of an initial value problemµ
 (0)
 (0)

¶
=

µ
0
0

¶
is then µ

 ()
 ()

¶
=
1

5

µ
4− + −6 2− − 2−6
2− − 2−6 − + 4−6

¶µ
0
0

¶
Example 6.2 (Complex eigenvalues) The linear homogeneous system (the system equivalent

of the second order equation 00 +  = 0)

0 = 

0 = −
has the constant coefficient matrix

 =

µ
0 1
−1 0

¶
whose eigenvalues are

1 =  and 2 = −
By Theorem 6.1, the fundamental solution matrix normalized at 0 = 0 is

Φ() =  + 2() (− )

where 2 () is the unique solution of the initial value problem

02 = −2 +  2(0) = 0

namely

2 () = 2
Z 

0

(1−2) = −
Z 

0

2

= −
µ
1

2
2
¶¯̄̄̄=

=0

=
1

2
−

¡
2 − 1¢

=
1

2

¡
 − −

¢


Recalling the trigonometric identities (6.4) we obtain

2 () = sin 

and the fundamental solution matrix

Φ() = (cos +  sin )

µ
1 0
0 1

¶
+ (sin )

µµ
0 1
−1 0

¶
− 

µ
1 0
0 1

¶¶
=

µ
cos  sin 
− sin  cos 

¶
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The student should check this answer by showing that it satisfies the initial value problem

(6.7). (Alternatively, one can arrive at the answer by using formula (6.5)).

A formula for the solution of an initial value problemµ
 (0)
 (0)

¶
=

µ
0
0

¶
is µ

 ()
 ()

¶
=

µ
cos  sin 
− sin  cos 

¶µ
0
0

¶
Example 6.3 (Double eigenvalue) The linear homogeneous system (the equivalent system

to the second order equation 00 +  = 0)

0 = + 

0 = −4+ 5
has the constant coefficient matrix

 =

µ
1 1
−4 5

¶


which has the double eigenvalue  = 3.
By Theorem 6.1, the fundamental solution matrix normalized at 0 = 0 is

Φ() = 3 + 2() (− 3)
where 2 () is the unique solution of the initial value problem

02 = 32 + 3 2(0) = 0

namely

2 () = 2
Z 

0

(1−2) = 3
Z 

0



= 3

Thus,

Φ() = 3
µ
1 0
0 1

¶
+ 3

µµ
1 1
−4 5

¶
− 3

µ
1 0
0 1

¶¶
=

µ
(1− 2) 3 3

−43 (1 + 2) 3

¶


(The student should check this answer by showing that it satisfies the initial value problem

(6.7).) Alternatively, one can arrive at the answer by using formula (6.5).

A formula for the solution of an initial value problemµ
 (0)
 (0)

¶
=

µ
0
0

¶
is µ

 ()
 ()

¶
=

µ
(1− 2) 3 3

−43 (1 + 2) 3

¶µ
0
0

¶
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Example 6.4 The  = 3 dimensional linear homogeneous system

0 = −− 2 + 2
0 = 3+ 5 − 3
0 = 3+ 4 − 2

has the constant coefficient matrix

 =

⎛⎝ −1 −2 2
3 5 −3
3 4 −2

⎞⎠
whose eigenvalues are

1 = −1 2 = 1 3 = 2

By Theorem 6.1 the normalized fundamental solution matrix at 0 = 0 is

Φ() = 1()1 + 2()2 + 3()3

where

1 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
2 =

⎛⎝ −1 −2 2
3 5 −3
3 4 −2

⎞⎠− (−1)
⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ =

⎛⎝ 0 −2 2
3 6 −3
3 4 −1

⎞⎠
3 =

⎛⎝⎛⎝ −1 −2 2
3 5 −3
3 4 −2

⎞⎠− (1)
⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠⎞⎠⎛⎝ 0 −2 2
3 6 −3
3 4 −1

⎞⎠ =

⎛⎝ 0 0 0
3 6 −3
3 6 −3

⎞⎠
and

1 () = −

The initial value problems for 2 () and 3 (), and their solutions are

02 = 1 · 2 + −

2(0) = 0

¾
=⇒ 2 () =

1

2

¡
 − −

¢
03 = 23 +

¡
1
2
 − 1

2
−
¢

3(0) = 0

¾
=⇒ 3 () =

1

3
2 − 1

2
 +

1

6
−

Thus

Φ() = −

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠+1
2

¡
 − −

¢⎛⎝ 0 −2 2
3 6 −3
3 4 −1

⎞⎠+µ1
3
2 − 1

2
 +

1

6
−
¶⎛⎝ 0 0 0

3 6 −3
3 6 −3

⎞⎠
=

⎛⎝ − − −   − −

2 − − 22 − − − − 2

2 − − 22 − − −   + − − 2

⎞⎠ 
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The student should check this answer by showing that it satisfies the initial value problem

(6.7).

The solution of initial value problem⎛⎝  (0)
 (0)
 (0)

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠
is ⎛⎝  ()

 ()
 ()

⎞⎠ =

⎛⎝ − − −   − −

2 − − 22 − − − − 2

2 − − 22 − − −   + − − 2

⎞⎠⎛⎝ 0
0
0

⎞⎠ 

Example 6.5 The system linear homogeneous

0 = −−  (6.8)

0 = − 

is a model of the glucose/insulin regulation system in the bloodstream. In these equations 

and  are, the difference in the concentrations of glucose and insulin from their equilibrium

levels respectively. Thus, a negative value of  (or ) is a deficiency in the glucose (or

insulin) and a positive value is an excess of glucose (or insulin) in the bloodstream. The

rate constant   0 is related to the efficiency that the liver absorbs glucose,   0 to the
rate at which glucose is absorbed by muscle,   0 to the rate that insulin is produced by the
pancreas and   0 the rate at which insulin is degraded by the liver.
Some typical values of the rate constants (per hour) are1

 = 292  = 434  = 0208  = 0780. (6.9)

The eigenvalues of the coefficient matrix

 =

µ −292 −434
0208 −0780

¶
are (to three significant digits)

1 = −234 2 = −136.
Using these in the formula (6.5) yields the normalized fundamental solution matrix (to four

decimals digits)

Φ () =

µ
15918−2 34 − 05918−136 44286−2 34 − 44286−1 36
02122−1 36 − 02122−234 15918−136 − 05918−234

¶
(6.10)

A solution formula for an initial value problem

̃(0) =

µ
0
0

¶
1V. W. Bolie, Journal of Applied Physiology 16 (1960), p. 783.
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is

Φ () ̃(0) =

µ
15918−234 − 05918−136 44286−234 − 44286−136
02122−136 − 02122−234 15918−136 − 05918−234

¶µ
0
0

¶


As an application of this solution formula, consider that a dose 0  0 of glucose is introduced
into the bloodstream at  = 0, prior to which the system is at equilibrium levels, so that

 (0) = 0. To find the effect of this disturbance from equilibrium investigate the solution

formula

Φ () ̃(0) =

µ
15918−234 − 05918−136 44286−234 − 44286−136
02122−136 − 02122−234 15918−136 − 05918−234

¶µ
0
0

¶
= 0

µ
15918−234 − 05918−136
−02122−234 + 02122−136

¶


or in terms of the component state variables of the glucose/insulin regulation model

 () = 0
¡
15918−234 − 05918−136¢ (6.11)

 () = 0
¡−02122−234 + 02122−136¢ 

Notice

lim
→+∞

 () = 0 and lim
→+∞

 () = 0

which means that this model (with the estimated parameters) predicts that the glucose and

insulin levels in the bloodstream will, in the long run, return to their equilibrium values

after the introduction of glucose dose into the bloodstream. Figure 6.1 shows plots of  ()
and  () for initial condition 0 = 1. Notice that  () decreases to a negative minimum
before increasing to 0, i.e., the glucose concentration in the blood stream drops below and

then increases up to the equilibrium level. Also notice  increases to a maximum and then

decreases to 0, i.e., after the glucose dose is administered the insulin concentration in the
blood stream increases above, and then returns to, the equilibrium level.
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Glucose concentrationx

t    









Insulin concentrationy

t

Figure 6.1. The graphs of the components (6.11) of the solution of the glu-

cose/insulin model (6.8) with parameters (6.9) and an initial dose 0 = 1 of
glucose (with insulin at equilibrium 0 = 0).

Remark 4. In Example 6.5 both components of the solution (6.11) investigated tend to

0 as  → +∞. The reason for this is that both exponentials appearing in the fundamental
solution matrix (6.10), and hence in the solution components  () and  (), tend to 0. Those
exponentials tend to 0 because both eigenvalues of the coefficient matrix are negative. Since
this is true of every entry in the fundamental solution matrix, all initial value problems have

solutions that tend to 0 as  → +∞. That this occurs because of negative eigenvalues is a
point worth remembering, for it will return later when we study phase plane portraits and

stability theory (Section 6.4).

6.3 Eigenvectors and Fundamental Solution Matrices

Another method for calculating fundamental solution matrices is based on the eigenvectors

associated with the eigenvalues of the coefficient matrix . The connection between solutions

and the eigenvectors of  is often important. This will be the case in the following Section

6.4. Therefore, we will briefly consider this method in this section.

Suppose we look for a nontrivial solution of a linear homogeneous system

̃0 = ̃

of the form

̃ () = ̃

by using the Method of Undetermined Coefficients. Then, after substituting this guess into

the differential system and cancelling  from both sides, we discover that this exponential

is a nontrivial solution if and only if ̃ and  satisfy the equation

(− ) ̃ = 0̃ ̃ 6= 0̃.
Thus, ̃ is a nontrivial solution if and only if ̃ and  is an eigen-pair of the coefficient

matrix .

If we can find  independent solutions of this form, then we can use them as columns

in a fundamental solution matrix. In the  = 2 dimensional case, we need two independent
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solutions of the form ̃ in order to build a fundamental solution matrix. If it turns out that

 has two different eigenvalues, then this will be possible. The reason is that from linear

algebra we know that eigenvectors corresponding to different eigenvalues are necessarily

independent.

Suppose the eigenvalues 1 6= 2 have eigenvectors ̃ and ̃ respectively. The solution

matrix

Φ () =
¡
̃1 ̃2

¢
(6.12)

satisfies

detΦ (0) = det =
¡
̃ ̃

¢ 6= 0
(because, as pointed out, ̃ and ̃ are necessarily independent vectors). By Theorem 5.4 in

Chapter 5 the solution matrix (6.12) is a fundamental solution matrix.

Example 6.6 The linear homogeneous system

0 = −2+ 2
0 = 2− 5

in Example 6.1 has the constant coefficient matrix

 =

µ −2 2
2 −5

¶
with eigenvalues 1 = −1 and 2 = −6. Eigenvectors associated with these eigenvalues are
respectively

̃ =

µ
2
1

¶
 ̃ =

µ
1
−2

¶


These give rise to the independent solutions

̃1 () =

µ
2
1

¶
− =

µ
2−

−

¶
̃2 () =

µ
1
−2

¶
−6 =

µ
−6

−2−6
¶

and the fundamental solution matrix

Φ () =

µ
2− −6

− −2−6
¶


This fundamental solution matrix is not normalized at 0 = 0 and therefore is not the same
fundamental solution matrix we calculated in Example 6.1 by means of the Putzer Algorithm.

Indeed, there are infinitely many other fundamental solution matrices that can be calcu-

lated by selecting other eigenvectors associated with the eigenvalues 1 = −1 and/or 2 = −6.
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We can calculate the fundamental solution matrix normalized at 0 = 0 as follows:

Φ ()Φ−1 (0) =

µ
2− −6

− −2−6
¶µ

2 1
1 −2

¶−1
=

µ
2− −6

− −2−6
¶µ

2
5

1
5

1
5
−2
5

¶
=

µ
4
5
− + 1

5
−6 2

5
− − 2

5
−6

2
5
− − 2

5
−6 1

5
− + 4

5
−6

¶
which is the same as found in Example 6.1 by means of the Putzer Algorithm.

The fundamental solution matrix normalized at an arbitrary 0 is

Φ ()Φ−1 (0) =

µ
2− −6

− −2−6
¶µ

2−0 −60

−0 −2−60
¶−1

=

µ
2− −6

− −2−6
¶
1

5

µ
20 0

60 −260
¶

=
1

5

µ
−6(−0) + 4−(−0) 2−(−0) − 2−6(−0)
2−(−0) − 2−6(−0) 4−6(−0) + −(−0)

¶


This is suitable for finding solution formulas for initial value problemsµ
 (0)
 (0)

¶
=

µ
0
0

¶
posed at any 0 :µ

 ()
 ()

¶
=
1

5

µ
−6(−0) + 4−(−0) 2−(−0) − 2−6(−0)
2−(−0) − 2−6(−0) 4−6(−0) + −(−0)

¶µ
0
0

¶


If  has a complex eigenvalue, then we can still construct the (complex values) solution

̃ using an associated eigenvector ̃ (which is now also complex). To obtain real valued

solutions we can make use of the following fact:

If  is a complex eigenvalue and ̃ is an associated eigenvector then the real and

imaginary parts of ̃

̃1 () = Re ̃
 and ̃1 () = Im ̃

are two independent real solutions:

More explicitly, we can write down formulas for the two independent real solutions obtain

by extracting the real and imaginary parts from a complex valued solution from the complex

forms of the eigen-pair

 = +  ̃ = ̃+ ̃

where  and  are respectively the real and imaginary parts of  and ̃ and ̃ are respectively

the real and imaginary parts of ̃. Then, noting that

 = (+) =  cos+  sin
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we have

̃ = (̃+ ̃)
¡
 cos +  sin

¢
=

¡
̃ cos− ̃ sin

¢
+ 
¡
̃ sin+ ̃ cos

¢
and

̃1 () = Re ̃
 = ̃ cos− ̃ sin and ̃2 () = Im ̃ = ̃ sin+ ̃ cos

are two independent real solutions. These give us a fundamental solution matrix

Φ () =
¡
̃ cos− ̃ sin ̃ sin+ ̃ cos

¢


Note: If  = +  is a complex eigenvalue, then so is its complex conjugate  = − .
You might wonder why the procedure above is not repeated for the conjugate eigenvalue.

The answer is that you can repeat the procedure, but you will obtain solutions that are not

independent from those calculated for  = + . If you think about, you know this is true

because we learned that the general solution is a two dimensional linear vector space and

that, therefore, there cannot be more than two independent solutions.

As a practical matter this procedure for complex eigenvalues, while rather straight for-

ward (if you’re comfortable with complex numbers and their algebra), is usually fairly tedious

to perform in specific examples. Therefore, in this course we will generally use the Putzer

Algorithm when the eigenvalues are complex.

The case of a double eigenvalue can also be handled using eigenvector theory, although

its more complicated and involves “generalized” eigenvectors, something you not doubt did

not encounter in your first linear algebra course. Therefore, in this course, we will use the

Putzer Algorithm in this case.

The eigenvalue-eigenvector method for constructing fundamental solution matrices Φ ()
works for systems of any dimension. For higher dimensional coefficient matrices , one not

only has the challenge of calculating the eigenvalues but other challenges arise as well, such

as the possibility of repeated complex eigenvalues, multiple eigenvalues of order greater than

2, a mix of complex and real eigenvalues, and so on. Mathematicians have thoroughly worked

out the construction of Φ () in a general setting for any dimension  but this procedure

involves linear algebraic topics beyond the prerequisites of this course (in particular, the

so-called Jordan Canonical Form of a matrix). The following example illustrates the method

in the simplest case when  has  distinct real eigenvalues and eigenvectors which then

produce a basis of exponent solutions ̃

Example 6.7 Ecosystem modelers often use compartmental models to account for quantities

transferring into and out of subsystems. Since ecosystems can involve a large number of

subsystems, such compartmental models often involve a large number (even hundreds) of

differential equations. Here we consider an example involving three compartments.

Scientists can use a radioactive isotope to trace the flow of nutrients in food chains.

Suppose a radioactive isotope is placed into the water of an aquarium in order to trace

the flow of nutrients in an aquatic food chain consisting of zooplankton and phytoplankton.

Let 1 2 and 3 denote the concentration of the isotope in the water, phytoplankton, and
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zooplankton respectively. The compartment diagram in Figure 6.2 shows the (linear) transfer

rates (in microcuries per hour) between these subsystems of the food chain.

Figure 6.2

The differential equations for this compartmental model are

01 = (−002− 001)1 + 0062 + 0053
02 = 0021 + (−006− 006)2 (6.13)

03 = 0011 + 0062 − 0053

This is a linear homogeneous system of equations with constant coefficients. The coefficient

matrix

 =

⎛⎝ −003 006 005
002 −012 000
001 006 −005

⎞⎠
of the aquatic food chain model (6.13) has eigenvalues and eigenvectors (to 4 significant

figures)

1 = −007551 ̃1 =

⎛⎝ 05169
02324
−07493

⎞⎠
2 = −01245 ̃2 =

⎛⎝ 02677
−1191
09234

⎞⎠
3 = 0 ̃3 =

⎛⎝ 09415
01569
03766

⎞⎠ 

These eigen-pairs yield exponential solutions ̃
 which are independent (since the eigen-

vectors ̃, being associated with different eigenvalues, are independent). These exponential
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solutions yield the fundamental solution matrix

Φ() =
¡
̃1

1 ̃2
2 ̃3

3
¢

=

⎛⎝ 05169−007551 02677−01245 09415
02324−007551 −1191−01245 01569
−07493−007551 09234−01245 03766

⎞⎠
and the general solution (rounded to two significant digits, since the original coefficients have

this accuracy)

̃ () = Φ()̃⎛⎝ 1 ()
2 ()
3 ()

⎞⎠ =

⎛⎝ 0521
−0076 + 0272−012 + 0943

0231
−0076 − 1202−012 + 0163

−0751−0076 + 0922−012 + 0383

⎞⎠ 

Suppose 100 microcuries of tracer are introduced into the water of the aquatic food chain
modeled by Figure 6.2. Suppose no tracer is initially present in either the phytoplankton or

the zooplankton. This provides the initial conditions

̃0 =

⎛⎝ 100
0
0

⎞⎠ (6.14)

for the differential system (6.13). From ̃ () = Φ()Φ−1(0)̃0 we calculate the formula

() ≈
⎛⎝ 31−0076 + 55−012 + 64

14−0076 − 25−012 + 11
−44−0076 + 19−012 + 25

⎞⎠ 

for the unique solution of this initial value problem.

In conclusion, note this solution formula implies that the tracer amounts in each com-

partment tend to constant levels as  → +∞, namely 64, 11 and 25 (microcuries) for the
water, phytoplankton and zooplankton respectively. The graphs of each solution component

appear in Figure 6.3.
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Figure 6.3 Shown are computer generated graphs of

the solutions of the initial value problem (6.14) for the

aquatic food chain system (6.13).
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6.4 Phase Plane Portraits

We studied phase plane portraits for two dimensional systems in Chapter 4. In this section

we will take up a detailed study of the phase plane portraits of autonomous linear systems

of dimension two:
̃0 = ̃

 =

µ
 

 

¶


(6.15)

Our goal is to classify all possible types of phase portraits, understand the geometry of each

type, and learn how to determine and sketch the portrait of such systems.

Recall that an orbit is the curve in the ( )-plane described by the coordinates ( ()   ())
where

̃ () =

µ
 ()
 ()

¶
is a solution of (6.15). (Technically, the orbit is the range of the vector-valued function

̃ = ̃ () that maps the interval −∞    +∞ into the ( )-plane.)
Geometrically, the simplest orbits are points in the ( )-plane obtain from constant

solutions, i.e., from equilibria. A solution is an equilibrium if and only if its derivative equals

0 and, therefore, a solution is an equilibrium of (6.15) if and only if it is a solution of the

linear algebraic equation

̃ = 0̃ (6.16)

or, in component form, the equations

+  = 0

+  = 0

Therefore, every homogeneous system (6.15) has the trivial equilibrium

̃ =

µ
0
0

¶
which means that the origin is always an orbit in the phase plane portrait of (6.15)

There can be other equilibria, i.e. nontrivial solutions of (6.16). We know from linear

algebra that this can only occur if  is singular, i.e., if det = 0. In this section we will
not consider this possibility. We will only investigate the case when the origin is the only

equilibrium and therefore we will assume throughout this section that

det = −  6= 0
Such systems (generic in the sense they are not frequently occurring) we call simple. For

example of phase portraits for non-simple cases, see Exercise 6.62.

Our goal in this section is to describe the non-equilibrium orbits and to classify the phase

plane portraits of simple systems 6.15.

As we have learned from our study of homogeneous systems (6.15), the algebraic charac-

teristics of the general solution fall into three categories that depend on the type of eigen-

values the coefficient matrix  has. Eigenvalues are the roots of the characteristic equation

2 − (tr)+ det = 0 (6.17)
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or equivalently

2 − (+ )+ (− ) = 0

From the quadratic formula, we have the formula

 =
1

2

³
tr±

√
∆
´

for the eigenvalues where

∆ $ (tr)2 − 4 det
is the discriminant of the characteristic polynomial. Algebraically the two eigenvalues 1
and 2 fall naturally into three categories, depending on the sign of ∆ :

Case 1: ∆  0 and 1 2 are real and different

Case 2: ∆  0 and 1 2 are complex conjugates

Case 3: ∆ = 0 and 1 = 2 =  is a double root

As we saw in Sections 6.2 and 6.3 the fundamental solution matrices, and hence the general

solutions, differ from each other in significant ways in the cases. For example, Case 2 involves

sine and cosine functions whereas Case 1 does not. These differences mean that the phase

plane portraits in these cases will have different geometries.

In the following sections we will make use of solution formulas to determine the orbits and

the phase plane portraits for the homogeneous system (6.15). However, in the end we will

see that one can (rather easily) construct phase portraits without having to find solution

formulas. All one needs know are the eigenvalues (and in Cases 1 and 3 the associated

eigenvectors).

Remark 4. From the characteristic equation (6.17) we see that det = 0 if and only
if  = 0 is an eigenvalue. Therefore, by restricting our attention to simple systems in the
following sections, we will not be concerned with an eigenvalue  = 0

6.4.1 Case 1: two different real eigenvalues

In this case, the fundamental solution matrix is (6.12)

Φ () =
¡
̃1 ̃2

¢
=

µ
1

1 1
1

2
1 2

1

¶
where

̃ =

µ
1
2

¶
and ̃ =

µ
1
2

¶
are eigenvectors associated with different eigenvalues 1 and 2 respectively.

Since the eigenvalues are different, one is larger than the other. We will always choose

our notation so that

2  1

The components of the general solution

̃ () = Φ () ̃
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are

 () = 11
1 + 21

2 (6.18)

 () = 12
1 + 22

2

and our challenge is to determine the nature of the orbits in the ( )-plane described by
these formulas.

Let’s begin with the eigen-solutions, and their eigen-orbits, themselves. The orbit of

 () = 11
1

 () = 12
1

can be ascertain by noting that the ratio of  () and  () is constant, i.e.

 ()

 ()
=

2

1

which means, for each , the orbit lies on the straight line through the origin with the slope

of the eigenvector ̃ :

 =
2

1
 (6.19)

Since clearly both  () and  () have one sign for all values of  we conclude that the
eigen-orbits are half lines.

Similar reasoning applies to the other eigen-solutions

 () = 21
2

 () = 22
2

which are half-lines lying on the line

 =
2

1
 (6.20)

We conclude that the eigen-solutions produce for half line orbits lying on the lines

(through the origin) with slopes determined by the eigenvectors ̃ and ̃.

Remark 5. If 1 = 0 then the orbit of the eigen-solutions

 () = 0

 () = 22
1

is a half-line lying on the -axis. Similarly, if 1 = 0, then the orbit of the eigen-solutions

 () = 0

 () = 22
2

is a half-line lying on the -axis.

Recall that orbits have orientation arrows indicating the direction that the point ( ()   ())
moves as  increases. With regard to the half line eigen-orbits, we observe that as → +∞
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either the exponential  approaches 0 or +∞. Thus, either the half line eigen-orbit either
approaches the origin and the orientation arrow points toward the origin, if   0. See
Figure 6.4. Or the orientation arrow points away from the origin if   0.

-5 -3 -1 1 3 5

-5

-3

-1

1

3

5

x

y

Figure 6.4

What remains to figure out is the geometry of the orbits of the remaining solutions, i.e.,

the solutions (6.18) when

1 6= 0 and 2 6= 0

are both nonzero. Taking a hint from the analysis above of the eigen-solutions and their

orbits, we consider the ratio of

 ()

 ()
=

12
1 + 22

2

111 + 212

=
2 +

2
1
2

(2−1)

1 +
2
1
1(2−1)

and notice that, because 2  1,

lim
→+∞

 ()

 ()
=

2

1


This means that these orbits, while the do not lie on the line (6.19), they do approach this

line as an asymptote.

With these facts in hand, our final determination of the phase portrait’s geometry relies

on the signs of the two real eigenvalues 1 and 2, for the solutions involve the exponentials

 whose asymptotic behavior as → +∞ depends crucially on the sign of .

If both  are negative, then clearly all orbits tend to the origin as → +∞. If both are
positive, then all orbits move away from the origin as → +∞ (or, one can say, they move

toward the origin as  → −∞). These two cases give rise to phase portraits as shown in
Figures 6.4 and 6.5.
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y

x

vw

Figure 6.5 A stable node

y

x

vw

Figure 6.5 An unstable node

Note the orbital tangency to the eigenvector direction ̃ in both nodes. The

eigenvector ̃ corresponds to the eigenvalue of least absolute value.

Definition 6.2 When eigenvalues of the coefficient matrix  are real, different and negative,

the phase plane portrait of (6.15) is called a stable node and origin is called an attractor

(Figure 6.5) ).

When the eigenvalues are real, different and positive, the phase plane portrait is called

an unstable node and the origin is called a repeller (Figure 6.6)

Remark 6. Note that the asymptotic tangency of orbits near the origin is to the direction

determined by the eigenvector associated with the eigenvalue of smallest magnitude (̃ and

1 in our presentation).

Remark 7. The reason the word “stable” is used for the phase portrait in Figure 6.5 is

the following. If one starts on the origin (i.e., chooses the origin as an initial condition at,

say, 0 = 0) then, of course, you remain at the origin for all . This is what it means to be an
equilibrium. If you move or are bumped off the origin (i.e. pick any initial condition other

than the origin), then you will always return to the origin as  → +∞. In this sense, the
origin is stable against perturbations away from it. Of course, a return to the origin does

not occur in the phase portrait Figure 6.6 and this is why that portrait is called unstable.

More will be said about stability in Section 6.5.

The final case occurs when the eigenvalues have opposite signs

1  0  2

In this case, the half-line orbits associated with 1 and its eigenvector ̃ point towards the

origin while that associated with 2 and is eigenvector ̃ point away from the origin. The

former half-line orbits form what is called the stable manifold of the portrait while the latter

form what is called the unstable manifold of the portrait. The question remains: what do

all the other orbits do?

We write the ratio of the solution components as

 ()

 ()
=

12
1 + 22

2

111 + 212
=

12
(1−2) + 22

11(1−2) + 21

and see that

lim
→+∞

 ()

 ()
=

2

1
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(The exponential (1−2) tends to 0 as  → +∞ since 1 − 2  0) Thus, the half-line
orbits associated with 2  0 (in the direction of its eigenvector ̃) are asymptotes of orbits
as → +∞.

y

x

vw

Figure 6.7. A saddle node.

On the other hand, writing the ratio as

 ()

 ()
=

12
1 + 22

2

111 + 212
=

12 + 22
(2−1)

11 + 21(2−1)

and see that

lim
→−∞

 ()

 ()
=

2

1


(The exponential (2−1) tends to 0 →−∞ since 2−
1  0) Thus, the half-line orbits associated with 1 
0 (in the direction of its eigenvector ̃) are asymptotes
of orbits as → −∞.
Putting all this information together, we conclude

that all orbits (other than the eigen-orbits), “travel”

asymptotically from the stable manifold to the unstable manifold as  increases from −∞ to

+∞. See Figure 6.7.

Definition 6.3 When the eigenvalues of the coefficient matrix  are real and of opposite

signs, the phase plane portrait of (6.15) is called a saddle node (Figure 6.7).

Remark 8. When asked to sketch a phase plane portrait of a node or a saddle in exer-

cises, what is expected is that the sketch include the two straight lines (through the origin)

determined by eigenvectors, with proper orientation arrows shown, and at least one typical

orbit within each of the four sectors formed by the eigen-orbits. In the case of a node, it is

expected that the proper tangency of orbits at the origin be drawn.

Example 6.8 The coefficient matrix

 =

µ −2 2
2 −5

¶

x

y

     












w

v

Figure 6.8. Phase portrait of (6.21).

associated with the system

0 = −2+ 2 (6.21)

0 = 2− 5
has eigenvalues 1 = −1 and 2 = −6. We know

immediately from this that the phase plane portrait is

a stable node.

To understand the geometry of this node we need

to calculate eigenvectors associated with these eigen-

values. Here are eigenvectors associated with 1 = −1
and 2 = −6 respectively:
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̃ =

µ
2
1

¶
 ̃ =

µ
1
−2

¶


These determine the framework of the node, the straight lines through the origin that con-

stitute the half-line eigen-orbits. Since 1 = −1 has the smallest absolute value, all orbits
(other than the half-line eigen-orbits associated with 2 = −6) tend to the origin tangentially
to the vector ̃ as → +∞. See Figure 6.8.
Example 6.9 The coefficient matrix

 =

µ
3 5
−1 9

¶
associated with the system

0 = 3+ 5 (6.22)

0 = −+ 9
has positive, unequal roots 1 = 4 and 2 = 8 and the phase portrait is an unstable node.
We know immediately from this that the phase plane portrait is an unstable node.

To understand the geometry of this node we need to calculate eigenvectors associated with

these eigenvalues. Here are eigenvectors associated with 1 = 4 and 2 = 8 respectively:

̃ =

µ
5
1

¶
 ̃ =

µ
1
1

¶


These determine the framework of the node, the straight lines through the origin that consti-

tute the half-line eigen-orbits. Since 1 = 4 has the smallest absolute value, all orbits (other
than the half-line eigen-orbits associated with 2 = 8) tend to the origin tangentially to the
vector ̃ as → −∞. See Figure 6.9.
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Figure 6.9 Phase portrait of (6.22).

Example 6.10 The system

0 =    0 (6.23)

0 =    0
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x
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v

Figure 6.10. The portrait of (6.23).

has been used as a simple starting model for the study of

armament race between two countries in which  and 

are armament budgets of two opposing countries. The

model assumes that each country increases its budget

spending rate in direct proportion the budget amount

of the other country. Consider the case  =  = 1
(which means both countries respond, with budget in-

crease rates, in the same way to the other country’s

armament budget amount).

The coefficient matrix

 =

µ
0 

 0

¶
has eigenvalues

1 = −
√
  0 and 2 =

√
  0.

We know immediately from this that the phase plane portrait is an saddle node. To un-

derstand the geometry of this node we need to calculate eigenvectors associated with these

eigenvalues. Here are eigenvectors associated with 1 = −
√
 and 2 =

√
 respectively:

̃ =

µ √


−√
¶

 ̃ =

µ √
√


¶


These determine the framework of the saddle, the straight lines through the origin that con-

stitute the half-line eigen-orbits. The direction ̃ which (no matter the numerical value of

 and ) points into the southeast (fourth) quadrant, indicates the stable manifold. The di-

rection ̃which (no matter the numerical value of  and ) points into the northeast (first)

quadrant, indicates the unstable manifold. All orbits asymptotically run from the stable to

the unstable manifold. See Figure 6.10 for an example with  =  = 1.
In this application, only positive values of  and  are meaningful. Observing the northeast

phase plan portrait, we see that all meaningful orbits are unbounded, i.e. the budgets of both

countries grow without bound, and an “arms race” ensues.

6.4.2 Case 2: complex eigenvalues

If the coefficient matrix

 =

µ
 

 

¶
has a complex eigenvalue

 = +   6= 0
we saw in Section 6.3 that two independent solutions are

̃1 () = Re ̃ = ̃ cos− ̃ sin

̃2 () = Im ̃ = ̃ sin+ ̃ cos

where

̃ = ̃+ ̃
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is an associated (complex) eigenvector. Here

̃ =

µ
1
2

¶
and ̃ =

µ
1
2

¶
are the real and imaginary parts of ̃. In component form, these two solutions are

̃1 () = 
µ

1 cos− 1 sin
2 cos− 2 sin

¶
 ̃2 () = 

µ
1 sin+ 1 cos
2 sin+ 2 cos

¶


The general solution is a linear combination of these two independent solutions

̃() = Φ()̃ = 
µ
(11 + 21) cos+ (−11 + 21) sin
(12 + 22) cos+ (−12 + 22) sin

¶
or component-wise

 () =  [(11 + 21) cos+ (−11 + 21) sin] (6.24)

 () =  [(12 + 22) cos+ (−12 + 22) sin] 

These are the coordinates of orbits in the phase plane.

Note: Neither  nor  can equal 0 in this case. If either equals 0 then coefficient matrix
becomes triangular and the eigenvalues (which as a result appear along the diagonal) are

real (specially,  and )
First consider the orbit of 1̃1 () when  = 0 Then

+  = 0  =
√
+ 2

some algebra shows that the components of this solution

 () = 11 cos− 11 sin

 () = 12 cos− 12 sin

satisfy the quadratic equation¡
22 + 

¢
2 + 2 + 22 = 21

2
¡
2 + 

¢
(6.25)

for all values of  Therefore, the orbit lies on the curve described by this equation in the

( )-plane. From analytic geometry we know that the graph associated with a quadratic

equation of the form

1
2 + 2 + 3

2 = 4

is an ellipse if 22 − 413 is negative. For the quadratic equation (6.25) associated with the
orbit, we calculate

22 − 413 = (2)2 − 4
¡
22 + 

¢
2 = −42 ¡2 + 

¢
 0

and conclude that the orbit of 1̃1 ()
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Similarly, one can show that the orbit of 2̃1 () is also an ellipse. In fact, in this case
when  = 0 one can the general solution is also an ellipse.

If  6= 0 the orbits are clearly no longer ellipses. The result is that each component  ()
and  () in the general solution (6.24) have the exponential factor  Therefore, if   0
and the elliptical motion of the orbit now shrinks as both components tend to 0 as → +∞.
We conclude in this case that the orbit is a spiral that tends to the origin as  → +∞. In
contrast, if   0 the orbit is a spiral that tends away from the origin as as → +∞.

Definition 6.4 When the coefficient matrix  has a complex eigenvalue  = +   6= 0,
then the phase plane portrait of (6.15) is called a stable spiral when   0, a center when
 = 0, and an unstable spiral when   0. See Figure 6.11, 6.12 and 6.13.

y

x

Figure 6.11. A stable spiral.

y

x

Figure 6.12. A center.

y

x

Figure 6.13. An unstable spiral.

Remark 9. When asked to sketch phase portraits of spirals and centers in exercises, what

is expected is that the sketch a spiral from the origin that includes an arrow with the

proper clockwise/counterclockwise orientation. This orientation can be readily determined

by choosing a convenient test point in the plane and determining the direction field arrow

at that point. For example, a simple choice is to use the test point ( ) = (1 0). At this
point the direction field is in the direction of the vectorµ





¶


Example 6.11 Suppose the glucose/insulin model in Example 6.5 we set  = 0 to describe
the failure of the liver to process glucose. Then, keeping the other coefficients in the model

at the estimated values in (6.9), the coefficient matrix

 =

µ
0 −434

0208 −0078
¶

of the model

0 = −434 (6.26)

0 = 0208− 0078
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y

x

Figure 6.14. Phase portrait of (6.26)

has a complex eigenvalue  = −0039+0949 with neg-
ative real part  = −0039. The phase plane portrait
is therefore a stable spiral. See Figure 6.14.

With the failure of this level function, the glucose

and insulin levels still return to their equilibrium state,

after a dosage of glucose is given to the bloodstream,

but now they oscillate between positive and negative val-

ues, i.e., the patient experiences oscillatory episodes of

high and low glucose levels in the bloodstream. This is

in contrast to the non-oscillatory return to equilibrium

when the liver is healthy, as shown by the stable node

phase portrait in Example 6.5.

Example 6.12 The coefficient matrix

 =

µ
1 13
−2 −1

¶
of the system

0 = + 13 (6.27)

0 = −2− 

are complex  = ±5 with real part  = 0. The phase plane portrait is therefore a center.
Several orbits are shown Figure 6.15.

-5 -3 -1 1 3 5

-5

-3

-1

1

3

5

x

y

Figure 6.15. The phase portrait of (6.27).

         

















y

x

Figure 6.16. Phase portrait of (6.28).

Example 6.13 The first order system equivalent to the second order equation

00 + 0 +  = 0 (6.28)

has coefficient matrix

 =

µ
0 1
−1 −1

¶
whose eigenvalues are  = −1

2
± 1

2

√
3 with negative real part  = −1

2
. Therefore, the phase

plane portrait for this second order equation is a stable spiral. See Figure 6.16.
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6.4.3 Case 3: double eigenvalue

When the coefficient matrix  has a double eigenvalue  (i.e., its characteristic polynomial

has a double root), then there is one eigen-orbit corresponding to this eigenvalue whose

half-line orbits are determined by the direction of the associated eigenvectors ̃. This is

no different from Case 1. What is different in this case from Case 1 is that there is not

necessarily a second eigen-orbit.

There are two possibilities. If the coefficient matrix is a multiple of the identity matrix

 = 

µ
1 0
0 1

¶
then all orbits obtain from the general solution

 () =  (0) 

 () =  (0) 

are half-line orbits. Each orbit has its own slope  (0)  (0).
If  is not a multiple of the identity matrix, then we see from the general solution

 () = [11 + 2 (1 + 1)] 


 () = [12 + 2 (2 + 2)] 


that

lim
→±∞

 ()

 ()
= lim

→+∞
12 + 2 (2 + 2)

11 + 2 (1 + 1)
=

2

1

and hence every orbit is asymptotically tangent to the half-line eigen-orbit as → +∞ and

as → −∞

Definition 6.5 Suppose the coefficient matrix  has a double eigenvalue . Then the phase

portrait of (6.15) is called a degenerate node. If  is a multiple of the identity matrix,

then the degenerate node is called a star point. If the coefficient matrix  is not a multiple

of the identity matrix, then the degenerate node is called a improper node. These phase

portraits are stable if   0 and unstable if   0. See Figures 6.17-6.20.

y

x

Figure 6.17. Stable star point.

y

x

Figure 6.18.Unstable start point
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y

x

v

Figure 6.19. Stable improper node

y

x

v

Figure 6.20. Unstable improper node

Remark 10. When asked to sketch a phase plane portrait of an improper node in exercises,

what is expected is that the sketch include the straight line (through the origin) determined

by eigenvector, with proper orientation arrows shown, and at least one typical orbit within

each of the half planes on either side of the line. It is expected that the proper tangency of

orbits at the origin be drawn.

Example 6.14 The coefficient matrix

 =

µ −1 1
0 −1

¶

x

y

     













v

Figure 6.21. Phase portrait for (6.29)

of the system

0 = −+  (6.29)

0 = −

has a double eigenvalue  = −1 with an associated
eigenvector

̃ =

µ
1
0

¶


The phase portrait is therefore a stable improper node

with orbits that approach the origin tangentially to

the -axis. See Figure 6.21.

6.5 Remarks on Stability

In Section 6.4 we classified the possible phase plane

portraits of a 2× 2 linear homogeneous system

̃0 = ̃ (6.30)

with a nonsingular, constant coefficient matrix  In making this classification, we used to

words “stable” and “unstable” in a mathematically informal way. We will also make use of

the notions of stability and instability in the next Chapter 8.
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It turns out that stability theory is an immense subject. There are numerous concepts and

mathematical definitions of stability and instability. For linear systems we spoke, in Section

6.4, about the stability or instability of a phase plane portrait. We can, for linear systems,

equivalently speak about the stability or instability of the origin as an equilibrium of the

system. This is a global notion of stability in which all orbits in the plane either tend to the

origin (the one and only one equilibrium) or move away from the origin. (The center is the

only exception.) In Section 6.4, where we will study stability theory for nonlinear systems,

these global phenomenon do not always occur. Instead, it is convenient to define stability

as a property that orbits possess in a neighborhood of an equilibrium and not necessarily

throughout the whole phase plane. Thus, we will be concerned with “local” stability and

instability.

The following definition applies to the origin as an equilibrium of a linear homogeneous

system. In preparation for Chapter 8 we give the following definitions for any equilibrium

(constant solution) for a system of first order differential equations. As usual, after a con-

version to a first order system, the definitions apply to higher order differential equations as

well.

Definition 6.6 An equilibrium ̃ is Lyapunov stable if any orbit that starts close to ̃
will stay close to ̃ in the following sense. Given any   0 there exists a   0 such that

|̃ (0)− ̃|   implies |̃ ()− ̃| for all  ≥ 0

An equilibrium ̃ is a local attractor if any orbit that starts close to ̃ will tend to ̃
as → +∞, that is, there exists a   0 such that

|̃ (0)− ̃|   implies lim
→+∞

|̃ ()− ̃| = 0
An equilibrium ̃ is a locally asymptotically stable if it is both Lyapunov stable and

a local attractor.

An equilibrium ̃ is a unstable if it is not Lyapunov stable.

Clearly if an equilibrium is Lyapunov stable then it is not necessarily a local attractor.

The center phase portrait for a linear system (6.30) is an example.

For the linear system (6.30) if the origin is an attractor then it is Lyapunov stable and

hence locally asymptotically stable. It turns out that, in general for nonlinear systems,

this is not necessarily true. Surprisingly as it may seem, there are examples of (nonlinear

) systems that possess a local attractor that is not Lyapunov stable. Therefore, in general

these “Lyapunov stability” and “local attractor” are independent properties, i.e. neither

implies the other.

Remark. “Locally asymptotically stable” is a bit of a mouthful, so people often abbre-

viate this notion to simply “stable”. This is what we did in Section 6.4 in our classification

of linear phase portraits. Do not, however, confuse “stable” with “Lyapunov stable”. The

center phase portrait in Section 6.4 is not stable by the accepted convention that stable

means locally asymptotically stable. A center is Lyapunov stable, however. Sometimes it is

called neutrally stable.

A review of Section 6.4 shows the following result about stable phase plane portraits of

linear homogeneous systems (6.30). Note that the real part of a real number is simply the

real number itself.
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Theorem 6.2 The phase plane portrait of a (simple) autonomous linear homoge-

neous system

̃0 = ̃ det 6= 0
is (locally asymptotically) stable if and only if the real parts of all eigenvalues

of  are negative.

If at least one eigenvalue has a positive real part, then the phase plane portrait

is unstable.

A knowledge of the eigenvalues of  identifies the type of the phase plane portrait and

a knowledge of the sign of the real parts indicates the stability property of the portrait.

Eigenvectors are only needed if detail about the geometry of the phase portrait is sought.

Example 6.15 Consider the system

0 = − 

0 = −+ 

where  is a (numerically unspecified) constant (called a system “parameter”). The coefficient

matrix

 =

µ
 −1
−1 

¶
has two real and different eigenvalues 1 = + 1 and 2 = − 1 Referring to Theorem 6.2

we conclude the following:

Eigenvalues Phase Plane Portrait

  −1 2  1  0 stable (node)

−1    1 2  0  1 unstable (saddle)

1   0  2  1 unstable (node)

As  increases through −1 we see an example of a bifurcation, as the phase plane portrait
(i.e. the equilibrium at the origin) is destabilizes.

Example 6.16 The second order differential equation

00 + 0 +  = 0

    0

arises in many applications that involve Newton’s Laws of Motion. The coefficient matrix

 =

µ
0 1

− 

− 



¶
of the equivalent first order system has eigenvalues

1 =
1

2

³
−+√2 − 4

´
and 2 =

1

2

³
−−√2 − 4

´



6.6. THE TRACE-DETERMINANT CRITERIA 225

To determine the stability properties of the equilibrium  = 0  = 0 = 0 by means of
Theorem 6.2, we investigate the real parts of these eigenvalues.

If   2
√
 then the eigenvalues are complex with real part  = −2  0. In this case

(when  is small enough) the phase portrait is stable (a spiral).

If  = 2
√
 then the eigenvalues  = −2 is real and double. Since it is negative the

phase portrait is stable (an improper node).

If   2
√
 then the eigenvalues are real. Clearly 2  0 To see that 1 is also negative

note that

1 =
1

2

³
−+√2 − 4

´

1

2

³
−+

√
2
´
= 0

Therefore, in this case the phase portrait is stable (a node).

6.6 The Trace-Determinant Criteria

The phase portrait classification of a linear homogeneous system with a constant coefficient

matrix

 =

µ
 

 

¶
depends on the eigenvalues of  Therefore, the phase portrait type depends on the numerical

values of the four coefficients    and  There is not really “four degrees of freedom” in

determining the phase portrait, however, as the formula

 =
tr±p(tr)2 − 4det

2
(6.31)

for the eigenvalues shows. The eigenvalues, and hence the phase portrait type, depends on

only two numbers, the trace tr and the determinant det of the coefficient matrix 
One way to summarize how the phase portrait depends on the trace tr and the determi-

nant det is as follows. Consider the two quantities tr and det as an ordered pair (tr,
det) and hence as the coordinates of a point in a “trace-determine” plane. Since knowing

tr and det is sufficient to determine the system’s phase portrait, we can associate a unique

phase portrait with each point in this plane.

For example, the point (trdet) = (2 2) is associated with an unstable spiral because
the roots of the quadratic

2 − (tr)+det = 2 − 2+ 2

are the complex conjugates  = 1±  with positive real part.

Another example is the point (trdet) = (2−2), which is associated with a saddle
because the roots of the quadratic

2 − (tr)+ det = 2 − 2− 2
are 1 = 1−

√
3  0 and 2 = 1 +

√
3  0 are real and of opposite signs.

By associating phase portraits with points in the (tr,det)-plane we obtain a “map”

that locates of phase portraits.
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detA

trA

stable 
spiral

unstable 
spiral

cen ter

saddle saddle

stable 
node

unstable 
node

degenerate 
node

degenerate 
node

Figure 6.22 The Trace-Determinant Map

For example, the set of points (tr,det) associated with unstable spirals form a certain

region in the plane; the set of points associated with saddles form another region in the

plane; and so on. This map is shown in Figure 6.22. The region of points in Figure 6.22

associated with spirals is separated from the region of points associated with nodes by a

parabola. This parabola

det =
1

4
(tr)2 (6.32)

is obtained by setting the discriminant under the radical sign in (6.31) equal to 0. Inci-
dentally, points lying on this parabola are associated with improper nodes because for such

points the quadratic formula (6.31) gives a repeated root. A point (tr det) lies above the

parabola in Figure 6.20 if det  (tr)2 4 and lies below the parabola if det  (tr)2 4.
Thus, for points above the parabola the roots (6.31) are complex and below the parabola

are real.

Above the parabola in Figure 6.20 are stable spirals if the real part of the eigenvalue is

negative, i.e., if tr  0. This is the region above the parabola and in the left half plane.
Similarly, the region above the parabola and in the right half plane corresponds to unstable

spirals. Points in between these two regions, i.e. lying on the vertical axis where tr = 0,
correspond to centers.

Similar reasoning determines the phase portrait types in the regions lying below the

parabola, as shown in Figure 6.22.

The main use of the tr-det map is in studying systems in which there appears an coefficient

(sometimes called a parameter) that is numerically unspecified. The goal is then to determine

how the phase plane portrait depends on the value of the parameter. This should sound

familiar. It is exactly the problem that gives rise to bifurcation theory, a topic we studied

for single first order equations in Section 3.1.4 of Chapter 3.

Example 6.17 In Example 6.15 we investigated that stability of the phase portrait associated

with the system

0 = − 

0 = −+ 
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in which  is a (numerically unspecified) parameter. We did that by calculating and studying

the eigenvalues of the coefficient matrix

 =

µ
 −1
−1 

¶


We can also study this system by using the tr-det map in Figure 6.20 and noting that

 = 2  det = 2 − 1
Where does the point ( det) lie in the tr-det map. In particular, is it above

det 
1

4
(tr)2

or below

det 
1

4
(tr)2

the parabola 6.32)?. Since
1

4
(tr)2 = 2

we see that the point is always below the parabola. Which region below the parabola?

The tr-det point is in the lower half plane if det = 2 − 1  0, or if −1    1, in
which case the portrait is a saddle.

If the tr-det point is in the upper half plane (2 − 1  0) it will lie in the left half plane
if  = 2  0 or   0 and in the right half plane if  = 2  0 or   0.
Thus, we have reached the same conclusions as in Example 6.15.

Some easy to see consequences of tr-det map in Figure 6.22 are the following stability

and instability tests.

Theorem 6.3 The phase plane portrait of a 2× 2 linear homogeneous with a con-
stant coefficient matrix  is

(a) (locally asymptotically) stable if

tr  0 and det  0

(b) unstable if

det  0

(c) unstable if

tr  0 and det 6= 0.

Example 6.18 The linear homogeneous system associated with the coefficient matrix

 =

µ −2 2
2 −5

¶
is stable since tr  = −7  0  det = 6  0.
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The linear homogeneous system associated with the coefficient matrix

 =

µ −1 3
−1
3
4

¶
is unstable since tr  = 3  0.
The linear homogeneous system associated with the coefficient matrix

 =

µ
0 1
−1 0

¶
is not covered by Theorem 6.3 because  = 0 and neither statement in the Theorem is

applicable.

Example 6.19 In Example 6.16 we considered the second order differential equation

00 + 0 +  = 0

    0

by investigating the eigenvalues of the coefficient matrix

 =

µ
0 1

− 

− 



¶
of its equivalent system. We can also deduce the stability of the phase plane portrait from

Theorem 6.3 by noticing that trA= −  0 and det =   0.

6.7 Chapter Summary

In this chapter we learned two methods for calculating a fundamental solution matrix of a

two dimensional, linear homogeneous first order system ̃0 = ̃ with a constant coefficient

matrix : the Putzer Algorithm and the eigenvalue-eigenvector method. Using the gen-

eral solution formulas made available by these methods, we were able to classify the phase

plane portraits of such systems. (We assumed a unique equilibrium at the origin, i.e., that

det 6= 0). We found (via the three algebraic cases that naturally arise from the roots of

a quadratic polynomial) that all phase portraits can be placed into one of three categories:

node (including saddles), spirals (and centers), and improper nodes. These correspond re-

spectively to the cases of two real and different eigenvalues, complex conjugate eigenvalues

or a double eigenvalue. Nodes and spirals are further classified as stable or unstable. The

classification of a system’s phase portrait can be made from its eigenvalues alone or, alter-

natively, from the trace and determinant of the coefficient matrix . Eigenvectors are also

needed if the geometric nature of nodes and saddles is desired.
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6.8 Exercises

For the first order homogeneous systems below:

(a) calculate a fundamental solution matrix Φ () using the Putzer Algorithm formulas

(6.5)-(6.6),

(b) calculate a formula for the solution of the initial value problem (0) = 1, (0) = −1,
(c) calculate a formula for the solution of the initial value problem (0) = 2, (0) = 3

Exercise 6.1

½
0 = 4− 2
0 = 7− 5

Exercise 6.2

½
0 = −2+ 

0 = − 2

Exercise 6.3

½
0 = 1

2
− 3

2


0 = 3
2
+ 1

2


Exercise 6.4

½
0 = + 

0 = − 

Exercise 6.5

½
0 = −0012− 045
0 = 231− 315

Exercise 6.6

½
0 = 051− 074
0 = 142+ 267

Exercise 6.7

½
0 = 2+ 

0 = −2

Exercise 6.8

½
0 = −+ 

0 = −− 2

Exercise 6.9

½
0 = −+ 

0 = 4+ 2

Exercise 6.10

½
0 = 3+ 2
0 = −4− 

Exercise 6.11

½
0 = −61+ 02
0 = −11− 15

Exercise 6.12

½
0 = 83+ 12
0 = −18+ 03

Exercise 6.13

½
0 = + 13
0 = −2− 
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Exercise 6.14

½
0 = + 3
0 = 4+ 2

Exercise 6.15

½
0 = −1

2
+ 3

4


0 = −3+ 5
2


Exercise 6.16

½
0 = −5+ 8
0 = −2+ 3

Exercise 6.17 Find a formula for the solution of the chemical pesticide problem

0 = −2+ 2
0 = 2− 5

(0) =  (0) = 0

in which an initial dose of pesticide is sprayed in the trees, but none is initially present in

the soil.

Exercise 6.18 Suppose ̃ () = ̃, where ̃ = ̃ + ̃ 6= 0̃ and  =  + ,  6= 0, is a
complex solution ̃ () = ̃ of an autonomous linear homogeneous system ̃0 = ̃.

(a) Show the real and imaginary parts ̃1 () = Re ̃ and ̃2 () = Im ̃ are both

solutions. Therefore, Φ () = det( ̃1 () ̃2 () ) is a solution matrix.
(b) Show the real and imaginary parts ̃1 () = Re ̃

 and ̃2 () = Im ̃ are indepen-

dent. Therefore, Φ () = det( ̃1 () ̃2 () ) is a fundamental solution matrix.

For the systems below, calculate a fundamental solution matrixΦ () using the eigenvalue-
eigenvector method.

Exercise 6.19

½
0 = 4− 2
0 = 7− 5

Exercise 6.20

½
0 = −2+ 

0 = − 2

Exercise 6.21

½
0 = 1

2
− 3

2


0 = 3
2
+ 1

2


Exercise 6.22

½
0 = + 

0 = − 

Exercise 6.23

½
0 = −0012− 045
0 = 231− 315

Exercise 6.24

½
0 = 051− 074
0 = 142+ 267
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Exercise 6.25

½
0 = 2+ 

0 = −2

Exercise 6.26

½
0 = −+ 

0 = −− 2

Exercise 6.27

½
0 = −+ 

0 = 4+ 2

Exercise 6.28

½
0 = 3+ 2
0 = −4− 

Exercise 6.29

½
0 = −61+ 02
0 = −11− 15

Exercise 6.30

½
0 = 83+ 12
0 = −18+ 03

Exercise 6.31

½
0 = + 13
0 = −2− 

Exercise 6.32

½
0 = + 3
0 = 4+ 2

For each of the homogeneous systems or second order equations below identify the type

of its phase plane portrait and hand sketch it. An adequate hand sketch for a node must

include the straight line eigen-orbits and one typical orbit in each of the four sectors formed

by the eigen-orbits, along with the correct tangency at the origin. An adequate hand sketch

for saddles must include the straight line eigen-orbits and one typical orbit in each of the four

sectors form by the eigen-orbits with the correct asymptotes as → −∞ and → +∞. An
adequate hand sketch for a spiral or center must include at least two orbits with the correct

orientation (clock-wise or counter clock-wise). In all cases be sure to draw orientation arrows

on each orbit.

Exercise 6.33

½
0 = 4− 2
0 = 7− 5

Exercise 6.34

½
0 = −2+ 

0 = − 2

Exercise 6.35

½
0 = 1

2
− 3

2


0 = 3
2
+ 1

2


Exercise 6.36

½
0 = + 

0 = − 
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Exercise 6.37

½
0 = −0012− 045
0 = 231− 315

Exercise 6.38

½
0 = 051− 074
0 = 142+ 267

Exercise 6.39

½
0 = 2+ 

0 = −2

Exercise 6.40

½
0 = −+ 

0 = −− 2

Exercise 6.41

½
0 = −+ 

0 = 4+ 2

Exercise 6.42

½
0 = 3+ 2
0 = −4− 

Exercise 6.43

½
0 = −61+ 02
0 = −11− 15

Exercise 6.44

½
0 = 83+ 12
0 = −18+ 03

Exercise 6.45

½
0 = + 13
0 = −2− 

Exercise 6.46

½
0 = + 3
0 = 4+ 2

Exercise 6.47

½
0 = −1

2
+ 3

4


0 = −3+ 5
2


Exercise 6.48

½
0 = 9− 17
0 = 5− 9

Exercise 6.49 00 + 0 +  = 0

Exercise 6.50 00 − 0 +  = 0

Exercise 6.51 200 −  = 0

Exercise 6.52 00 + 20 +  = 0

Exercise 6.53 00 − 50 + 4 = 0

Exercise 6.54 00 + 30 − 4 = 0
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Exercise 6.55 00 − 60 + 9 = 0

Exercise 6.56 00 + 5 = 0

Exercise 6.57 00 + 380 + 345 = 0

Exercise 6.58 200 + 30 +  = 0

Exercise 6.59 The system

0 = − (02 + 01)+ 05
0 = 02− (05 + ) 

is a model for the amount of drug in the blood stream  and the amount of drug in the tissues

 of a patient. The coefficient   0 is positive.
(a) What type of phase plane portrait does this system have? Show it is same type for all

 and show both  () and  () tend to 0 in the long run.
(b) Sketch a typical phase plane portrait.

(c) Suppose (0) ≥ 0 and (0) ≥ 0 are not both equal to 0. By referring just to the phase
plane portrait argue that the ratio ()() of the amount of drug in the tissues to that in
the blood stream approaches a positive limit as →∞

Find a formula for the limit  = lim→∞  ()  (). This limit  =  () will depend on
. What is the maximum and what is the minimum value of this  () and at which values
of  do they occur?

Exercise 6.60 The system

0 = −1+ 2

0 = 1− (2 + 3) 

models the amount of pesticide in a stand of trees, , and its soil bed, . Use the tr-det map

to show this system has a stable node. All coefficients 1 2, and 3 are positive.

Exercise 6.61 In the homogeneous linear systems below  is a real number (positive, nega-

tive or zero). Determine the type and stability properties of the phase portrait as they depend

on 

(a)

½
0 = −+ (1− ) 
0 = − 

(b)

½
0 = −+ 

0 = −− 

Exercise 6.62 The coefficient matrices of the systems below not simple. Find the general

solution of each system and use it to sketch the phase portrait of the system. It turns out that

the phase portraits any non-simple linear systems is one of these types (up to a linear change

of variables, i.e. to rotations, reflections, and /or re-scalings of the coordinates axes).

(a)

½
0 = −
0 = 0

(b)

½
0 = 

0 = 0

(c)

½
0 = 0
0 = 

(d)

½
0 = 0
0 = 0
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Exercise 6.63 Consider the initial value problem

00 +0 + 1

 = 0

(0) = 0 0(0) = 0

for the charge  = () on an electric circuit with a resistor (of  Ohms), inductor (of 

Henrys) and capacitor (of  Farads). The circuit has an initial charge of 0 and no initial

current 0(0). Determine the phase plane portrait type for the circuits with the following
parameter values and solve solve the initial value problem.

(a)  = 01  = 250  = 10−5

(b)  = 02  = 200  = 10−5

(c)  = 01  = 0  = 10−5

(d)  = 01  = 200  = 10−5

Find the eigenvalues and eigenvectors of the matrices  below. Then find a fundamental

solution matrix Φ() for the homogeneous linear system with the coefficient matrix .

Exercise 6.64

 =

⎛⎝ 3 −6 −2
2 3 2
−2 6 3

⎞⎠
Exercise 6.65

 =

⎛⎝ −4 1 2
−22 9 12
8 −4 −5

⎞⎠
Exercise 6.66

 =

⎛⎝ 7 4 6
−5 −3 −4
−5 −2 −5

⎞⎠
Exercise 6.67

 =

⎛⎝ −5 −10 1
2 6 −2
6 10 0

⎞⎠
Exercise 6.68

 =

⎛⎜⎜⎝
−5 6 −3 −2
−5 6 −1 −2
1 −1 2 0
−5 5 0 −1

⎞⎟⎟⎠
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Exercise 6.69

 =

⎛⎜⎜⎝
−13 −21 24 −15
11 16 −15 11
4 7 −7 4
5 8 −9 7

⎞⎟⎟⎠
Exercise 6.70 Find a formula for the solution of the initial value problem

e(0) =
⎛⎝ 1

0
−1

⎞⎠
for the systems with coefficient matrices given in Exercises 6.64-6.67. (Use a computer as

an aid in performing the necessary matrix algebra.)

Exercise 6.71 Solve the initial value problem

e(0) =
⎛⎜⎜⎝

1
2
−2
−1

⎞⎟⎟⎠
for the systems with coefficient matrices given in Exercises 6.68 and 6.69. (Use a computer

as an aid in performing the necessary matrix algebra.)

Exercise 6.72 The system below arises from a compartmental model for biomass transfer

in a pine-oak forest. The compartments are vegetation (), litter () and humus (). The

unit of time is one year.

0 = − 7
10



0 =
7

10
− 3

10


0 =
3

10
 − 1

10


Suppose the forest is initially free of litter and humus and starts with 0 units of biomass in

vegetation.

(a) Use a computer to explore the solution of the resulting initial value problem.

(i) How long does it take for the vegetation to decrease by 90%?

(ii) At what time will the litter biomass be maximum?

(iii) At what time will the humus biomass be maximum?

(iv) How do your answers depend on 0?

(b) Find a fundamental solution matrix and the general solution.

(c) Find a formula for the solution of the initial value problem.

(d) Use your answer from (c) to corroborate your answers in Exercise (a).
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Use the tr-det stability criteria in Theorem 6.3 to determine whether the phase plane

portraits of the linear homogeneous systems with the coefficient matrices below is stable or

unstable. Then use the tr-det map to determine the phase portrait type.

Exercise 6.73  =

µ −2 2
−3 1

¶

Exercise 6.74  =

µ −5 3
4 −4

¶

Exercise 6.75  =

µ
6
7

2
3−3 1

¶

Exercise 6.76  =

µ −3 2
−12 7

¶

Exercise 6.77  =

µ
3
4

4
5−1

2
−2
3

¶

Exercise 6.78  =

µ
0 1
−2 −1

¶

Exercise 6.79  =

µ −1 −1
6 −6

¶

Exercise 6.80  =

µ
3 −1
−1 −4

¶

Exercise 6.81  =

µ
3 −1
−15 −4

¶
Use the tr-det stability criteria in Theorem 6.3 to determine those values of  for which

the phase plane portraits of the linear homogeneous systems with the coefficient matrices

below are stable and those values of  for which they are unstable.

Exercise 6.82  =

µ
− 1 −2
1 1

¶

Exercise 6.83  =

µ
+ 1 1
−2 −2

¶

Exercise 6.84  =

µ
+ 1 −1
1 − 1

¶

Exercise 6.85  =

µ
+ 1 2
 + 1

¶



6.8. EXERCISES 237

Exercise 6.86  =

µ
 2
1 −2

¶

Exercise 6.87  =

µ
2 − 11 3

 2

¶
Use the tr-det map in Section 6.3 to determine the phase plane types for the linear

homogeneous systems with the coefficients matrices below.

Exercise 6.88  =

µ
 −2
1 0

¶

Exercise 6.89  =

µ
0 1

2


−1
2
 −1

¶

Exercise 6.90  =

µ −5 −1
5 2

¶

Exercise 6.91  =

µ
 1− 

− 

¶
Find a formula for the general solution of each system below.

Exercise 6.92

½
0 = −5
0 = −5

Exercise 6.93

½
0 = 3− 

0 = + 

Exercise 6.94

½
0 = −3− 

0 = 7+ 

Exercise 6.95

½
0 = 133− 431
0 = 897− 133

Exercise 6.96

½
0 = −41− 52
0 = 101+ 41

Exercise 6.97

½
0 =

√
5− 

0 = 7+ 

Exercise 6.98

½
0 = −1

2


0 = 5− 1
4


Exercise 6.99

½
0 = (sin )+ (cos ) 
0 = (cos )− (sin )  where  is a real number
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Exercise 6.100

½
0 = 3−− 2−2
0 = 2− −

where  is a real number

Exercise 6.101

½
0 = + 

0 = − 
where  is a constant satisfying −1    1

Exercise 6.102

½
0 = 031+ 479
0 = −184− 173

Exercise 6.103

½
0 = −23+ 79
0 = 184− 173

Exercise 6.104 Find a formula for the solution of the initial value problem (0) = 1 (0) =
−1 for the systems in Exercises 6.92-6.103.

Exercise 6.105 Find a formula for the solution of the initial value problem (0) = 2 (0) =
3 for the systems in Exercises 6.92-6.103.

Exercise 6.106 Find a formula for the general solution of the second order equations below

and identify the phase plane portrait.

(a) 00 +0 + 1

 = 0 where   and  are positive constants and   2

p
.

(b) 00 + (− )− (1 + ) = 0 where  and  are positive constants.
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Exercise 6.107

x
soil0.5x (per week)

0.01y (per week)

0.02y (per week)

crop
y

The compartment diagram for the pesticide

DDT in an agricultural crop and its soil appears

in the accompanying figure.

(a) Suppose there is initially no DDT in the

soil and 0 units of DDT are sprayed onto the

crops. Write an initial value problem linear sys-

tem for  (the units of DDT in the crop) and 

(the units of DDT in the soil).

(b) Use a computer to investigate the orbits

in the phase plane of the initial value problem

(a) for a variety of initial dosages 0  0.

(i) What happens as → +∞?
(ii) What happens to the ratio of DDT

in the soil to that in the crop as → +∞?
(iii) How do your answers depend on the initial dosage 0?

(c) Find a formula for the solution of the initial value problem in (a).

(d) Use you answer in (c) to corroborate your answer in (b).

Exercise 6.108

Plasma

x

0.3x (per hour)

Red blood 
cells

y

0.2y (per hour)

The compartmental diagram for the movement of

potassium (using a radioactive isotope of potassium

as a tracer) between red blood cells and plasma ap-

pears in the accompanying figure..

Suppose there is initially no tracer in the red blood

cells and 0 units of tracer are injected into the

plasma.

(a) Write an initial value problem linear system

for  (the units of tracer in the plasma) and  (the

units of tracer in the red blood cells).

(b) Use a computer to investigate the solution of the initial value problem in (a) for a

selection of initial dosages 0  0.

(i) What happens as → +∞?
(ii) What happens to the ratio of tracer in the red blood cells to that in the plasma

as → +∞?
(iii) How do your answers depend on the initial dose 0?

(c) Find a formula for the solution of the initial value problem in (a).

(d) Use you answer in (c) to corroborate your answer in (b).

Exercise 6.109 To study blood flow through organs tracer dyes are added intravenously and

the concentrations in various organs monitored. The compartmental model below describes
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the tracer concentrations (mg/liter) in arterial blood (1), venous blood in the liver (2) and

venous blood in the right atrium (3).

01 = −21 + 23
02 = 1 − 2 −

03 = 1 + 2 − 23
 is the removal rate of the dye from the liver (mg/liter/min). Suppose an initial dose

of 1(0) = 10 is added to the arterial blood and no dye is initially present in the other
compartments. Let  = 1
(a) Use a computer to graph each component of the solution. When is the dye gone from

each components?

(b) Find a formula for the solution of the initial value problem.

(c) Use your answer in (b) to determine when the dye is gone from each component.

Exercise 6.110 Use the Variation of Constants Formula (5.19) to find the general solution

of the system ̃0 = ̃+ ̃() with

 =

⎛⎝ −5 −10 14
−4 −5 8
−5 −8 12

⎞⎠  ̃() =

⎛⎝ 1
0
1

⎞⎠
Exercise 6.111 Use the Variation of Constants Formula (5.19) to find the general solution

of the system ̃0 = ̃+ ̃() with

 =

⎛⎝ 12 19 −28
2 5 −4
6 11 −14

⎞⎠  ̃() =

⎛⎝ 2−



1− −

⎞⎠



Chapter 7

2nd Order Linear Differential

Equations

In Chapter we saw that a second order differential equation

2 ()
00 + 1 ()

0 + 0 () =  () (7.1)

has an equivalent first order system

0 = 

0 = −1 ()
2 ()

− 0 ()

2 ()
+

 ()

2 ()

or, in matrix notation, ̃0 =  () ̃+ ̃() with

 () =

Ã
0 1

− 1()
2()

− 0()
2()

!
 ̃ () =

Ã
0
()
2()

!


This system results from defining the second component  () in ̃ () = col ( ()   ()) to
be the derivative  = 0. By applying the Extended Fundamental Existence and Uniqueness
Theorem 5.1 in 5.2 to this first order system, we obtain the following theorem about the

second order equation (7.1.

Theorem 7.1 Assume 0 ()  1 ()  2 () and  () are continuous and 0 () does not
equal 0 anywhere on the interval     . Then the initial value problem, with

  0  ,

2 ()
00 + 1 ()

0 + 0 () =  ()

 (0) = 0 0 (0) = 1

has a unique solution and it is defined on the entire interval     .

From the results in Section 5.2 about the structure of the general solution of linear

systems, we know that the general solution of the equivalent system to the second order

equation (7.1) has the additive decomposition

̃ () = ̃ () + ̃ ()

241
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or, in component notation,µ
 ()
 ()

¶
=

µ
 ()
 ()

¶
+

µ
 ()
 ()

¶


If

Φ () =

µ
1 () 2 ()
1 () 2 ()

¶
is a fundamental solution matrix of the equivalent system, then the general solution has the

form µ
 ()
 ()

¶
=

µ
1 () 2 ()
1 () 2 ()

¶µ
1
2

¶
+

µ
 ()
 ()

¶
=

µ
11 () + 22 () +  ()
11 () + 22 () +  ()

¶


Remark 10. Note that

Φ () =

µ
1 () 2 ()
01 () 02 ()

¶
.

Since the two columns of Φ () are independent, it follows that the two functions 1 ()
and 2 () are independent. Why? Because if they were not, then 11 () + 22 () ≡ 0
for some constants 1 2 not both 0. But then, by differentiation, it would follow that

1
0
1 () + 2

0
2 () ≡ 0. These two identities imply

1

µ
1 ()
01 ()

¶
+ 2

µ
2 ()
02 ()

¶
=

µ
11 () + 22 ()
1

0
1 () + 2

0
2 ()

¶
≡ 0

which contradicts the independence of the columns of Φ () 

Theorem 7.2 Assume 0 ()  1 ()  2 () and  () are continuous and 0 () does not
equal 0 anywhere on the interval     . The general solution of the linear

second order equation (7.1) has the form

 () =  () +  ()

where  () = 11 ()+ 22 () is a linear combination of two independent solutions 1 ()
and 2 () of the associated homogeneous equation

2 ()
00 + 1 ()

0 + 0 () = 0 (7.2)

and  () is any particular solution of the nonhomogeneous equation.

Example 7.1 Check that 1 () = cos (ln ) and 2 () = sin (ln ) are, for   0, solutions of
the homogeneous equation

200 + 0 +  = 0

and therefore the general solution is

 () = 1 cos (ln ) + 2 sin (ln ) 
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The general solution of the nonhomogeneous equation

200 + 0 +  = ln 

is  () = 1 cos (ln ) + 2 sin (ln ) +  () where  () is any particular solution. A formula
for a particular solution can be calculated from the Variation of Constants formulaµ

 ()
 ()

¶
= Φ ()

Z 

Φ−1 () ̃ () 

for the equivalent system

0 = 

0 = −− 1

2
− 1


 +

1

2
ln 

for which

Φ () =

µ
cos (ln ) sin (ln )

− sin(ln )


cos(ln )


¶
 ̃ () =

µ
0

1
2
ln 

¶


A calculation yieldsµ
 ()
 ()

¶
=

µ
cos (ln ) sin (ln )

− sin(ln )


cos(ln )


¶Z 
µ
cos (ln) sin (ln)

− sin(ln)


cos(ln)


¶−1µ
0

1
2
ln

¶


=

µ
cos (ln ) sin (ln )

− sin(ln )


cos(ln )


¶Z 
µ
cos (ln) − sin (ln)
sin (ln)  cos (ln)

¶µ
0

1
2
ln

¶


=

µ
cos (ln ) sin (ln )

− sin(ln )


cos(ln )


¶Z 
Ã
− sin(ln)


ln

cos(ln)


ln

!


=

µ
cos (ln ) sin (ln )

− sin(ln )


cos(ln )


¶µ
(ln ) cos (ln )− sin (ln )
cos (ln ) + (ln ) sin (ln )

¶
=

µ
ln 
1


¶


Hence  () = ln  and

 () = 1 cos (ln ) + 2 sin (ln ) + ln 

There is no formula or method available to find solution formulas for the general homoge-

neous equation (7.2). There are methods for special types of coefficients  (), however. The
most important case is when all three coefficients are constants. In this case the equivalent

2nd order system is autonomous and formulas for solutions can be found by the methods of

Chapter 6. There is a much shorter method, however, which we consider in the next Section

7.1..

Once two independent solutions of the homogeneous equation (7.2) have been found,

then a particular solution  (), and hence the general solution, can be found from the

equivalent first order system by means of the Variation of Constants Formula, as in Example

7.1. However, for special types of forcing functions  ()  the Method of Undetermined
Coefficients provides a significant shortcut, as we see in Section 7.2.
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7.1 Homogeneous 2nd Order Equations with Constant

Coefficients

For the homogeneous 2nd order differential equation

2
00 + 1

0 + 0 = 0 (7.3)

with constant coefficients  there is a significant shortcut method available for calculating

two independent solutions and hence the general solution. The coefficient matrix

 =

µ
0 1
− 1

2
− 0

2

¶
of the equivalent autonomous homogeneous system has characteristic equation

2 +
0

2
+

1

2

whose roots are the roots of

2
2 + 0+ 1 = 0 (7.4)

We call this the characteristic equation of the second order equation (7.3). Notice that it

can be easily determined directly from the equation (7.3) without any need to refer to the

matrix  or the equivalent first order system.

Consider the case when the characteristic equation (7.4) as two real and unequal roots

1 and 2 i.e. the case when the matrix  has two two real and unequal eigenvalues 1
and 2 The equivalent first order system has the two independent solution pairs 1̃1 and

2̃2 where ̃1 and ̃2 are eigenvectors associated with 1 and 2 respectively. We calculate

these eigenvectors by solving

(− ) ̃ = 0̃µ − 1
−1

2
− 0

2
− 

¶µ
1
2

¶
=

µ
0
0

¶

−1 + 2 = 0

−1
2
1 +

µ
−0
2
− 

¶
2 = 0

for 1 and 2 not both 0. Since  is an eigenvalue, these two algebraic equations are dependent
and we need only solve one of them, say the first one:

1 = 1 2 = 

Thus, two independent solution pairs of the equivalent first order system areµ
1

1
1

¶
and

µ
2

2
2

¶




7.1. HOMOGENEOUS 2NDORDEREQUATIONSWITHCONSTANTCOEFFICIENTS245

This implies that two independent solutions of the second order equation (7.3) are

1 and 2

and the general solution is

 () = 1
1 + 2

2

The shortcut we alluded to above is as follows. Directly from the second order equation

(7.3) we write down the characteristic equation (7.4), find its two roots which, if real and

unequal, lead to two independent exponential solutions 1 and 2 The general solution is

a linear combination of these two exponential solutions.

To utilize this shortcut, there is no need to consider the equivalent first order system

and its eigenvalues and eigenvectors at all. Similar shortcuts are possible for the other two

algebraic situations as well, that is, when the characteristic equation (7.4) has complex roots

or has a double real roots. The shortcuts are summarized in Table 8.1. In all cases, there is

no need to consider the equivalent first order system and its eigenvalues and eigenvectors.

Roots of the characteristic equation

2
2 + 1+ 0 = 0

General solution of the equation

2
00 + 1

0 + 0 = 0

Two real, distinct roots: 1 6= 2 1
1 + 2

2

Complex conjugate roots:  = ±  1
 cos+ 2

 sin
A double real roots:  1

 + 2


Table 8.1

With a little bit of practice, this table will be committed to memory and you will be able to

calculate the general solution of an 2nd order linear homogenous equation as quickly as you

can algebraically solve for the roots of its characteristic quadratic polynomial.

Example 7.2 The characteristic equation associated with

00 +  = 0

is

2 + 1 = 0

The roots of this equation are complex  = ± From Table 8.1 (with  = 0 and  = 1) we
obtain the general solution

 () = 1 cos + 2 sin 

More generally, the characteristic equation 2 +  = 0 associated with the equation

00 +  = 0

has roots

 = ±   =

r





Table 8.1 gives the general solution

 () = 1 cos+ 2 sin
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Example 7.3 Consider the equation

00 + 30 + 2 = 0

The roots of its characteristic equation

2 + 3+ 2 = 0

are  = −1 and −2Table 8.1 gives the general solution

 () = 1
− + 2

−2

Example 7.4 Consider the equation

00 + 40 + 4 = 0

The characteristic equation

2 + 4+ 4 = 0

has a double root  = −2. Table 8.1 gives the general solution

 () = 1
−2 + 2

−2

7.2 Undetermined Coefficients for 2nd Order Equa-

tions

The general solution of the 2nd order equation

2
00 + 1

0 + 0 = ()

with constant coefficients  has the additive decomposition

 () =  () +  () 

Since the coefficients  are constants,  () can be calculated from Table 8.1. A particular

solution  () can, of course, be calculated from the Variation of Constants formula for the

equivalent first order system (as in Example 7.1). However, if the nonhomogeneous (forcing)

term  () is of an appropriate type, then the same Method of Undetermined Coefficients
that we used on first order equations in Chapter 2.2.1 can be used to calculate a particular

solution  (). In a nutshell, here is the method:

Calculate all independent functions created by repeated differentiations of  ().
If no solution of the associated homogeneous equation appears in the list, then

use a linear combination of the list for  (). If, on the other hand, a solution
of the homogeneous equation does appear in the list, then multiple all functions

in the list by  and use a linear combination of this modified list for .
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Recall that  () is of an appropriate type for this method if and only if it generates only a
finite number of independent functions upon repeated differentiation. The only change that

might occur when applying this method to second order equations is that you might (in rare

cases) need to multiply the list generated from differentiating  () by  twice (until there are
no longer any solutions of the homogeneous equation appearing in the list).

Example 7.5 As we saw by use of Table 8.1 in Example 7.2, the general solution of the

associated homogeneous equation to

00 +  = cos 2

is

 () = 1 cos + 2 sin 

The nonhomogeneous term  () = cos 2 generates only two independent functions upon
repeated differentiation:

cos 2 sin 2

neither of which solves the associated homogeneous equation. Therefore, we search for a

particular solution in the form

 () = 1 cos 2+ 1 sin 2

by using the general Method of Undetermined Coefficients described in Section 2.3.1 in Chap-

ter 2. Namely, we substitute this guess for  () into the nonhomogeneous equation in order
to calculate the undetermined coefficients 1 and 2 . The details go as follows. Substituting

into the left side of the equation we get

00 () +  () = −31 cos 2− 31 sin 2

We want this equal to cos 2 (the right side of the equation). Clearly this is done (and can
only be done) by choosing 1 = −13 and 2 = 0. Thus, we arrive at

 () = −1
3
cos 2

and the general solution

 () = 1 cos + 2 sin − 1
3
cos 2

Example 7.6 As we saw by use of Table 8.1 in Example 7.3, the general solution of the

associated homogeneous equation to

00 + 30 + 2 = 

is

 () = 1
− + 2

−2
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No new and independent functions are created by repeated differentiations of  () =  and

therefore the list consists of this single function (which is not a solution of the associated

homogeneous equation). Therefore, we construct

 () = 

and calculate the single undetermined coefficient by substituting this guess into the nonho-

mogeneous equation. The left side of the equation results in

00 () + 3
0
 () + 2 () = 6



which equals  (the right side of the differential equation) if and only if  = 16. Thus,

 () =
1

6


and the general solution is

 () = 1
− + 2

−2 +
1

6
.

Example 7.7 As we saw by use of Table 8.1 in Example 7.2, the general solution of the

associated homogeneous equation to

00 +  =  sin

where   and  are positive constants, is

 () = 1 cos

Ãr





!
+ 2 sin

Ãr





!


The nonhomogeneous term  () = cos 2 generates only two independent functions upon
repeated differentiation:

cos sin

Case 1: If  6=  then the list contains no solution of the homogeneous equation and we

construct

 () = 1 cos+ 2 sin

Substituting this into the left side of the nonhomogeneous differential equation, we obtain

00 () +  () =
¡
 −2

¢
1 cos+

¡
 −2

¢
2 sin

which we want equal to  cos  (the right side of the equation. This is possible if and only
if we choose 1 and 2 so that¡

 −2
¢
1 =  

¡
 −2

¢
2 = 0

or

1 = 
1

 −2
 2 = 0
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Note that the denominator

 −2 = 
¡
2 − 2

¢ 6= 0
is nonzero in the case under consideration. Thus, we have obtained

 () =


 −2
cos

and the general solution

 () = 1 cos+ 2 sin+


 −2
cos 

Case 2: If  =  then the list generated by differentiating  () becomes

cos sin

both of which are solutions of the homogeneous equation. Therefore, we multiply the list

through by  and use the modified list

 cos  sin

(which no longer contains a solution of the homogeneous equation) to construct

 () = 1 cos+ 2 sin

Substituting this guess into the left side of the nonhomogeneous differential equation, we

obtain

00 +  = 22 cos− 21 sin

which we want equal to  cos (the right side of the equation, in this case). This is possible
if and only if we choose 1 and 2 so that

22 =   21 = 0

or

1 = 0  2 =


2


Thus, we have obtained

 () =


2
 sin

and the general solution

 () = 1 cos+ 2 sin+


2
 sin.
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7.3 Exercises

For each second order equation below, determine those initial conditions 0 0 and 0 for

which Theorem 7.1 applies. Explain your answer. What do you conclude for these initial

conditions? What do you conclude for other initial conditions?

Exercise 7.1 00 +  = sin  (a forced simple harmonic oscillator)

Exercise 7.2 00 + 0 +  = cos  (a forced oscillator with friction)

Exercise 7.3 200 + 0 +  = 0 (a Legendre equation)

Exercise 7.4 00 + 0 + 3 = 0 where  and  are constants (Duffing equation)

Exercise 7.5 00 + 0 +  =  sin  where   and  are constants (a forced van der Pol
equation)

Exercise 7.6 00+ sin = 0, where  6= 0 and  are constants (the frictionless pendulum
equation)

Find a formula for the general solution of the following second order equations.

Exercise 7.7 00 + 0 +  = 0

Exercise 7.8 00 − 0 +  = 0

Exercise 7.9 200 −  = 0

Exercise 7.10 00 + 20 +  = 0

Exercise 7.11 00 + 30 − 4 = 0

Exercise 7.12 00 − 50 + 4 = 0

Exercise 7.13 00 + 5 = 0

Exercise 7.14 00 + 380 + 345 = 0

Exercise 7.15 00 − 60 + 9 = 0

Exercise 7.16 300 + 2 = 0

Exercise 7.17 When the roots of the characteristic equation are complex  = ±,  6= 0,
prove the general solution of the second order equation 00+0+ = 0 is  = 1

 cos+
2

 sin.

Exercise 7.18 When the characteristic equation has double root , verify that the general

solution of the second order equation 00 + 0 +  = 0 is  = 1
 + 2

.



7.3. EXERCISES 251

Exercise 7.19 Consider the equation 00 + 0 +  = 0 for   0,   0,   0. Show
all solutions tend to 0 as → +∞.

Exercise 7.20 Consider the initial value problem

00 + 0 +  = 0
(0) = 0 0(0) = 0 6= 0

for the suspension system of an automobile.

(a) Find a formula for the cut-off value 0 of the damping constant  such that   0
implies no oscillation occurs and   0 implies oscillations do occur. Justify your answer

using formulas for the solutions in each case.

(b) Find a formula for the solution of the initial value problem when  = 0 Does the car

frame oscillate in this case? Explain your answer.

Consider the second order equation 200 − 20 + 2 = 2 for   0

Exercise 7.21 Find two independent solutions (for   0) of the associated homogeneous
equation 200 − 20 + 2 = 0 of the form  =  for a constant .

Exercise 7.22 Find the general solution (for   0) of the nonhomogeneous equation by
using the Variation of Constants Formula for the equivalent first order system.

Exercise 7.23 Find a formula for the solution of the initial value problem (1) = 0 0(1) =
0.

Exercise 7.24 Find a formula for the solution of the initial value problem (1) = 1 0(1) =
−1.

Find a particular solution of the following second order equations using the Method of

Undetermined Coefficients.

Exercise 7.25 00 +  = − sin 

Exercise 7.26 00 +  = −

Exercise 7.27 00 −  = 

Exercise 7.28 00 −  = −

Exercise 7.29 For the second order equations in Exercises 7.25-7.28 solve the initial value

problem (0) = 0 0(0) = 0.

Consider the initial value problem

00 + 20 + 2 = −

(0) = 0, 0(0) = 0
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Exercise 7.30 Use a computer program to plot the solution for 0    8. How many roots
does () have in this interval?

Exercise 7.31 Solve the initial value problem using the Method of Undetermined Coeffi-

cients.

Exercise 7.32 Use your answer in Exercise 7.31 to validate or correct your answers in

Exercise 7.30.

Consider the initial value problem

00 +0 + 1

 = ()

(0) = 0 0(0) = 0

for the charge  = () on an electric circuit with a resistor (of  Ohms), inductor (of 

Henrys), capacitor (of  Farads) and impressed voltage (e.g., from a battery). The circuit

has no initial charge  (0) and no initial current 0(0). Suppose () = 0 is constant. Solve

the initial value problem for the circuits below.

Exercise 7.33  = 01  = 250  = 10−5

Exercise 7.34  = 02  = 200  = 10

Exercise 7.35  = 01  = 0  = 10−5

Exercise 7.36  = 01  = 200  = 10−5

Solve the initial value problem

00 +0 + 1

 = ()

(0) = 0 0(0) = 0

with  = 1  = 2  = 1 and the impressed voltages below.

Exercise 7.37 () = sin 

Exercise 7.38 () = cos 

Exercise 7.39 () = −

Exercise 7.40 () = −

Consider the second order equation 00 −  = .

Exercise 7.41 Use the Variation of Constants Formula for the equivalent first order system

to find the general solution.

Exercise 7.42 Solve the initial value problem (0) = 0 0(0) = 0
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Exercise 7.43 Solve the initial value problem (0) = 2 0(0) = −2

Exercise 7.44 Consider the nonhomogeneous equation 00 + 0 +  =  sin where all
five parameters     and  are positive.

(a) Find a formula for the general solution. Hint: For  () by using the Method of
Undetermined Coefficients.

(b) Show the general solution tends to  () as  → +∞. (Hint:  () =  () −  ()
tends to 0 as  → +∞.) Thus,  () is called the “steady state” and  () is called the
“transient part” of the general solution.

Find a formula for the general solution of the 2nd order equations below.

Exercise 7.45 00 + 20 − 3 = 6

Exercise 7.46 00 + 20 − 3 = −2

Exercise 7.47 00 + 20 − 3 = 2 sin 

Exercise 7.48 00 + 20 − 3 = −−

Exercise 7.49 00 + 20 − 3 =   is a constant

Exercise 7.50 00 + 20 − 3 =  cos   is a constant

Exercise 7.51 00 + 20 + 2 = cos 

Exercise 7.52 00 + 20 + 2 = − sin 

Exercise 7.53 00 + 20 + 2 = 2 cos − − sin 

Exercise 7.54 00 + 60 + 5 = −2

Exercise 7.55 00 + 60 + 5 =  where  is a constant

Exercise 7.56 00 + 60 + 5 = −

Exercise 7.57 00 + 40 + 4 = 

Exercise 7.58 00 + 40 + 4 =  where  is a constant

Exercise 7.59 00 + 40 + 4 = 3− − + 2−2

Exercise 7.60 00 + 2 = −

Exercise 7.61 00 + 2 = sin 
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Chapter 8

Nonlinear Systems

In Chapters 5 and 6 we studied systems of linear differential equations. In this chapter

we turn our attention to systems of nonlinear equations. Since any higher order equation

is equivalent to a first order system, our study includes nonlinear higher order equations.

Unlike the case of single nonlinear equations, there are virtually no methods available for

calculating solution formulas for nonlinear systems. Therefore, we must use other methods

to analyze nonlinear systems. In this chapter we focus on methods for analyzing autonomous

systems and their phase portraits.

8.1 Introduction

Consider the autonomous system

0 = ( ) (8.1)

0 = ( )

of two differential equations. As with linear systems consisting of two equations, the phase

portrait of the nonlinear systems (8.1) consists of the orbits drawn in the ( )-plane. For
this reason (8.1) is called a planar autonomous system. Our basic goal in this chapter is to

develop methods for analyzing and drawing the phase plane portraits of planar autonomous

systems.

We learned in Chapter 3 how to construct phase line portraits for single first order

autonomous equations. We found that equilibria play a key role and that all non-equilibrium

solutions are monotonic. Equilibria also play a key role in phase plane portraits of systems.

However, drawing a phase plane portrait for a system of equations is generally more difficult

than drawing a phase line portrait for a single equation. Solutions of autonomous systems

are not necessarily monotonic, and the possibility of solution oscillations (and even periodic

solutions) introduces a new features to phase portraits. We have already seen this in the case

of spirals and centers for linear, planar autonomous systems (Chapter 6). Despite these added

complications, mathematicians have developed a nearly complete theory of phase portraits

for planar autonomous systems. A full exposition of this theory is, however, beyond the

scope of this introductory book. Nonetheless, we will study the basic ingredients of the

theory and learn how to use them to obtain accurate sketches of phase plane portraits. Of

255
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course, numerical approximations and computer graphics can also play an important and

helpful role in this endeavor.

Systems of three or more autonomous equations also arise in applications. Solutions and

orbits of three (or higher) dimensional systems can exhibit extremely complicated dynamic

behavior that is not possible for planar autonomous systems. So-called “strange attractors”

and “chaos” are examples. For this reason (and because of the difficulty of drawing pictures

in more than three dimensions), it is considerably more difficult to study phase portraits for

higher dimensional systems. We will take only a brief look at higher dimensional systems in

Section 8.6.

Here are some examples of nonlinear planar autonomous systems that arise in applica-

tions. The planar autonomous system

0 = −  (8.2)

0 = 2 − 2
is an model of competition between two populations or groups. This system is nonlinear be-

cause of the term . Planar autonomous systems often have coefficients (or “parameters”).

For example, the system

0 = 1−  (8.3)

0 = 2 − 

is a more general competition system that includes (8.2) as a special case. The system

0 = − − 


+ 
 (8.4)

0 = 


+ 
− (+ ) 

is another example of a planar autonomous system, one that arises in an application to AIDS

epidemics. This system is nonlinear because of the term ( + ). A third example of a
nonlinear planar autonomous system is

0 = 
³
1− 



´
−



+ 
(8.5)

0 = − + 


+ 


a system that arises in theoretical ecology as a model of the interaction between a predator

 and its prey .

Planar autonomous systems also arise from autonomous second order equations. For

example, the system

0 =  (8.6)

0 = −− (2 − 1)
is equivalent to the van der Pol equation

00 + 
¡
2 − 1¢0 +  = 0 (8.7)
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which arises in applications involving electric circuits. This equation is nonlinear because of

the term 20.
An example of a nonlinear system of more than two equations is the Lorenz system

0 =  ( − )

0 = −  −  (8.8)

0 = − + 

which arises in meteorological studies. It is nonlinear because of the terms  and .

8.2 The Linearization Principle

In Chapter 3 we learned to draw phase line portraits for a single autonomous differential

equation 0 = (). The equilibria (i.e., the roots of ()) and the signs of () between
equilibria are enough to determine the entire phase line portrait. Equilibria also play an

important role in the phase portraits of planar autonomous systems (8.1). Unfortunately, it

is more difficult to determine the entire (global) phase portrait for systems — even systems

of only two equations — than it is for a single equation.

We consider planar autonomous systems

0 = ( ) (8.9)

0 = ( )

for which initial value problems

(0) = 0 (0) = 0 (8.10)

have unique solutions. To guarantee this we require that  and  and their first order

derivatives with respect to  and  to be continuous on some domain of points  in the

plane (Theorem 4.1 in Chapter 4)1. In some cases  may not be the entire plane. For

example, in the AIDS system (8.4)  and  both are undefined when  = − In this system
 can be one of half planes determined by this line.

We begin with some remarks about the basic features of phase plane portraits. Recall that

the orbit associated with a solution pair  = ()  = () is the set of points {(() ())}
in the ( )-plane (Definition 4.2 in Chapter 4). In general an orbit is a curve in the plane.
An orbit has a direction (or orientation) determined by the motion along the curve as 

increases. Since initial value problems have unique solutions, an orbit passes through each

point (0 0) in the domain . To see this, simply use 0 and 0 as the initial condition in

(8.10) and apply the Fundamental Existence Theorem 4.1; the orbit of the unique solution

of this initial value problem passes through the point (0 0) at time  = 0. Different initial

times 0 yield different initial value problems whose solutions produce the same orbit, except

that they arrive at the point (0 0) at different times. See Exercise 8.67. This means there
are infinitely many solutions associated with an orbit. (Recall this is true for single nonlinear

1A domain is an “open” set. This means each point in the domain can be surrounded by a small circular

disk all of which lies in the domain. The inside of a circle or a rectangle are examples of domains.
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equations and their phase line orbits as well.) Thus, orbits “fill up” the domain  in the

sense that there is an orbit through every point in  Furthermore, different orbits cannot

have a point in common and, in particular, cannot cross one another (Exercise 8.68).

We now turn to the problem of determining the geometry of nonlinear phase portraits.

Equilibria are of fundamental importance in solving this problem and we begin with their

study. Recall that equilibria are constant solutions :

() =  = constant

() =  = constant.

The orbit associated with an equilibrium is just the single point ( ) in the ( )-phase
plane. Since the derivative of a constant is zero, it follows that the equilibrium ( ) points
of (8.9) satisfy the two equations

0 = ( )

0 = ( ).

Thus, the equilibria of the planar autonomous system (8.9) are the roots of the “equilibrium

equations”

( ) = 0

( ) = 0

For nonlinear systems, these algebraic equations are nonlinear. As a result their solution is

likely to be a difficult algebraic problem. In some applications one can solve the equilibrium

equations explicitly. In other applications, one can use computers to approximate solutions

Example 8.1 The equilibrium equations for the competition system (8.2) are

−  = 0

2 − 2 = 0
or

(1− ) = 0

2 (1− )  = 0

There are two ways to solve the first equation: either  = 0 or  = 1. In the first case, the
second equation implies  = 0 This gives the equilibrium ( ) = (0 0). In the second case
 = 1, the second equation implies  = 1. This gives the equilibrium ( ) = (1 1).
The equilibrium equations for the system (8.3) are

1−  = 0

2 −  = 0

Similar reasoning produces the two equilibria

( ) = (0 0) and
³2


1



´
.



8.2. THE LINEARIZATION PRINCIPLE 259

Remark 2. Notice in Example 8.1 that the system (8.2) has more than one equilibrium (as

does (8.3). This is not an uncommon feature of nonlinear systems.

Example 8.2 The equilibrium equations for the planar autonomous system

0 = sin−  (8.11)

0 = − 2

are

sin−  = 0

− 2 = 0

Solving the second equation for

 =
1

2
 (8.12)

and substituting this result into the first equation, we obtain the equation

sin =
1

2
 (8.13)

for  Any solution  of this equation, together with (8.12), yields an equilibrium of the

system (8.11).

One solution of equation (8.13) is rather easy to observe:  = 0. This yields the equi-
librium ( ) = (0 0). Are there any other equilibria? That is to say, are there any other
solutions of the equation (8.13)?

It is not possible to solve equation (8.13) algebraically for  However, from the inter-

section points of the graph of sin with the graph of 2 (see Figure 8.1) we see that there
are two other solutions, one positive and one negative. Using a computer or calculator to

approximate these solutions, we obtain  ≈ 18955 and −18955 Thus, ( ) ≈ (18955
09478) and (−1895 −09478) are the remaining two equilibria of the system (8.11).













2

x

sin( )x

x

Figure 8.1

We can find the equilibria of a higher order differential

equation by finding the equilibria of an equivalent first order

system. Or, one can proceed more directly and derive an

equilibrium equation by setting derivatives of all orders equal

to zero in the differential equation.

For example, 0 = 0 and 00 = 0 in the van der Pol equa-
tion (8.7) yields the equilibrium equation  = 0. Thus, the
only equilibrium of this second order equation is  = 0. In
the phase plane, for its equivalent system (8.6), this equilib-

rium corresponds to the point ( ) = (0 0).
Systems of  ≥ 3 equations can also have equilibrium

solutions. The equilibrium equations are obtained from the

differential system by setting all derivatives equal to zero. The result is a system of 

algebraic equations whose solutions are the equilibria of the differential system.
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Example 8.3 The equilibrium equations for the Lorenz system

0 =  ( − )

0 = −  − 

0 = − + 

are

 ( − ) = 0

−  −  = 0

− +  = 0

To find the equilibria of the Lorenz system we must solve these three algebraic equations for

  and  One way to do this is as follows. The first equilibrium equation implies  = .

Letting  =  in remaining equations yields the two equations

 −  −  = 0

− + 2 = 0

or

(− 1− )  = 0

− + 2 = 0

for  and . The first of these equations leads to two alternatives: either  = 0 or  = − 1.
Consider the first alternative  = 0. The second equation implies  = 0 and we obtain

the equilibrium (  ) = (0 0 0).
Now consider the second alternative  = − 1. In this case the second equation implies

2 = ( − 1) If  ≥ 1 this equation has solutions  = ±p(− 1) Consequently, this
alternative yields the equilibria

(  ) = (
p
(− 1)±

p
(− 1) − 1)

when  ≥ 1. Notice these two points coincide with each other (and equal the origin (0 0 0))
when  = 1
To summarize: the Lorenz system (8.8) has one equilibrium if  ≤ 1 and three equilibria

if   1.

Once we have found the equilibria our next step, in the construction of a phase plane

portrait, is to determine the properties of non-equilibrium orbits. In general this is a difficult

task. The monotonicity property of solutions of single autonomous equations, which is so

fundamental in the construction of phase line portraits for single autonomous equations, has

no general counterpart in the two dimensional case of planar systems. However, one of the

techniques we used for analyzing single equations in Chapter 3 does carry over to planar

systems (and also to higher order systems), namely, the Linearization Principle.
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By way of review, let’s recall the Linearization Principle for single equations (see Section

3.1.3, Chapter 3) The linearization of an autonomous first order equation

0 =  ()

centered at (or around) an equilibrium  (i.e., a root of the equation  () = 0) is the linear,
homogeneous equation

0 = ,  =




¯̄̄̄


 (8.14)

Recall that the equilibrium  is called hyperbolic if  6= 0. The Linearization Principle
states that the local phase portrait near an hyperbolic equilibrium  is of the same type as

the equilibrium  = 0 of its linearization (8.14).
Our goal in this section is to extend this linearization principle to systems of autonomous

first order equations. To this we first need to understand what the linearization of a system,

carried out at an equilibrium, is and how to calculate it and then, secondly, learn how

the local phase plane portrait near the equilibrium is related to the phase portrait of its

linearization. Presumably, this will involve some requirement analogous to the requirement

of hyperbolicity.

In Chapter 3 (section 3.1.3) we derived the linearization (8.14) of the scalar equation

0 = () at an equilibrium  =  from the linear Taylor polynomial approximation ()+
( − ) to (). We did this as follows. Using () = 0 and the resulting (first order)
Taylor approximation

() ≈  () + (− ) = (− )

together with the notation  = − , we obtained the linearization (8.14) of 
0 = () at

the equilibrium .

We proceed in a similar manner for a planar autonomous system

0 = ( ) (8.15)

0 = ( )

We first approximate ( ) and ( ) by linear Taylor series polynomials centered at an
equilibrium ( ) These polynomials are

( ) +  (− ) +  ( − )

( ) +  (− ) +  ( − ) 

where coefficients are calculated from the derivatives of  and  by the formulas2

 =




¯̄̄̄
()

,  =




¯̄̄̄
()

(8.16)

 =




¯̄̄̄
()

  =




¯̄̄̄
()



2This notation means the first the derivative is calculated and then the answer is evaluated at ( ) =
( ).
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Since ( ) = 0, ( ) = 0, the Taylor polynomial approximations become

( ) ≈  (− ) +  ( − )

( ) ≈  (− ) +  ( − ) 

Using the notation

 = −   =  − 

we obtain the autonomous, linear homogeneous system

0 = +  (8.17)

0 = + 

as an approximation to the system (8.15). This autonomous, linear homogeneous system,

with coefficients given by the formulas (8.16), is called the linearization of (8.15) at the

equilibrium ( ).
In matrix notation, the linearization (8.17) is the linear homogeneous system ̃0 = ̃

with coefficient matrix

 =

⎛⎜⎝ 



¯̄
()





¯̄̄
()





¯̄
()





¯̄̄
()

⎞⎟⎠ 

The matrix

( ) =

Ã
()


()


()


()


!
is called the Jacobian of the nonlinear system (8.15). With this notation, the coefficient

matrix of the linearization at an equilibrium ( ) point is ( ) and the linearization
of the system at ( ) is

̃0 = ( )̃

A nonlinear planar autonomous system may have more than one equilibrium (e.g., see

Example 8.1). We cannot refer to “the” linearization of a planar autonomous system, but

instead must refer to the linearization at an equilibrium.

Example 8.4 In Example 8.1 we found that the competition system

0 = − 

0 = 2 − 2

has two equilibria: ( ) = (0 0) and (1 1) The Jacobian matrix for this system is

( ) =

µ
1−  −
−2 2− 2

¶


At the equilibrium (0 0)

(0 0) =

µ
1 0
0 2

¶
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which is the coefficient matrix of the linearization

0 = 

0 = 2

at (0 0) The Jacobian at the equilibrium (1 1) is

(1 1) =

µ
0 −1
−2 0

¶
which is the coefficient matrix of the linearization

0 = −
0 = −2

at (1 1)

We can also linearize second order equations at an equilibrium. The next example illus-

trates this.

Example 8.5 The van der Pol equation

00 + 
¡
2 − 1¢0 +  = 0

has equilibrium  = 0 The equivalent system

0 =  (8.18)

0 = −− (2 − 1)
has equilibrium ( ) = (0 0). The Jacobian of this system is

( ) =

µ
0 1

−1− 2 −(2 − 1)
¶


At the equilibrium

(0 0) =

µ
0 1
−1 

¶
which is the coefficient matrix of the linearization

0 =  (8.19)

0 = −+ 

at (0 0). This first order system is equivalent to the linear second order equation

00 − 0 +  = 0

which is the linearization of the van der Pol equation at  = 0.

Now that we have learned how to linearize a system of differential equations at an equi-

librium, we ask:

What can an we learn anything about the system’s orbits and its phase por-

trait from those of its linearization?
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x

y

 





Figure 8.2
The phase plane portrait of

(8.20) near the equilibrium

( ) = (0 0).

We studied phase portraits for linear homogeneous sys-

tems with constant coefficients in Chapter 6. Using the clas-

sification scheme developed in that chapter, we can identify

the phase portrait type of the linearization (8.17). Since the

linearization is an approximation to the nonlinear system for

 and  small, we anticipate that the phase portrait of the

nonlinear system will resemble that of its linearization — at

least in a neighborhood of the equilibrium. Before examining

some fundamental theorems that support this conclusion, we

look at some examples.

Example 8.6 Figure 8.2 shows plots of several orbits of the

competition system

0 = −  (8.20)

0 = 2 − 2

in a magnified neighborhood of the equilibrium (0 0). These orbits show that near (0 0) the
phase plane portrait appears very much like an unstable node for a linear system. In fact,

from Example 8.4 we see that the phase portrait of the linearization at the origin is indeed

an unstable node! This is because the eigenvalues  = 1 2 of (0 0)) are real and positive.

Example 8.7 As a second motivational example, consider the van der Pol equation

00 + 
¡
2 − 1¢0 +  = 0

which we looked at in Example 8.5. In Figure 8.3 appear graphs of orbits near the equilibrium

(0 0) for  = −1 and for 1. The phase portrait resembles a stable spiral for  = −1 and an
unstable spiral for  = 1.
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x

y

 



( )a

x

y

 



( )b

Figure 8.3. The phase plane portraits of the van der Pol equation near the

equilibrium (0 0) for (a)  = −1 and (b)  = 1.

What about the phase portrait of the linearization (8.19) at (0 0)? In Example 8.5 we

calculated the Jacobian of the equivalent linear system and found that, when evaluated at

the equilibrium (0 0), the resulting matrix

(0 0) =

µ
0 1
−1 

¶


This is the coefficient matrix of the linearization at (0 0) and it has eigenvalues

 =
1

2
± 1

2

√
2 − 4

Notice that  is complex for values of  satisfying ||  2 For such values of  the lineariza-
tion at the origin does indeed have a spiral phase portrait. Moreover, it is a stable spiral if

the Re = 2  0 and unstable if Re = 2  1. In particular  = −1 the linearization
has a stable spiral and for  = 1 it has an unstable spiral. Thus, the linearization and the
computer generated (local) phase portraits do match!

In the examples of Figures 7.2 and 7.3 the stability properties of the equilibria are the

same as those of the linearization at the equilibrium. (So are the geometric properties of

orbits, but first we focus just on stability properties). These are examples of the following

general Linearization Principle for planar autonomous systems.

Theorem 8.1 (The Fundamental Theorem of Stability) Suppose ( ) is an equi-
librium of the autonomous system

0 = ( )

0 = ( )

and let 1, 2 denote the eigenvalues of the Jacobian ( ).
If 1 and 2 both have negative real parts, then the equilibrium ( ) is (locally

asymptotically) stable3.

If at least one root has a positive real part, then the equilibrium is unstable.

3Note: real roots are equal to their own real part.
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A number  with a negative real part is said to lie in the left half of the complex number

plane. Thus, an equilibrium is stable if both roots of the characteristic polynomial at the

equilibrium lie in the left half plane. It is unstable if at least one root lies in the right half

plane.

Recall the trace-determinant criteria for stability and instability of a linear homogeneous

system (Section 6.6 of Chapter 6). When these criteria are applied to the linearization of a

nonlinear system, then from Theorem 8.1 we obtain the following result .

Theorem 8.2 An equilibrium ( ) of the autonomous system

0 = ( )

0 = ( )

is (locally asymptotically) stable if both inequalities




+




 0 and








− 






 0

hold at the point ( ) = ( ).
If




+




 0 or








− 






 0

at ( ) = ( ), then the equilibrium is unstable.

Example 8.8 The trace and determinant of the Jacobian associated with the system

0 = − 

0 = 2 − 2
are




+




= 3−  − 2








− 






= 2− 2− 2

For the equilibrium ( ) = (0 0) we calculate that




+




= 3  0

and conclude by Theorem 8.2 that the equilibrium ( ) = (0 0) is unstable.
For the equilibrium ( ) = (1 1) we calculate that








− 






= −2  0

and conclude by Theorem 8.2 that also the equilibrium ( ) = (1 1) is unstable.
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Example 8.9 Consider the van der Pol system (8.6)

0 = 

0 = −− (2 − 1)

for which




+




= −(2 − 1)








− 






= 1 + 2

At the equilibrium ( ) = (0 0)




+




= 








− 






= 1  0

By Theorem 8.2 the equilibrium ( ) = (0 0) is stable if   0 and unstable if   0.

y

x
0.5

0.5

1.5

1.0

1.0 1.5

Figure 8.4. The phase plane por-

trait of (8.20) near the equilibrium

( ) = (1 1).

Figures 8.2 and 8.3 illustrate that the stability proper-

ties of the equilibrium and the linearization agree in those

examples. These Figures also illustrate more, namely, that

the geometry of the phase portraits are also similar. Specif-

ically, the graph in Figure 8.2 looks like an unstable node

for a linear system and the graphs in Figure 8.3 look like

spirals for linear systems.

Here is another example involving system (8.20) in Ex-

amples 8.6 and 8.8. In Figure 8.4 appear several orbits

in a magnified neighborhood of the equilibrium ( ) =
(1 1). Near this equilibrium, the phase portrait is very
much like a saddle for a linear system. Indeed, from Exam-

ple 8.4 we find that the phase portrait of the linearization

at (1 1) is a saddle. This is because the eigenvalues  = ±√2 of the Jacobian  (1 1) have
opposite signs. Note that one root,  =

√
2 is positive and Theorem 8.1 implies (1 1) is

unstable. It appears that not only can one learn about stability and instability of hyperbolic

equilibria from the linearization, but that one can also learn about the geometry of the phase

portrait. This is the subject of the next section.

8.3 Local Phase Plane Portraits

We classified phase portraits of linear systems in Chapter 6, Section 6.4. The examples

in Figures 8.2, 8.3 and 8.4 suggest that the phase portrait of a nonlinear system near an

equilibrium is similar to that of the linearization (at that equilibrium).
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The question is: will it always true for a nonlinear system of equations that the phase

portrait near an equilibrium is a node if the phase portrait of the linearization at the equi-

librium is a node? Will the phase portrait near an equilibrium be a spiral if that of its

linearization at the equilibrium is a spiral? And so on.

x

y

(xe,ye)




(x,y)

Figure 8.5

To give an answer to these questions about comparing

linear phase plane portraits to nonlinear phase plane por-

traits, we must first consider what we mean by a node and

a spiral for a nonlinear system.

Let’s begin with nodes. The characteristic feature of

a node for linear systems is that all orbits approach the

origin from a definite direction. That is to say, the polar

angle  () determined by a point ( ()   ()) lying on an
orbit, using the origin as a reference point, approaches a

limit 0 as → +∞. We can adopt this same property into
a definition of an equilibrium node for a nonlinear system

by using the equilibrium ( ) as the reference point. See
Figure 8.5. For an unstable node the angle  () approaches a limit as → −∞. (The limit
angle is not necessarily the same for all orbits.)

Moreover, for stable phase portraits (nodes or spirals) we require that the distance  ()
from points ( ()   ()) lying on the orbit to the equilibrium ( ) approaches 0 as  →
+∞ whereas for unstable phase portraits the distance  () approaches 0 as → −∞

We can use these characteristics of linear phase portraits to define nodes and spirals for

nonlinear phase portraits.

Definition 8.1 The (local) phase portrait near an equilibrium ( ) of a nonlinear system
is a stable node if  () → 0 and the angle  () approaches a limit as  → +∞. It is an
unstable node if  ()→ 0 and the angle  () approaches a finite limit as → −∞.
The (local) phase portrait near an equilibrium of a nonlinear system is a stable spiral

if  () → 0 and the angle  increases without bound as  → +∞. It is an unstable spiral
if  → 0 and the angle  increases without bound as → −∞.

In Chapter 6, Section 6.4, we studied one other fundamental type of phase portrait for

linear systems, namely, the saddle point. The distinguishing characteristics of a saddle are

the existence of two half line orbits that tend to the equilibrium (0 0) as → +∞ (forming

the stable manifold) and two half line orbits that tend to the equilibrium (0 0) as → −∞
(forming the unstable manifold.). No other orbits approach (0 0) for → +∞ or → −∞.
For nonlinear systems we define a saddle to have these same characteristics.

Definition 8.2 An equilibrium is a saddle if

(1) there are two orbits that tend to the equilibrium, each of whose angle  () approaches
a limit as → +∞
(2) there are two orbits that tend to the equilibrium each of whose angle  () approaches

a limit as → −∞.
(3) No other orbits approach the equilibrium as → +∞ or → −∞
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The two orbits that tend to the equilibrium as → +∞ form the stable manifold. How-

ever, for a nonlinear system these orbits are not necessarily straight lines, as they are for a

linear system.

Similarly, the two orbits that tend to the equilibrium as → −∞ and that together form

the unstable manifold are not necessarily straight lines.

For single nonlinear equations the Linearization Principle we learned that the equilibrium

type (either attractor or repeller) is the same as that of the linearization at the equilibrium

provided the equilibrium is hyperbolic, i.e. provided

 =




¯̄̄̄


6= 0

Similarly, for a nonlinear system the type of an equilibrium is the same as that of its lin-

earization provided the equilibrium is hyperbolic, as defined below.

Definition 8.3 An equilibrium ( ) is hyperbolic if the eigenvalues  of the Jacobian
J(  ) all have nonzero real parts.

We are now in a position to compare local phase plane portraits to those of their lin-

earizations.

Theorem 8.3 (Hartman-Grobman Theorem) A hyperbolic equilibrium of the pla-

nar autonomous system

0 = ( ) (8.21)

0 = ( )

is a

stable (unstable) spiral if the linearization is a stable (unstable) spiral

stable (unstable) node if the linearization is a stable (unstable) node

saddle if the linearization has a saddle.

In the case of a saddle, at the equilibrium the stable and unstable manifolds of

the saddle are tangent to those of the linearization.

Since the phase portrait of the linearization system is determined by the eigenvalues of

 ( ) we can, by means of the Hartman-Grobman Theorem, relate local phase portraits
to the eigenvalues of the linearization.

Corollary 8.1 Suppose ( ) is a hyperbolic equilibrium of a planar autonomous

system (8.21).

If the eigenvalues  = ±   6= 0, of the Jacobian  ( ) are complex, then
( ) is a stable spiral if Re =   0. The point ( ) is an unstable spiral if
Re =   0.
Suppose the eigenvalues of the Jacobian  ( ) are real. If they are both

negative, then ( ) is a stable node. If they are both positive, then ( ) is an
unstable node. If they have different signs, then ( ) is a saddle.
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We can now give a complete local analysis of the equilibria for the system (8.20) we have

been using for motivation in Examples 8.1, 8.4, and 8.8.

Example 8.10 The nonlinear plane autonomous system

0 = − 

0 = 2 − 2
has two equilibria ( ) = (0 0) and (1 1)  The Jacobians at these equilibria and their
eigenvalues are

(0 0) =

µ
1 0
0 2

¶
  = 1 2

(1 1) =

µ
0 −1
−2 0

¶
  = −√2√2.

Both equilibria are hyperbolic (i.e., none has a 0 real part). By Theorem 8.1 we find that

( ) = (0 0) is an unstable node and ( ) = (1 1) is a saddle.

Example 8.11 The nonlinear plane autonomous system

0 =  (8.22)

0 = −− (2 − 1)
which is equivalent to the second order van der Pol equation, has only one equilibrium, which

is located at the origin ( ) = (0 0). The Jacobian at the origin and its eigenvalues are

(0 0) =

µ
0 1
−1 

¶
 ± =

1

2
± 1

2

√
2 − 4

Whether these eigenvalues are real, positive or negative, complex, etc. depends on the value

of  Therefore, we have to organize the analysis of the (local) phase portrait into cases based

on values of . Note first that the eigenvalues are complex if ||  2 and real if || ≥ 2 A
summary of all the options appear in the table below.

 Local portrait

 ≤ −2 real, negative hyperbolic stable node

−2    0 complex, negative real part hyperbolic stable spiral

 = 0 complex, 0 real part nonhyperbolic, linearization fails

0    2 complex, positive real part hyperbolic unstable spiral

2 ≤  real, positive hyperbolic unstable node

Example 8.12 The nonlinear, plane autonomous system

0 =  − − 2

1 + 


0 =
2

1 + 
 − 



8.3. LOCAL PHASE PLANE PORTRAITS 271

is a particular case of a famous model called the “chemostat model”. A chemostat is a

container used to contain chemical and biological reactions. Chemostats are used in scientific

studies and diverse applications ranging from gene splicing to brewing. The quantity  is the

concentration of a substrate (nutrient) that is continuously pumped into the chemostat at a

fixed rate (with concentration   0) and reacts with (or is consumed by) the quantity 

The mixture is well stirred and continuously pumped out at the same rate so as to maintain

a fixed volume.

There are two equilibria (see Exercise 8.26):

( ) = ( 0) and (1  − 1) 

To perform a local analysis near each equilibrium, we calculate the Jacobian matrix

( ) =

Ã
−1− 2

(1+)2
− 2
1+

2
(1+)2

 −1
1+

!


For the first equilibrium ( 0)

( 0) =

µ −1 − 2
1+

0 −1
1+

¶


This is a triangular matrix and therefore the eigenvalues appear along the diagonal:

1 = −1, 2 =
 − 1
1 + 



We get the results in the following table by applying Theorem 8.1.

 Local portrait near ( 0)

  1 real, opposite signs hyperbolic saddle

 = 1 −1 and 0 nonhyperbolic, linearization fails

  1 real, negative hyperbolic, stable node

For the second equilibrium (1  − 1), the eigenvalues of the Jacobian

 (1  − 1) =
µ −1

2
(1 + ) −1

1
2
( − 1) 0

¶


are

1 = −1 2 =
1

2
(1− ) 

We get the results in the following table by applying Theorem 8.1.

 Local portrait near ( 0)

  1 real, negative hyperbolic stable node

 = 1 −1 and 0 nonhyperbolic, linearization fails

  1 real, negative hyperbolic, saddle
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Remark 3. For nonlinear systems we have not defined different types of nodes (improper,

star, etc.) as we did for linear phase portraits in Chapter 6. Nor have we defined a center for

nonlinear systems. For these cases the relationship between the phase portrait of a nonlinear

system and that of its linearization is complicated and beyond the scope of this course. In

the neighborhood of a nonhyperbolic equilibrium the phase portraits of a planar autonomous

system and that of its linearization need not be, and often are not, of the same type.

We emphasize that Theorem 8.3 and its Theorem 8.1 describe phase portraits only in a

neighborhood of an equilibrium. The global phase portrait of a planar autonomous system

may look considerably different from the phase portrait of its linearization, as we will see in

the next section.

8.4 Global Phase Plane Portraits

The global phase portrait of a planar autonomous system may look considerably different

from the phase portrait of its linearization. For example, consider the phase portrait of the

competition system

0 = −  (8.23)

0 = 2 − 2

shown in Figure 8.6. The phase portraits shown in Figures 8.2 and 8.4 are magnifications of

this phase portrait near the two equilibria () = (0 0) and (1 1) respectively.

-1

1

y

x

Figure 8.6

Figure 8.7a shows the phase portrait of the system

0 =  (8.24)

0 = −− (2 − 1)

associated with the van der Pol equation

00 + 
¡
2 − 1¢0 +  = 0

for  = 1.
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Figure 8.7b

The unstable spiral shown in Figure 8.3b is a magnification of this phase portrait near the

equilibrium () = (0 0). It shows orbits near this unstable spiral equilibrium spiraling

outward. In Figure 8.7a, however, we see that orbits far enough away from the equilibrium do

not spiral outward, but instead spiral inward. A notable feature of the phase portrait shown

in Figure 8.7a is what appears to be a closed loop that separates the outward spiraling orbits

from the inward spiraling orbits. This closed loop is (apparently) itself an orbit of the van der

Pol system, as can be seen by choosing a point on the loop (e.g., (0 0) = (−114−257))
and calculating the orbit starting at that initial point.

Graphs of both components () and () of the solution pair corresponding to this loop
orbit appear in Figure 8.7b. Notice both () and () appear to be periodic functions of 
(repeating with a period of between 6 and 7 time units).
A periodic function  = () of period  satisfies ( + ) = () for all  The graph

of a periodic function on the interval 0 ≤  ≤  repeats itself identically on intervals of

length , i.e., on the intervals  ≤  ≤ 2 2 ≤  ≤ 3 and so on (and also on the intervals
−2 ≤  ≤ − −3 ≤  ≤ −2 ). That nonequilibrium solutions can be periodic is

an important feature of systems of two (or more) equations. Recall that nonequilibrium

solutions of a single autonomous equation are either monotonically increasing or decreasing

and therefore cannot be periodic.

A (nonequilibrium) periodic solution pair () and () satisfies ( + ) = () and
(+ ) = () for all  As a result the orbit of periodic solution pair is a closed loop in the
phase plane. Moreover, although not so obvious, the converse is true: a closed loop orbit is

associated with periodic solution pairs. See Exercise 8.75.

That is to say, closed loop orbits arise from and only from periodic solutions.

The closed loop orbit of a periodic solution is called a cycle. If other orbits approach a

cycle as  → +∞ (or −∞), then it is called a limit cycle. Figure 8.7a shows that the van
der Pol equation (8.24) with  = 1 has a limit cycle.
In Chapter 3 we learned that the only points in the phase line portrait that can be ap-

proached by orbits of single autonomous equations (as either → +∞ or −∞) are equilibria.
From the van der Pol equation example we see that for systems of equations, on the other

hand, orbits do not necessarily approach equilibria. A new type of “limit set” or “attractor”

is possible for systems, namely, a limit cycle.

In constructing the phase plane portrait of a system, an important problem is to de-

termine the sets of points approached by orbits as  → +∞ and −∞. Given the added
dimension in plane autonomous systems, we have to make more precise about what is meant

by attracting points or sets.
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We call the set of points approached by the orbit as  → +∞ the forward (or omega)

limit set of the orbit and denote the set by +.

Definition 8.4 Suppose ̃ () is a solution of a plane autonomous system. A point ̃∗ is a
forward (or omega) limit point of the solution’s orbit if there exists a sequence  → +∞
such that

lim
→+∞

̃ () = ̃∗

A point ̃∗is a backward (or alpha) limit point of the solution’s orbit if there exists a
sequence  →−∞ such that

lim
→−∞

̃ () = ̃∗

The collection of all forward limit points is called the forward limit set of the orbit, which

we denote by +. The collection of all backward limit points is the backward limit set of the

orbit, which we denote by 1.

A fundamental fact about the limit sets ± is that they are invariant sets. By this is
meant that if a point ̃∗ lies in a limit set, then the entire orbit passing throughout that
point lies in the limit set (for all , positive and negative). Thus, forward and backward limit

sets ± are a collection of orbits. The simplest example is a limit set that consists solely of
an equilibrium ̃.

To illustrate these ideas consider the van der Pol system (8.24) with  = 1. Figure 8.7a
suggests that the limit is the forward limit set of all orbits (except for the equilibrium at

(0 0)). The equilibrium (0 0) is the backward limit set of all orbits inside the the limit cycle.
The orbits outside the limit cycle are unbounded as  → −∞ and have no backward limit

set. In this example, the forward and backward limit sets consist of single orbits (either the

equilibrium or the limit cycle). However, as we will see in Example 8.14 below, it is possible

for limit sets to consist of more than one orbit.

The following famous theorem provides information about the limit sets of forward (and

backward) bounded orbits.4 As always, in the planar autonomous system

0 = ( )
0 = ( )

(8.25)

we assume ( ) ( ) and their partial derivatives with respect to  and  are continuous
so that the Fundamental Existence and Uniqueness Theorem is in effect.

Theorem 8.4 (Poincaré-Bendixson Theorem, Version 1) Let + be the forward

limit set of an orbit of the plane autonomous system (8.25) that is bounded as

→ +∞. One of the following alternatives is true:
(a) + contains an equilibrium

(b) + is a limit cycle.

These two alternatives also hold for the backward limit set − of an orbit

bounded as →−∞.
4An orbit is bounded as  → +∞ if it does not get arbitrarily far from the origin, or in other words,

remains inside a circle of sufficiently large radius for all  ≥ 0. Similarly an orbit is bounded as  → −∞ if

it remains inside a circle of sufficiently large raduis for all  ≤ 0.
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Theorem 8.4 provides two alternatives for the limit set of a bounded orbit. If, for a

particular system, we can rule out one alternative, then the remaining alternative must

hold. A typical application of the Poincaré-Bendixson Theorem proceeds by eliminating one

of the alternatives.

For example, if by some means or other we can be show that an orbit cannot have

an equilibrium in its limit set (which rules out alternative (a)), then it follows that the

orbit approaches a limit cycle (alternative (b) must hold). This is the case in the van der

Pol equation (8.24) with  = 1, as seen in Figure 8.7b. Here’s how we argue. The only
equilibrium of the system, namely the origin (0 0), is an unstable spiral (as was shown by an
application of the Linearization Principle). Therefore, the origin cannot be in the forward

limit set of an orbit. By so ruling out the alternative (a) in Theorem 8.4, we conclude that

the second alternative (b) must be true. That is to say, any bounded orbit of the van der

Pol system approaches a limit cycle.

One issue left unresolved in this argument is the (forward) boundedness of orbits. If there

are no bounded orbits, then of course our conclusion that bounded orbits approach a limit

cycle tells us nothing at all. This is a general issue with regard to the Poincaré-Bendixson

Theorem 8.4. The theorem is only about bounded orbits, so in order to use the theorem one

must be able to prove that orbits (or at least some orbits) of the system under consideration

are in fact bounded.

There are methods for determining when orbits of plane autonomous systems are bounded.

We will not pursue any such methods in this course. We will just rely on direction field evi-

dence. For example, suppose we examine the direction field of a system and notice that the

arrows point inward everywhere on all edges of the observed window. (One could, in fact,

try to prove this by investigating the differential equations.) Then all orbits in the window

are (forward) bounded, since they cannot leave the window without violating the direction

field.

Remark 4. It is in general a difficult mathematical problem to establish the existence of a

limit cycle (i.e., periodic solutions) of a planar autonomous system. The second alternative

in Theorem 8.4 is a powerful tool that can often provide the existence of limit cycles in

applications.

In addition to the Linearization Principle and the Poincaré-Bendixson Theorem 8.4 many

other facts and techniques are known that help to sketch the phase plane portrait of au-

tonomous systems. The list below contains a few. (Also see Exercise 8.39.) These facts are

particularly useful when attempting to eliminate one of the two alternatives in the Poincaré-

Bendixson Theorem 8.4.

Useful Facts

#1 A cycle must surround at least one equilibrium.

#2 If a forward limit set + contains a stable node or a stable spiral, then it contains only

that equilibrium point (that is to say, the orbit approaches the equilibrium as → +∞).
#3 A forward limit set + cannot contain an unstable node or unstable spiral point

(It can, however, contain saddles.)
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Figure 8.8

A forward limit set + can, of course, contain (and

hence contain only) a stable equilibrium. A forward limit

set + can also contain saddles, although by Useful Fact

#3, + can contain no other kinds of unstable equilibria.

We will see an example in which + contains saddles in

Example 8.14 below.

Example 8.13 Consider the planar autonomous system

0 = −− 2 (8.26)

0 = −2 − 2

The equilibrium equations

− ¡1 + 2
¢
= 0

− ¡2 + 2
¢
= 0

have only one solution

( ) = (0 0)

The Jacobian

( ) =

µ −1− 2 −2
−2 −2− 2

¶
evaluated at the equilibrium

( ) =

µ −1 0
0 −2

¶
has eigenvalues  = −1 −2. Therefore, origin is a stable node.
In this example we will rule out alternative (b) in the Poincaré-Bendixson Theorem 8.4;

that is, we will show that there can be no cycle orbit.

We begin by noting that a cycle, if it existed, would have to encircle the origin (Useful Fact

#1). Therefore, a cycle orbit would of necessity have to pass sequentially through the four

quadrants in the plane But an investigation of the direction field shows that it is impossible

for an orbit to do this. For example, the SW direction in the first quadrant and the SE

direction in the second quadrant rule out an orbit passing between these two quadrants.

We conclude that alternative (b) of the Poincaré-Bendixson Theorem 8.4 fails to hold in

this example and that alternative (a) therefore must hold, that is to say, + must contain an

equilibrium point. But the origin is the only equilibrium point in this example and therefore

(0 0) ∈ + Since the origin is a stable node, Useful Fact #2 tells us that + is in fact the

origin.

We’ve now shown that all forward bounded orbits approach the origin as → +∞

The direction field shown in Figure 8.8 indicates that orbits (at least those in the win-

dow shown) are forward bounded. Simply note that the direction field arrows point inward

everywhere on the boundary of the window. (For a more rigorous validation of the bounded

of orbits see Exercises 8.39 and 8.41.)
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The limit set of an orbit does not necessarily consists of a single equilibrium or a limit

cycle. Limit sets can consist of more than one orbit. In particular, a limit set might contain

several equilibria. The following example illustrates this possibility.

Example 8.14 Consider the planar autonomous system

0 =
¡
2 − 1¢  (8.27)

0 =
¡
1− 2

¢µ
+

3

10


¶


In this example we will determine the limit set of those orbits starting near the origin (0 0),
which is an equilibrium. The Jacobian

 ( ) =

µ
2 2 − 1
1− 2 3

10
(1− 2)− 2 ¡+ 3

10

¢ ¶

at the origin

 (0 0) =

µ
0 −1
1 3

10

¶
has complex eigenvalues

 =
3

20
±
√
391

20


with positive real part. The origin is therefore an unstable spiral and, as a result, it cannot

belong to a forward limit set +.

There are six other equilibria are:

(1 1), (−1 1), (−1−1), (1−1) (8.28)

and

(1−103) , (−1 103) . (8.29)

The eigenvalues of the Jacobian  ( ) evaluated at each one of the four equilibria (8.28)
are real and of opposite signs, which shows that these equilibria are saddles.

The remaining two equilibria (8.29) are stable nodes. Of course, orbits starting near

either one of these equilibria will approach it. However, not all orbits in the plane will

approach one of these stable nodes.

Figure 8.9 shows an orbit spirally counterclockwise outward from the origin (which is

consistent with the origin being an unstable spiral) and seemingly approaching the square

whose corners are the four saddle equilibria (8.28).

The sides of the square are each themselves orbits. This can be seen by investigating

the differential equations in the system (8.27) when an initial condition is chosen on a side

of the square. For example, take (0 0) = (1 0). By inspection we see that the solution
components are µ

 ()
 ()

¶
=

µ
1

 ()

¶
(8.30)
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where  () solves the initial value problem

0 =
¡
1− 2

¢µ
1 +

3

10


¶
  (0) = 0

The phase line portrait of this nonlinear autonomous equation for  is

−→ −10
3
←− −1 −→ 1←− .

From this phase line portrait, we see that the initial condition 0 = 0 yields a solution ()
that connects −1 to +1 as  runs from −∞ to +∞. The final result is that the orbit of the
solution (8.30) is the right side of the square in the phase plane portrait in Figure 8.9 that

connects the two saddle (1−1) and (1 1). Similar considerations show that the other three
sides are orbits.
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Figure 8.9

It follows that orbits starting inside the square formed

by the four saddles remain inside this square, and there-

fore are bounded. To do an application of the Poincaré-

Bendixson Theorem 8.4 we would have to rule out one of

the two alternatives (a) or (b). It turns out that alternative

(b) can be ruled out. That is, it can be shown that there

are no cycles. We will not attempt to do that here, as it is

not so easy. Instead, we just note that the computer sim-

ulation shown in Figure 8.9 shows an orbit that seemingly

“spirals out” to the square formed by the four saddles. It

can in fact be proved that the forward limit set + of any

orbit inside the square is the square.

The forward limit set + described in Example 8.14

is the square formed by the four saddle equilibria (8.28).

Note that in that example the limit set + consists of eight

different orbits, four equilibria and four orbits that “con-

nect” the equilibria. Orbits that connect two different equilibria (as → +∞ and → −∞)
are called heteroclinic orbits . The limit + in Example 8.14) is an example of a cycle chain.

This is a set of saddles connected by heteroclinic orbits to form a loop. With these concept

at hand we can state a second version of the Poincaré-Bendixson Theorem.

Theorem 8.5 (Poincaré-Bendixson Theorem, Version 2) Suppose the plane au-

tonomous system (8.25) has a finite number of equilibria. Let + be the forward

limit set of an orbit bounded as → +∞. Then one of the following alternatives
is true:

(a) + is an equilibrium

(b) + is a limit cycle

(c) + is a cycle chain.

These two alternatives also hold for the backward limit set − of an orbit

bounded as →−∞.
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In this section we have seen, for planar autonomous systems, that limit sets of orbits

are not necessarily equilibria, as they are for single autonomous equations. By going up

in dimension, from dimension 1 to 2, we create the possibility of new kinds of limit sets

and attractors, namely, limit cycles or cycle chains. In Section 8.6 we will see, perhaps

not surprisingly, that further increases in dimension (i.e., in the number of equations in the

system) can increase the complexity of limit sets even further.

8.5 Bifurcations & The Hopf Bifurcation Theorem

The phase plane portrait of a system might change in significant ways if the numerical values

of parameters appearing in the equations are changed. For example, the phase portrait of

the linear system

0 = + 

0 = −+ 

changes from a stable spiral to an unstable spiral as the value assigned to the parameter

 changes from negative to positive. The reason for this is that the eigenvalues of the

coefficients matrix (Jacobian) µ
 1
−1 

¶
are the complex numbers  = ±  with real part . Such a fundamental change in the phase

portrait of a system is called a bifurcation.

We studied bifurcations in the phase line portraits of single autonomous equations in

Chapter 3 (Section 3.1.4). We classified fundamental types of bifurcations, which for single

equations necessarily involve only equilibrium configurations. In this section we will see that

each of those types of bifurcations — blue-sky, pitchfork, and transcritical bifurcations — can

also occur in plane autonomous. For systems, however, we will also see that bifurcations can

involve entries other than equilibria, namely, cycles.

8.5.1 Local Bifurcations of Equilibria

We will not attempt a general theory of local equilibrium bifurcations in this course. In this

section we will look at an example of each of the three typical bifurcations that we studied

for a single autonomous equation in Chapter 3 — namely, blue-sky, pitchfork and transcritical

— as they occur in a plane autonomous system.

One way to construct a plane autonomous system example of any given bifurcation type

for a single autonomous equation, is as follows. Consider a planar autonomous system of the

form

0 = ( ) (8.31)

0 = −
In this kind of a system, the equations are uncoupled from one another and can be treated

separately.
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The second equation implies every solution satisfies () → 0 as  → +∞. As a result,
all orbits of the plane autonomous system (8.31) approach the -axis.

The equilibria, clearly, have the form ( 0) (i.e., they lie on the -axis) where  is an
equilibrium of the first equation in (8.31).

The -axis is invariant. That is to say, an orbit starting on the -axis at time 0 remains

on the -axis (for   0 and   0). This is because for an initial condition 0 = 0 we have,
from the second equation in (8.31) that () = 0 for all  What do orbits on the -axis do?
They are determined by the first equation in (8.31), which we note is a single autonomous

equation for  containing a bifurcation parameter  of the type we studied this type of

equation in Chapter 3. Any bifurcation in the phase line portrait of the first equation will

correspond to a bifurcation for the planar autonomous system (8.31).

For example, consider the system

0 = 2 −  (8.32)

0 = −
In Example 3.16 of Chapter 3 we saw that the equation 0 = 2 −  undergoes a blue-sky

bifurcation at the critical value 0 = 0. For   0 this equation has no equilibria and for
  0 it has two equilibria  = ±√. The phase line portrait of this equation appears on
the -axis in the phase plane portrait of (8.32).

Recall that all other orbits in the phase plane approach the -axis. An orbit can approach

the -axis as either a horizontal asymptote (as → +∞ or → −∞) or by approaching an
equilibrium on the -axis. The latter case can only occur is  ≥ 0 when the plane autonomous
has equilibria

( ) = (
√
 0) and (−√ 0)

The Jacobian

( ) =

µ
2 0
0 −1

¶
evaluated at the equilibrium

¡√
 0
¢
is

 (
√
 0) =

µ
2
√
 0
0 −1

¶


The roots of the characteristic equation are 1 = 2
√
  0 and 2 = −1  0 and therefore

this equilibrium is a saddle.

The Jacobian evaluated at the equilibrium
¡−√ 0¢ is

 (−√ 0) =
µ −2√ 0

0 −1
¶


The roots of the characteristic equation are 1 = −2√  0 and 2 = −1  0 and therefore
this equilibrium is a stable node.

In summary, for  less than the critical (bifurcation) point 0 = 0 there are no equilibria
and for  greater than 0 = 0 there is a saddle and a node The blue-sky bifurcation in the
phase line portrait of the first equation in (8.32) has given rise to this bifurcation involving

a saddle and a node in the phase plane of the system (8.32).
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This bifurcation scenario can be seen in Figure 8.10. It has the characteristics of the

blue-sky bifurcation of a single equation in that the equilibrium count goes from 0 to 2

as the bifurcation occurs and that one of the two equilibria is stable and one is unstable.

However, for a plane autonomous system, since the equilibria involved are a saddle and

a node, the bifurcation is more commonly called a saddle-node bifurcation (rather than a

blue-sky bifurcation).
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Figure 8.10. Phase portraits (8.32) with  = −1 and  = 1.

In Chapter 3 we drew bifurcation diagrams as a convenient graphical way to summarize

the bifurcations that occur for single equations. These diagrams show the equilibria plotted

against the parameter . We can also draw bifurcation diagrams for planar systems of

equations.

If, however, we plot equilibria against the parameter  we will have to draw in three

dimensions, since equilibria are now ordered pairs. While this certainly can be done, three

dimensional pictures are often difficult to draw and understand. Therefore, the usual practice

to plot a single representative of the equilibria against the parameter . For example, one

might plot just the -coordinate or just the -coordinate of the equilibria against . A

bifurcation diagram for system (8.32) appears in Figure 8.11.

0.5 1.0 1.5 2.0

-1

0

1

p

xe

unstable

stable

Figure 8.11. A plot of the  com-

ponent of the equilibria against

the parameter  for system (8.32).

In a similar fashion, using a system of the form (8.31),

we can provide illustrative examples of pitchfork and tran-

scritical bifurcations in planar autonomous systems by

choosing appropriate expressions for ( ) in (8.31).
Referring to Examples 3.17 and 3.18 in Chapter 3 the

choices ( ) =  − 3 and ( ) =  − 2 in (8.32)

produce systems with a pitchfork and a transcritical bifur-

cation at 0 = 0 respectively. We leave it to the reader for
the details. See Exercises 8.43 and 8.44. We instead give

an application that involves transcritical bifurcations.

Example 8.15 The system

0 = (− )−  (8.33)

0 = (1− 2)  − 



282 CHAPTER 8. NONLINEAR SYSTEMS

arises in competition theory. This system describes the

dynamics of two populations each of which, when isolated from one another, grow according

to the logistic equations

0 = (− )

0 = (1− 2) 

but when interacting each has negative effect on the other’s per capita growth rates.

For example, when the two populations are interacting, population  negatively effects the

per capita growth rate 0 of population  by an amount proportional to its population size

. This gives rise to the term − in the first equation of system (8.33). A similar effect of
population  on the per capita growth rate of population  gives rise to the same term in the

second equation of the system.

The parameter   0 is positive. It is the carrying capacity (attractor equilibrium) of
the  population when the  population is absent. Note that the carrying capacity of the 

population in the absence of the  population is fixed, in this example, at  = 12.
The equilibrium equations

(− )−  = 0

(1− 2)  −  = 0

yield four equilibria

( ) = (0 0)  ( 0) 

µ
0
1

2

¶
and

µ
2

µ
− 1

2

¶
 1− 

¶
 (8.34)

The first equilibrium represents the absence of both species. The second and third equilibria

represent the absence of one population and the presence of the other. The fourth equilibrium

allows for the coexistence of the two competing populations (provided its components  and

 are both positive) and it is to this equilibrium that we turn our attention.

In this application only equilibria and orbits with non-negative values of  and  are

relevant (since they denote population numbers or densities). The first three equilibria in

(8.34) are therefore relevant in applications for all   0 values, while the fourth equilibrium
is relevant if and only if 12 ≤  ≤ 1.
Note when  = 12 that the third and fourth equilibria in (8.34) coincide; otherwise they

are distinct equilibria. This intersection of the two equilibria is a transcritical bifurcation (see

Chapter 3). Another transcritical bifurcation occurs at  = 1 where the second and fourth
equilibrium in (8.34) coincide. See Figure 8.12.

In Example 8.15 we dealt only with the existence and bifurcations of equilibria for the

competition system (8.33). Recall (Chapter 3) that it is typical for transcritical bifurcations

to exhibit an exchange of stability between the two crossing branches of equilibria. We can

investigate the stability properties of the bifurcating equilibria in Example 8.15 by use of

the Linearization Principle to see whether or not the Exchange of Stability Principle holds

true.
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Two transcritical bifurcations occur for system (8.34), one at  = 12 and the other at
 = 1. We will show here that the Exchange of Stability Principle holds at  = 12 and
leave it for the reader to investigate the bifurcation at  = 1 (Exercise 8.54).
The transcritical bifurcation at  = 12 involve the the third and fourth equilibria in

(8.34). The Jacobian of the system is

( ) =

µ
− 2−  −
− 1− 4 − 

¶


When the Jacobian is evaluated at the equilibrium ( ) = (0 12) we obtain the matrix



µ
0
1

2

¶
=

µ
− 1

2
0

−1
2
−1

¶
whose eigenvalues are  = −1 and − 12. If follows that

( ) =
¡
0 1

2

¢
is a

½
stable node if   1

2

saddle if 1
2
 

An analysis of the equilibrium ( ) =
¡
2
¡
− 1

2

¢
 1− 

¢
is a little more complicated,

but still algebraically manageable. The Jacobian at this equilibrium



µ
2

µ
− 1

2

¶
 1− 

¶
=

µ
1− 2 1− 2
− 1 −2 + 2

¶
whose eigenvalues of

1 =
1

2

³
−1 +

p
5− 12+ 82

´
2 =

1

2

³
−1−

p
5− 12+ 82

´


Are these eigenvalues real or complex? A little bit of algebra shows this about the expression

under the radical:
0  5− 12+ 82  1 if 1

2
   1

1  5− 12+ 82 otherwise.

Thus, eigenvalues are real. Moreover, the 2  0 for all   0 and

1  0 if 1
2
   1

1  0 otherwise.

It follows that

( ) =
¡
2
¡
− 1

2

¢
 1− 

¢
is a

⎧⎨⎩ saddle if   1
2

stable node if 1
2
   1

saddle if 1  
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Figure 8.12. A plot of the  equilibrium com-

ponent against the parameter  for system

(8.33).

One result of this analysis is that as  in-

creases through the critical value 0 = 12 (and
the third and fourth equilibria intersect) an ex-

change of stability occurs between these two

equilibria. See Figure 8.12.

In terms of the application to competition

theory, when   0 the extinction equilibrium

(0 12) is stable, a fact indicating that popu-
lation  goes extinct as  → +∞ Only when

 is increased greater than 0 can population

 survive, as indicated by the stability of the

fourth equilibrium in which the  component is

positive. (To strengthen these conclusions ob-

tained from local stability results supplied by

the Linearization Principle, one would need to

investigate the global phase portraits.)

In this section we looked at bifurcations involving equilibria. In the next section we

consider a new kind of bifurcation that involves cycles.

8.5.2 Hopf Bifurcation of Limit Cycles

An investigation of the bifurcation examples in the previous section reveals that at the bifur-

cation value  = 0 the equilibria are nonhyperbolic and, because of this, the Linearization

Principle fails to hold. Moreover, in these examples the equilibria at bifurcation are nonhy-

perbolic because one of eigenvalues of the Jacobian (evaluated at the equilibrium) equals 0.
This is characteristic of equilibrium bifurcations.

Another important type of bifurcation occurs when an equilibrium is nonhyperbolic be-

cause an eigenvalue of the Jacobian has zero real part, but is not equal to 0, that is to say,
an eigenvalue has the form  =   6= 0. Actually, since complex roots appear in conjugate
pairs, at such a nonhyperbolic equilibrium the eigenvalues are  = ±  6= 0. In such
a case, at the bifurcation point the linearization of the plane autonomous system at the

equilibrium is a center and, as a result, the Linearization Principle fails to hold.

Here is an example.

Example 8.16 The origin ( ) = (0 0) is an equilibrium of the planar autonomous

system

0 = +  − 3 (8.35)

0 = −+  − 3

The Jacobian evaluated at (0 0) is

(0 0) =

µ
 1
−1 

¶
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The roots of the characteristic polynomial are

 = ± .

By the Linearization Principle (0 0) is a stable spiral for   0 and an unstable spiral for
  0. The value 0 = 0 is therefore a bifurcation point. Furthermore, for  = 0 the origin
is nonhyperbolic (because Re = 0).
For   0 orbits near the origin spiral into the origin as → +∞. For   0, orbits near

the origin spiral away. Where do these orbits go? Are the unbounded as  → +∞? Figure
8.13 shows an example that indicates that these orbits are bounded as → +∞ and that the

limit set of these orbits is a cycle.

-2 -1 1 2

-2

-1

1

2

x

y

p = -0.5

-2 -1 1 2

-2

-1

1

2

x

y

p = 0.5

Figure 8.13. Sample direction fields and orbits of (8.35) for a negative and a

positive value of .

In Example 8.16, the equilibrium (0 0) of the plane autonomous system (8.35) loses

stability and a limit cycle is created as  increases through 0 = 0. This is an example of a
famous theorem — called the Hopf Bifurcation Theorem — concerning bifurcations that create

limit cycles. A full detailed statement of this theorem is too technical for the level of this

book. Roughly speaking, however, the theorem says the following.

Theorem 8.6 (Hopf Bifurcation Criteria). Suppose an equilibrium ̃ () of the
system

0 = (  )

0 = (  )

loses stability as the parameter  passes through a critical value 0 (increasing

or decreasing) and does so because a pair of complex conjugate eigenvalues

() = ()± ()

of the Jacobian evaluated at the equilibrium crosses transversely from the left to

the right half complex plane (or vice versa). By this is meant

 (0) = 0 (0) 6= 0 



¯̄̄̄
0

6= 0 (8.36)
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Then5 limit cycles bifurcate from the equilibrium at  = 0. These limit cycles

exist for  (near and) either greater than or less than 0. The cycles encircle

the equilibrium, have amplitudes that shrinks to zero and periods that approach

2(0) as → 0.

Remark 5. It is also possible to determine, by means of formulas too complicated

for this book (that involve the technical condition mentioned in the footnote), whether the

bifurcating limit cycles are stable (i.e., attract all nearby orbits as → +∞) or unstable (do
not attract all nearby orbits) and whether they exist for   0 or for   0. In practice,

one often uses the Hopf Bifurcation Criteria (8.36) to locate possible Hopf bifurcation points

and then relies on computer examples to determine whether limit cycles really exist and are

stable or unstable.

For the system (8.35) we have () =  and () = 1 and the Hopf criteria (8.36) are
satisfied with 0 = 0. The computer generated examples in Figure 8.13 corroborates that a
bifurcation to a stable limit cycle occurs at this value of .

Example 8.17 The system

0 = 1− (+ 1)+ 2 (8.37)

0 = − 2

is an example of a model for a idealized chemical reaction called the Brusselator reaction. In

this system  and  are chemical concentrations and   0 is a positive constant.
We can algebraically solve the equilibrium equations

1− (+ 1)+ 2 = 0

− 2 = 0

to find the equilibrium ( ) = (1 ). (Hint: add the two equations.) The Jacobian

( ) =

µ −− 1 + 2 2

− 2 −2
¶

evaluated at the equilibrium is

(1 ) =

µ
− 1 1
− −1

¶


and has eigenvalues

() =
1

2
(− 2)± 1

2

p
 (− 4)

which are complex if   4 in which case we write

() =
1

2
(− 2)± 1

2

p
 (4− )

5There is another technical condition needed which we ignore.
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The real part () = (− 2) 2 and imaginary part () =p (4− )2 satisfy the criteria
(8.36) with 0 = 2. The graphs in Figure 8.14 indicate that a Hopf bifurcation of stable limit
cycles occurs at 0 = 2.
In terms of the application, we find that the chemical concentrations will equilibrate if

  2 but will settle into sustained periodic oscillations if   2.
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5
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y

p = 1.5
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5

6

x

y

p = 3

Figure 8.14. These two sample direction fields and orbits of the Brusselator

system (8.37) show the a stable spiral equilibrium for   2 and an unstable
spiral equilibrium encircled by a stable limit cycle for   2.

We have seen that bifurcation diagrams provide a useful way to summarize equilibrium

bifurcations that occur in a system. To include Hopf bifurcations in such a graph we need

to devise a way to “plot” a cycle in the diagram. One way to do this, is to plot both the

maximum and the minimum of one component of the cycles (say, the  component) against

the parameter value . Figure 8.15a shows an example of how a Hopf bifurcation would

appear in such a plot. One must indicate on such a graph, or in its caption, that the plot

represents a cycle, so that the plot is not mistaken for a pitchfork bifurcation of equilibria.

Another way to plot a Hopf bifurcation is shown in Figure 8.15b. In this plot, all values

(i.e. the range) of one component of the cycle are plotted above the corresponding value of

 Since these values will cover an entire interval of numbers ranging from the maximum to

the minimum of the component, the plot appears as a vertical line segment lying above the

corresponding value of .

p
p0

xe

x (b)

xmin

xe

xmax

p
p0

x (a)

Figure 8.15. (a) The maximum and the minimum of the  component of the

cycle are plotted. (b) All values of the  component of the cycle are plotted.
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8.6 Higher Dimensional Systems

As the number of equations in a system of differential equations increases, the properties

of solutions and orbits can become more complicated. As we have seen, the solutions of a

single autonomous equation are monotonic and bounded orbits approach an equilibrium as

→ +∞. We have also seen that bounded orbits of systems of two autonomous equations do
not, however, always approach equilibria; solutions can oscillate and orbits approach limit

cycles or cycle chains. In moving from systems of one to systems of two equations, i.e., by

moving from one to two dimension phase space, we found that solution and orbit properties

become more complex. In particular, the list of possible attractors increases from one type

— equilibria — to three types — equilibria, cycles, and cycle chains.

We should, then, expect more complexity, and a longer list of possible attractors, to

arise if we move up to three and higher dimensional systems. And this indeed occurs. It

is possible for orbits in three or more dimensions to approach attractors that are none of

the three we encountered in two dimensional systems. Moreover, attractors in even three

dimensional systems can be so irregular and complex that they are called “chaotic”. The

move from two to three dimensions is significant in that we can no long provide a short list

of possible attractors with easily tractable characteristics.

So of the analytic tools we’ve studied can be extended to higher dimensional systems.

The analysis of equilibria, by means of the Linearization Principle, is the most basic tool.

the Hopf bifurcation Theorem for limit cycles also holds in higher dimensions. On the other

hand, the analytic study of more complex solutions and exotic attractors is difficult, and for

their investigation one relies a great deal on computer explorations.

8.6.1 The Linearization Principle

In 1963 E. N. Lorenz, a meteorologist studying the dynamics of a layer of fluid heated from

below (as part of his study of atmospheric weather patterns), investigated the nonlinear

system of three first order equations

0 =  ( − )

0 = −  −  (8.38)

0 = − + 

The system contains three positive parameters:  (the Prandtl number),  (the Rayleigh

number), and  (the aspect ratio).

Lorenz investigated the dynamics of solutions of (8.38) for values of  considerably larger

than 1 and found that some very complicated orbits can result. Although it was later shown
that this system is an accurate approximation to the original fluid dynamic problem only

for Rayleigh numbers  near 1, the Lorenz equations (8.38) have become a prototypical
mathematical example of a system with a so-called “strange” or “chaotic” attractor. In this

section, however, we will only look at the equilibrium solutions of the Lorenz system. We’ll

have a look at a strange attractor for this system in Section 8.6.2.

A solution of the system (8.38) is a triple of functions ̃ () = col ( ()   ()   ()) for
which the points (() () ()) define an orbit in three dimensional Euclidean space (called
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phase space). For this reason, we say (8.40) is a three dimensional system. More generally,

a system

01 = 1 (1     ) (8.39)

02 = 2 (1     )

...

0 =  (1     )

of  first order (autonomous) equations for  unknown functions

̃ () = col (1() 2() · · ·  ())

is an -dimensional system. An equilibrium solution is a constant solution

̃ = col (1 2 · · ·  )

whose components must satisfy the equilibrium equations

1 (1     ) = 0

2 (1     ) = 0

...

 (1     ) = 0

Example 8.18 A commonly studied special case of the Lorenz system (8.38) is

0 = 10( − ) (8.40)

0 = −  − 

0 = −8
3
 + 

This system arises from (8.38) by setting  = 10 and  = 83 and leaving only the one
parameter  unspecified. The equilibrium equations for this system are

10( − ) = 0

−  −  = 0

−8
3
 +  = 0

The first equation implies  = , which when substituted into the remaining equations yields

two equations

(− 1− )  = 0

−8
3
 + 2 = 0
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for two unknowns  and . The first of these equations implies

 = 0 or  = − 1
The first choice  = 0 and the second equation imply  = 0 and we have the equilibrium

(  ) = (0 0 0)

The second choice  = − 1 and the second equation imply 2 = 8 (− 1) 3. If 0   ≤ 1
the only equilibrium of the system (8.40) is the origin,

(  ) = (0 0 0)

On the other hand, if   1 there are three equilibria:

(  ) =

⎧⎪⎪⎨⎪⎪⎩
(0 0 0)³q

8
3
(− 1)

q
8
3
(− 1) − 1

´³
−
q

8
3
(− 1)−

q
8
3
(− 1) − 1

´
Thus, there is a pitchfork bifurcation of equilibria at the bifurcation value 0 = 1.

Suppose ̃ = col(1 2  ) is an equilibrium of the system (8.39). We obtained the

linearization of the system at the equilibrium from the Taylor approximation of

 (1     ) ≈
X

=1





¯̄̄̄
(1)

( − ) 

Namely, letting  =  −  we obtain the system of  linear equations

0 =
X

=1





¯̄̄̄
(1)



which is the linearization of (8.39) at the equilibrium (1 2  ). The coefficient matrix
of this linear system is the Jacobian

(1 2  ) =

⎛⎜⎜⎜⎝
1
1

1
2

· · · 1


2
1

2
2

· · · 2


...
...

...

1


2

· · · 


⎞⎟⎟⎟⎠
of the nonlinear system (8.39) in which all derivatives in this matrix are evaluated at the

equilibrium ̃ . That is to say, the coefficient matrix of the linearization is (1 2  ).
The × matrix (1 2  ) has  eigenvalues (if you count multiplicities) which are

the roots of the characteristic polynomial

det ((1 2  )− )
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of the coefficient matrix has degree . Here

 =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...
...

...

0 0 · · · 1

⎞⎟⎟⎟⎠
is the  ×  identity matrix. By the Fundamental Theorem of Algebra the characteristic

polynomial has  roots (allowing for complex roots and counting multiplicities); these roots

are the characteristic roots (or the eigenvalues) of the coefficient matrix.

The following theorem is the -dimensional generalization of Theorem 8.1 and embodies

the Linearization Principle for systems of arbitrary dimension. The stability definitions

given in Section 8.2 for planar autonomous systems extend straightforwardly to systems of

any dimension. The following theorem is sometimes referred to as the Fundamental Stability

Theorem.

Theorem 8.7 (The Linearization Principle) Suppose the point ̃ = (1 2  ) is
an equilibrium of the n-dimensional system (8.39).

If all eigenvalues of the Jacobian (1 2  ) have negative real parts, then
the equilibrium is (locally asymptotically) stable.

If at least one eigenvalue has positive real part, then the equilibrium is un-

stable.

Example 8.19 The Jacobian of the Lorenz system (8.40) is

(  ) =

⎛⎝ −10 10 0
−  −1 −
  −8

3

⎞⎠ 

For the equilibrium ̃ = col(0 0 0) the Jacobian

(0 0 0) =

⎛⎝ −10 10 0
 −1 0
0 0 −8

3

⎞⎠ 

has the cubic characteristic polynomial

det ( − (0 0 0)) =

µ
+

8

3

¶¡
2 + 11− 10+ 10¢

whose three roots

 = −8
3


1

2

³
−11±

p
121− 40 (1− )

´
are the eigenvalues of  (0 0 0). If   1 all three eigenvalues are real and negative. By
Theorem 8.7 the origin ̃ = col(0 0 0) is stable if   1.
If   1 then one root, namely

 =
1

2

³
−11 +

p
121− 40 (1− )

´


is positive and the origin is unstable.

Thus, at the pitchfork bifurcation point 0 = 1 the origin loses stability. See Figure 8.1.
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Figure 8.16. (a) Orbits of the Lorenz system (8.40) with  = 10 The equilibrium
(  ) = (0 0 0) is unstable. The two equilibria (  ) =

¡
2
√
6 2
√
6 9
¢

and
¡−2√6−2√6 9¢ are stable spirals. (b) A bifurcation diagram showing

the pitchfork bifurcation that occurs, using  as a bifurcation parameter, in the

Lorenz system (8.40) at 0 = 1.

When  = 1 in the preceding example,  = 0 is an eigenvalue and the origin is nonhy-
perbolic. As a result, the Linearization Principle (Theorem 8.7) does not apply. (This does

not mean the equilibrium is unstable. It simply means we cannot draw any conclusion from

the Theorem 8.7.)

In Example 8.19 the equilibrium ̃ = col(0 0 0) of the Lorenz system (8.40) loses sta-

bility as  increases through 1 The origin is the only equilibrium for   1 (Example 8.18),
but for   1 there are two additional equilibria, i.e., a pitchfork bifurcation occurs at  = 1.
It turns out that these two additional equilibria are stable for   1 but close to 1. See
Exercise 8.64. For  sufficiently large, however, each of these stable equilibria loses stability

and all three equilibria are unstable! We will see an illustration in the next Example below.

Recall that the Hopf bifurcation criteria in two dimensions (Theorem 8.6) involve the

destabilization of an equilibrium as a parameter passes through a critical value. The desta-

bilization is caused by a pair of complex conjugate eigenvalues whose real part changes sign.

At the critical parameter value the complex eigenvalues have the form  = ±  6= 0.
This indicator of a possible Hopf bifurcation. to a limit cycle (and the Hopf Bifurcation

Theorem) remains valid in higher dimensions. These Hopf criteria involve a pair of complex

eigenvalues, even though in higher dimensions there will be more eigenvalues.

Example 8.20 In Exercise 8.65 the reader is asked to show, by means of the Linearization

Principle, that the equilibrium ̃ = col(0 0 0) of the system

0 = 2+ 2 − 2 − 1

10
2

0 =  −  −  (8.41)

0 =
1

5
(− )
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is unstable for all  In this example we are interested in other equilibria of this system. We

consider two cases:  = 12 and 1.
For  = 12 the system has two other equilibria (found by solving the equilibrium equations

with the help of a computer or calculator)

E1 : (  ) = (1159 − 02897 1159)
E2 : (  ) =

¡−2589 6472× 10−2 − 2589¢ 
The eigenvalues of the Jacobian

(  ) =

⎛⎝ 2− 2 − 1
5
 2− 2 0

− −1−  
1
5

0 −1
5

⎞⎠
evaluated at each these equilibria in turn are (found with the aid of a computer or calculator)

E1 :  ≈ −1211 and − 02100± 04216
E2 :  ≈ 1729 2085 and − 3717× 10−2.

Therefore, by the Linearization Principle, we see that

for  =
1

2
E1 is stable and E2 is unstable.

For  = 1 the system has two equilibria

E1 : (  ) = (5844 08540 5844)

E2 : (  ) = (−68443 1171 − 6844) 

The eigenvalues of the Jacobian evaluated at these equilibria are

E1 :  ≈ −8035 and 5684× 10−2 ± 04259
E2 :  ≈−7392× 10−2 and 3372 4± 3482.

Therefore, by the Linearization Principle we see that

for  = 1 E1 is unstable and E2 is unstable.

As  is increased from 12 to 1, the equilibrium E2 remains unstable. The equilibrium

1, however, loses stability because the real part of a complex pair of characteristic roots

changes from negative to positive. This suggests a Hopf bifurcation might have occurred at

some critical value of  somewhere between 12 and 1 The existence of a limit cycle when
 = 1 is corroborated by the computer simulations shown in Figure 8.17.
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Figure 8.17. (a) Two orbits of the three dimensional system (8.41) with  = 12
are shown approaching the stable equilibrium 1. (b) For  = 1 there exists a
limit cycle, which is shown approached by an orbit starting near the unstable

equilibrium 1.

8.6.2 Strange Attractors and Chaos

Orbits of systems consisting of three or more equations can be very complicated. Bounded

orbits can approach unusual sets in phase space that are neither equilibria or cycles. Solutions

can exhibit such irregular oscillations that they are often called “chaotic” and attractors can

be so exotic that they are called “strange attractors”. These are generic terms and many

different formal definitions of these concepts are available. A mathematical study of these

kinds of solutions is usually very difficult. In this section we will look briefly at only one

example of an exotic chaotic solution, using the computer as an aide. The example comes

from the Lorenz system (8.40).

We saw in Example 8.19 that when   1 the point ̃ = col(0 0 0) is the only equilibrium
of the Lorenz system (8.40) and that this equilibrium is (locally asymptotically) stable. For

  1 the origin is unstable and there are two additional equilibria (see Example 8.18), both
of which are (locally asymptotically) stable for  near 1 (see Exercise 8.64). As  increases
these two equilibria become unstable through a Hopf bifurcation to limit cycles which, in

turn, themselves destabilize as orbits and their attractors become more complicated.

For example, Figure 8.18 shows part of the attractor when  = 28. This attractor is a
double winged looking “surface” whose two wings are centered on the two (unstable) of the

equilibria. An orbit on this surface moves in a complicated manner. It circles around one of

the wings several times before embarking on an excursion to the other wing, around which

it then circles before returning to the first branch, and so on indefinitely. These episodic

excursions occur irregularly and the number consecutive circuits flown around each wing

varies unpredictably.
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The irregular nature of the oscillations in the components  ()   () and  () of the orbit
in Figure 8.18 is seen in Figure 8.19. This kind of solution is called chaotic. An important

feature of chaos is that solutions whose initial conditions are very close together do not remain

close together as  increases. This divergence of solutions (or orbits) that start arbitrarily

close together is called sensitivity to initial conditions. See Figure 8.20. This property is a

hallmark of chaos and has important consequences in applications. It means that small errors

or perturbations in initial conditions result in drastically different long term predictions.

Given that errors in measuring initial conditions and/or external disturbances are inevitable

in applications, this property raises serious questions concerning the ability to make long

term predictions in such systems.
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Figure 8.19. The   and  components of the orbits in Figure 8.18 show irregular

oscillations.
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Figure 8.20. Two solution triples of the Lorenz system (8.40) with  = 28
with slightly different initial conditions. For   30 the solutions have lit-
tle in common. (a) Initial condition (  ) = (1 1 1) (b) Initial condition
(  ) = (10001 1 1)

8.7 Chapter Summary

In this chapter we studied nonlinear systems of autonomous equations. We studied tech-

niques used to determine the stability properties of equilibria and learned methods that aid

in the construction of phase portraits. The Linearization Principle (Theorems 8.1 and 8.7

and Theorem 8.1) relates the phase portrait near an equilibrium to that of the linearization

at the equilibrium. The eigenvalues associated with the coefficient matrix of the linearization

(i.e., the eigenvalues of the Jacobian of the system evaluated at the equilibria) determine the

nature of the phase portrait in a neighborhood of the equilibrium (provided it is hyperbolic).

We saw how the bifurcation scenarios for equilibria that we classified for single autonomous

equations in Chapter 3 (blue-sky or saddle-node, pitchfork, and transcritical) occur in planar

autonomous systems as well. Unlike the phase line portrait of a single autonomous equation,

however, the global phase portrait of a system is not easily determined from the local phase

portraits near equilibria. Poincaré-Bendixson theory provides techniques for constructing

the global phase plane portrait. Moreover, this theory classifies possible attractors into only

three types: equilibria, cycles, and cycle chains. Unfortunately, Poincaré-Bendixson theory

does not extend to systems of dimension three and higher. Another technique for analyzing

cycles, the Hopf Bifurcation Theorem, does extend to higher dimensions. We saw, moreover,

that in three or higher dimensions attractors are not necessarily of the three types allowed

in Poincaré-Bendixson theory, but can be considerable more complicated.
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8.8 Exercises

Exercise 8.1 Use a computer or calculator to help find all equilibria of the following systems

and higher order equations.

(a)

½
0 = − −

0 = − 

(b)

½
0 =  − 1

2−
0 = 1− 3−2

(c)

½
0 = ln

¡
1

1+22

¢− 

0 = −3− 4
(d)

½
0 = 3

1+2
− 1

0 =  − 2

(e) 00 + 20 + − = 1
4

(f) 00 + − cos = 0

Exercise 8.2 In the systems and equations below,   0 is a positive constant. Use geomet-
ric methods to study the equilibria. Without solving the equilibrium equations algebraically,

determine those values of  for which there are no equilibria and those for which there are

equilibria. In the latter case, determine how many equilibria there are.

(a)

½
0 = 2 + 2 − 2

0 = (− 3)2 + 2 − 4
(b)

½
0 = 2 + 2 − 2

0 = +  − 1
(c)

½
0 = − 

0 = 6+  − 82 + 23

(d)

½
0 =  + 2 − 2

0 = −+ 1



(e) 00 + 20 + − −  = 0
(f) 00 + + 

−1 = 0

Exercise 8.3 Find all equilibria for the chemostat equations

0 = ( − ) − 1




+ 


0 =


+ 
 − 

In these equations all coefficients are positive constants.

For each of the systems and higher order equations below:

(a) Find all equilibria.

(b) Calculate Jacobian at each equilibrium.

(c) Apply Theorem 8.1, if possible, to determine the stability or instability of each equi-

librium.

(d) Apply Theorem 8.2, if possible, to determine the stability of each equilibrium.



298 CHAPTER 8. NONLINEAR SYSTEMS

Exercise 8.4

½
0 = − 2

0 = − 

Exercise 8.5

½
0 =  (2− )
0 = 2 +  − 8

Exercise 8.6

½
0 =  (1− − )
0 =  (2− − 4)

Exercise 8.7

½
0 =  − 

0 = −+ 

Exercise 8.8

½
0 = 1− 2 − 2

0 = − 

Exercise 8.9

½
0 = − 2

0 = 1− 2 + 

Exercise 8.10 00 + 0 + sin = 0

Exercise 8.11 00 + 0 + − 3 = 0

Exercise 8.12 00 + 0 + 3 = 0 where  and  6= 0 are constants (Duffing’s equation)
Exercise 8.13 00 +  sin = 0, where  and  are positive constants (the frictionless

pendulum equation)

Exercise 8.14 Consider the nonlinear system

0 =
µ
3

2
− − 2

¶


0 =
µ
−1
4
+ 

¶


This is an example of a predator-prey system in which  is the density of prey and  is the

density of predator.

(a) Find all equilibria.

(b) Calculate the Jacobian and evaluate it at each equilibrium.

(c) Determine the stability of each equilibrium.

Exercise 8.15 Consider the nonlinear system

0 = − −

0 = − 

(a) Find numerical approximations to all equilibria.

(b) Calculate the Jacobian and evaluate it at each equilibrium.

(c) Determine the stability of each equilibrium.
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Exercise 8.16 Show both roots of the quadratic 2 + +  have negative real parts if and

only if   0 and   0.

Exercise 8.17 Show if either   0 or   0 then at least one root of the quadratic 2 +
+  has a positive real part.

Find the equilibria of the following systems and determine whether they are hyperbolic or

nonhyperbolic. Determine the phase portrait in the neighborhood of all hyperbolic equilibria.

Exercise 8.18

½
0 = − 2

0 = − 

Exercise 8.19

½
0 =  (2− )
0 = 2 +  − 8

Exercise 8.20

½
0 =  (1− − )
0 =  (2− − 4)

Exercise 8.21

½
0 =  − 

0 = −+ 

Exercise 8.22

½
0 = 1− 2 − 2

0 = − 

Exercise 8.23

½
0 = − 2

0 = 1− 2 + 

Exercise 8.24 Consider the predator-prey system

0 =
µ
3

2
− − 2

¶


0 =
µ
−1
4
+ 

¶


(a) Find all equilibria.

(b) Calculate the Jacobian matrix ( )
(c) Which equilibria are hyperbolic?

(d) Determine the phase portrait in the neighborhood of each equilibrium.

Exercise 8.25 The system

0 = 

0 = −− 
¡
2 − 1¢ 

is equivalent to the second order van der Pol equation. The only equilibrium is ̃ = col(0 0)
(a) Calculate the Jacobian matrix at (0 0).
(b) Determine the phase portrait in the neighborhood of (0 0) Identify any non-hyperbolic

cases. Your answer will depend on the coefficient .
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Exercise 8.26 Find the equilibria of the nonlinear system in Example 8.12.

Exercise 8.27 The general chemostat model equations are

0 = ( − ) − 1




+ 


0 =


+ 
 − 

All coefficients are positive constants. When  6=  there are two equilibria

̃ = ( ) =

½
( 0)¡


− 

¡
 − 

−
¢

¢ 

In applications only non-negative solutions are of interest. Therefore, assume

   and  


− 


(If  = (− ) then the second equilibrium coincides with the first.)

(a) Calculate the Jacobian matrix ( ) for each equilibrium ̃ = col ( ).
(b) Determine the phase portrait near each equilibrium. Identify any nonhyperbolic cases.

(Hint: use the trace/determinant criteria.)

Use the Poincaré-Bendixson Theorems, the analytic tools in this section, and a computer

sketch of the direction field, to determine the limit set + of orbits of the following plane

autonomous systems.

Exercise 8.28

½
0 = −+  − 2

0 = − 2

Exercise 8.29

½
0 = −− 2

0 = −2 − 2

Exercise 8.30

½
0 =  − 3

0 = −+  − 3

Exercise 8.31

½
0 = −  −  (2 + 2)
0 = 2−  (2 + 2)

Exercise 8.32

½
0 = 1− − 2

0 = −2 − 3

Exercise 8.33

½
0 = −2
0 = 2−  − 2
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Exercise 8.34 Consider the system

0 = +  − 
¡
2 + 2

¢
0 = −+  − 

¡
2 + 2

¢


(a) Show ̃ = col(0 0) is the only equilibrium.
(b) Use a computer to explore the phase portrait of the system. Formulate a conjecture

about nonequilibrium orbits. Does there appear to be a limit cycle?

(c) Calculate the Jacobian and determine the phase portrait in the neighborhood of the

equilibrium (0 0). Does this agree with your observations in (b)?
(d) The distance from the equilibrium ̃ = col(0 0) to a point ̃ () = col(() ()) on

an orbit is () =
p
2() + 2(). Show () satisfies the first order differential equation

0 = (1− 2) . Draw the phase line portrait of this equation for  ≥ 0.
(e) Show the polar angle () = tan−1 (()()) satisfies 0 = −1.
(f) Use (d) and (e) to draw the phase plane portrait of the system. Compare the result

with your observations in (b).

Exercise 8.35 Consider the system

0 = +  − 
¡
2 + 2

¢
0 = −+  − 

¡
2 + 2

¢


where  is a constant.

(a) Show ̃ = col(0 0) is the only equilibrium of the system.

(b) Use a computer to explore the phase portrait of the system for selected values of  both

positive and negative. Formulate a conjecture about nonequilibrium orbits and limit cycles.

(c) Calculate the Jacobian and determine the phase portrait in the neighborhood of the

equilibrium ̃ = col(0 0). Does this agree with your observations in (b)?
(d) The distance from the equilibrium ̃ = col(0 0) to a point ̃ () = col(() ()) on

an orbit is () =
p
2() + 2(). Show () satisfies the first order differential equation

0 = (− 2) . Draw the phase line portrait of this equation for  ≥ 0.
(e) Show the polar angle () = tan−1 (()()) satisfies 0 = −1.
(f) Use (d) and (e) to draw the phase plane portrait of the system. How does the portrait

depend on ? Compare your result with your observations in (b).

Exercise 8.36 Consider the planar autonomous system

0 = (1− − )

0 = (2− − ) 

(a) Show the -axis and -axis consist of orbits.

(b) Show orbits starting in the first quadrant remain in the first quadrant for all .

(c) Show there are no cycles in the first quadrant.

(d) What happens to a bounded orbit as → +∞? Justify your answer.
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Exercise 8.37 Consider the planar autonomous system

0 = −
 0 =  − 

(a) Show the -axis and the -axis consist of orbits.

(b) Show orbits starting in the first quadrant remain in the first quadrant for all .

(c) Show there are no cycles in the first quadrant.

(d) What happens to a bounded orbit as → +∞? Justify your answer.

Exercise 8.38 Apply the Linearization Principle to each of the six equilibria of the system

(8.27). Classify the hyperbolic equilibria and identify any nonhyperbolic equilibria.

Exercise 8.39 The distance from the origin (0 0) to a point ̃ () = (() ()) on an orbit
is () =

p
2() + 2(). If () is decreasing at , then the orbit is moving toward the origin

at the point (() ()). A calculation shows

()


=

0 + 0


=

( ) + ( )




One way to show orbits are (forward) bounded as → +∞ is to show they cannot move away

from the origin, at least at all points far away from the origin. Thus, if ( )+( ) ≤ 0
for  sufficiently large (say for  greater than some positive number 0), then orbits are

(forward) bounded. Use this test to show that the orbits of the following systems are bounded

as → +∞.
(a)

½
0 = −− 2

0 = −2 − 2

(b)

½
0 = −+  −  (2 + 2)
0 = −− 2 −  (2 + 2)

(c)

½
0 = +  −  (2 + 2)
0 = −+  −  (2 + 2)

(d)

⎧⎨⎩ 0 = +  −  (2 + 2)
0 = −+  −  (2 + 2)
where  is a real number

Exercise 8.40 The following is called the Dulac Criterion. Suppose there exists a func-

tion  = ( ) such that



() +




() 6= 0

for all ( ) in a simply connected region  of the plane.6 Then the planar autonomous

system

0 = ( ) 0 = ( )

has no cycle in .

6A simply connected region in the plane is one with no holes in it. In a simply connected domain a closed

loop can encircle no point lying outside of the domain.
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(a) Use the Dulac Criterion with  = 1 to prove part (c) in Exercise 8.36.
(b) Use the Dulac Criterion with  = 1 to prove part (c) in Exercise 8.37.
(c) Use the Dulac Criterion with  = 1 to show the system

0 = − 2 + 3

0 = 3 − 2 + 3

has no cycle in the circle of radius 2 centered at the origin.
(d) Use the Dulac Criterion with  = 1 to show the system

0 = +  − 2 − 2 + 2

0 =  − 22 + 2

has no cycle inside the ellipse 22 + 2 + 2 = 2.

Exercise 8.41 An Extended Dulac Criterion states that if




() +




() 6= 0

for some function  = ( ) and all  and , then an orbit of 0 = ( ) 0 = ( )
is either unbounded or approaches an equilibrium as  → +∞.7 Apply this criterion to the
systems below. HINT: First try  = 1 then, if that fails to work, try  =  for some

appropriate numbers  and .

(a)

½
0 = −− 2

0 = −2 − 2

(b)

½
0 = −+  − 

0 = 2−  + 1
2
2

(c)

½
0 = +  + 23
0 = 1− 1

2
 + 2

(d)

½
0 = 1 + 2 − 2

0 = −3 + 2
3
3

(e)

½
0 = + 2 + 3

0 = −+  + 2

(f)

½
0 = −− 2 − 3

0 = −  − 2

Exercise 8.42 (For readers who have studied multi-variable calculus). Use Green’s Theorem

to prove (by a contradiction argument) the Dulac Criterion in Exercise 8.40.

Exercise 8.43 Find all equilibria of the system

0 = − 3

0 = −
Apply the Linearization Principle to classify each equilibrium. Describe the phase plane

portrait, and how it depends on the parameter . Show how a pitchfork bifurcation occurs in

this system.

7C.C. McCluskey and J.S. Muldowney, SIAM Review 40, No. 4 (1998), 931-934
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Exercise 8.44 Find all equilibria of the system

0 = − 2

0 = −

Apply the Linearization Principle to classify each equilibrium. Describe the phase plane

portrait, and how it depends on the parameter . Show how a transcritical bifurcation occurs

in this system.

Classify the bifurcations that occur in the following systems with parameter .

Exercise 8.45

½
0 = − 2 − 2

0 = 1− − 

Exercise 8.46

½
0 = [(− 1)2 + 2 − ] (2 + 2)
0 =  (2 + 2)

Exercise 8.47

½
0 = (− 22 − 2) [(− 1)2 + 2]
0 = (− 1) [(− 1)2 + 2]

Exercise 8.48

½
0 =  + (1− ) (2− )
0 =  − 2

Exercise 8.49

½
0 = − 

0 =  − 

Exercise 8.50

½
0 = (− 2) (− )
0 = ( + ) (− )

Exercise 8.51

½
0 =  − ln
0 = − 

Exercise 8.52

½
0 =  − −

0 =  + 2 − 

Exercise 8.53 The nonlinear, second order equation 00 + (− cos) sin = 0,   0, is
called the rotating pendulum equation. It models the motion of a swinging pendulum whose

pivot rotates in a circle;  is the angle made by the pendulum with the vertical. Note  = 0 is
an equilibrium for all . Does this equilibrium undergo a bifurcation as a function of   0?

Exercise 8.54 Show a transcritical bifurcation of equilibria and an exchange of stability

occur in the competition system (8.33) at the critical value 0 = 1.

Exercise 8.55 Apply the Linearization Principle to the equilibrium ̃ = col(0 0) of the
competition system (8.33).
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For each of the systems below show the equilibrium ̃ = col(0 0) undergoes a Hopf
bifurcation by supplementing the criteria (8.36) with computer sketches of the phase plane

portrait. Identify the bifurcation value 0

Exercise 8.56

½
0 = 1 + (− 1)+ (− 2) − 

0 = +  − 3

Exercise 8.57

½
0 = 1− +

0 = 1− 2 − −+

Exercise 8.58

½
0 = +  −  (2 + 2 − 1) (2 + 2 − 4)
0 = −3+  −  (2 + 2 − 1) (2 + 2 − 4)

Exercise 8.59

½
0 = + 2 +  (2 + 2 − 1)
0 = −+  + 3 (2 + 2 − 1)

Exercise 8.60

½
0 =  − 3

0 = −2−  − 3 − 2

Exercise 8.61

½
0 = 1 + −  + 

0 = −−  ln (+ 2 + 2)

Exercise 8.62 The origin (  ) = (0 0 0) is an equilibrium of each of the systems below.
Find the Jacobian of the system and apply the Linearization Principle to determine the

stability of the origin (if possible).

(a)

⎧⎨⎩ 0 =  (1− )−  − 

0 = − + 

0 = − + 

(b)

⎧⎨⎩ 0 = − −

0 =  − −

0 =  − −

(c)

⎧⎨⎩ 0 = −2 − 2 − 

0 =  −  − 2 − 2

0 = − − 2 −  − 2

(d)

⎧⎨⎩ 0 = sin (+  + )
0 = ln (1 + 2+  − )
0 = − + 2 + 2

(e)

⎧⎨⎩ 0 = −1 + −2

0 = −
0 = −1 + −2

(f)

⎧⎨⎩ 0 = − sin (5− )
0 = −2 +  − 2

0 = − 5−
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Exercise 8.63 Find the equilibria of the systems below and determine their stability prop-

erties by applying the Linearization Principle.

(a)

⎧⎨⎩ 0 = +  −  − 2

0 = 4 −  − 

0 = − 

(b)

⎧⎨⎩ 0 = +  −  − 2

0 = −4 −  − 

0 = − 

Exercise 8.64 Show the two equilibria

̃ = col
³p

8 (− 1) 3
p
8 (− 1) 3 − 1

´
̃ = col

³
−
p
8 (− 1) 3 −

p
8 (− 1) 3 − 1

´
of the Lorenz equations (8.40) are stable for   1 close to 1. (Hint Let  = () be the
characteristic root (eigenvalue) that equals 0 at  = 1 Show (1)  0.)

Exercise 8.65 . Use the Linearization Principle to show the equilibrium ̃ = col(0 0 0) of
the system (8.41) is unstable for all   0. (HINT: find the characteristic polynomial and
argue that it always has a positive root. You need not calculate this root, nor the other two

roots.)

Exercise 8.66 This exercise is a computer investigation of some bifurcations and chaos that

occurs in the three dimensional (Roessler) system

0 = − − 

0 = + 

0 = + (− )

with  = 57 and  = 02.
(a) Use a computer program to determine what orbits do as  → +∞ for values of 

ranging from 100 down to 02. Describe the bifurcations that occur. (A “bifurcation” here
means a significant change in what orbits approach as → +∞.)
(b) How would you describe the orbits when  = 02?

Exercise 8.67 (a) If ̃() = col ( ()   ()) is a solution of the planar autonomous system
(8.1) and if  is any real number, show the translation ̃( + ) = col(( + ),( + )) is
also a solution.

(b) Show a solution and any of its translates all give the same orbit in the phase plane.

(c) Prove the following: if two solutions ̃1() = col(1() 1()) and ̃2() = col(2() 2())
of a planar autonomous system have the same orbit, then each is a translate of the other.

(HINT. Pick any point ̃0 = col(0 0) on the common orbit. Then for some 1 and 2 we

have ̃1(1) = ̃0 and ̃2(2) = ̃0. Show ̃2() is a translate of ̃1() with  = 1 − 2.)
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Exercise 8.68 Suppose two orbits have a point ̃0 = col(0 0) in common. Prove the orbits
must therefore be identical. This fact shows different orbits cannot have a point in common

in the phase plane. (HINT. Let ̃1() and ̃2() be solutions that give the two orbits. Show
they are translates of each other. For some 1 and 2 we have ̃1(1) = ̃0 and ̃2(2) = ̃0.

Take  = 1 − 2.)

Exercise 8.69 Find the equilibria of the planar autonomous systems below. If it applies,

use the Linearization Principle to determine their stability properties.

(a)

½
0 = +  + 2 + 2

0 =  + 

(b)

½
0 = 2 − (− 1)2
0 = 1 + − 2

(c)

½
0 = − − 2

0 = −+ 2

(d)

½
0 =  − 2

0 = −+ 2

(e)

½
0 = −− 2

0 = − 22

(f)

½
0 = − 2

0 = − 22

Exercise 8.70 Find the equilibria of the planar autonomous systems below. Using  as a

parameter identify all equilibrium bifurcations.

(a)

½
0 = +  + 2 + 2

0 =  + 

(b)

½
0 = 2 − (− 1)2
0 = + − 2

(c)

½
0 = − 2

0 = + − 22

(d)

½
0 =  − 2

0 = −+ 2

(e)

½
0 = +  − 2

0 = −  + 22

(f)

½
0 = − 2

0 = − 22

(g)

½
0 = − 

0 = + − 2
(h)

½
0 = − 3 − 

0 = − + 2

Exercise 8.71 The origin ̃ = col(0 0) is an equilibrium of the systems below. For which

values of  do the Hopf bifurcation criteria (8.36) hold at ̃ = col (0 0)? Use a computer to
determine if stable limit cycles bifurcate or not. The coefficient  satisfies −1    1.

(a)

½
0 = − 2 −  sin (2 + 2)
0 = −  sin (2 + 2)
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(b)

½
0 = (− 2)+ (+ 5)  − 102
0 = −+ (+ 2)  − 102

Exercise 8.72 (a) Find all equilibria of the system

0 = (1− − 2)
0 = (1− 2− ) 

(b) Find the Jacobian of this system.

(c) Determine the local phase portrait in a neighborhood of each equilibrium (if possible).

Exercise 8.73 (a) Find the equilibria of the system

0 =  + 

µ
− 1

3
3
¶
   0

0 = −
(b) Find the Jacobian of this system and evaluate it at the equilibrium. Show the equilib-

rium is hyperbolic for all   0.
(c) Determine the local phase plane portrait near the equilibrium.

(d) Use a computer to study the phase plane portrait for selected values of  between 0
and 2. What do you conclude about the local phase portrait and stability of the equilibrium?
What do orbits do as → +∞?
(e) Use a computer to study the phase plane portrait in the case  = 0. What do orbits

do as → +∞. (HINT: be sure to use a sufficiently small step size.)
(f) If  = (),  = () is a solution pair of, show  = () solves the van der Pol

equation (8.7).

Exercise 8.74 (a) Show ̃ = col ( 0) is an equilibrium of the AIDS equations (8.4).

Find all other equilibria.

(b) Find the Jacobian of the system.

(c) Determine the phase portrait in the neighborhood of ̃ = col ( 0). (All coefficients
are positive.)

Exercise 8.75 The orbit of a (nonequilibrium) periodic solution pair of a planar autonomous

system (8.1) is a closed loop. The object of this exercise is to prove the converse. That is, if

the orbit of a solution is a closed loop, then the solution pair is periodic.

(a) Let ̃ () = col(() ()) be a solution pair of (8.1). Let  be any real number. Show
̃ (+ ) is also a solution of (8.1).
(b) Suppose the orbit associated with a non-equilibrium solution ̃ () = col(() ())

is self intersecting. That is, suppose there are two different values of , say 1  2, for

which col((1) (1)) = col((2) (2)). Show ̃ () = col(() ()) is periodic. (Hint. Let
 = 2−1 and use (a) and the Fundamental Existence and Uniqueness Theorem 4.1 to prove
̃(+ ) = ̃() for all .)
Since a non-equilibrium loop orbit is self intersecting it follows that it is associated with

a periodic orbit.
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Exercise 8.76 Use us a computer program to investigate the nonlinear system

0 = (1− )

0 = (−1 + )

Describe the orbits lying in the positive quadrant (i.e. the first quadrant   0,   0). Are
there any cycles? Any limit cycles? What does the Linearization Principle tell you about the

equilibrium ( ) = (1 1)?
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constant of integration, ix

critical point, 77, 142

cycle chain, 278

dependent solution pairs, 165

derivative test, 87

differential equation

autonomous, 56, 76

coefficients, 33

equivalent first order system, xii

first order, 1

linear, xiv, 33

linearization of, 89, 262, 290

order, xii

separable, 101

system, 131, 135

direction field, 143

doubling time, 63

Duffing equation, 148, 152, 250, 298

Dulac Criterion, 302

eigenpair, 194

eigenvalue, 193, 290, 291

eigenvector, 194

electric circuits, 234, 238, 252

equilibrium, 37, 164

equilibrium, 57, 77, 142

asymptotically stable, 126

center, 219

derivative test, 87

focus or spiral, 219, 268

geometric test, 86

hyperbolic, 87, 269

Jacobian associated with, 262

nonlinear systems, 258, 289

saddle, 268

shunt, 85

sink, 85

source, 85

stable, 126
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stable and unstable manifolds, 269

stable and unstable nodes, 268

saddle node, 215

stable and unstable nodes, 214

trivial, 210

equilibrium diagram, 93

equilibrium equation, 77, 258, 289

equivalent first order system, xii

Euler Algorithm, 14, 137

exchange of stability, 96

explicit algorithm, 20

Extended Fundamental Existence and Unique-

ness Theorem, 160

falling object, 41, 58, 76, 114, 119

focus, 268

food chain, 207

forcing function, 34, 157

friction, 3, 58

Fundamental Existence and Uniqueness The-

orem, 6, 133

for a linear equation, 44

for linear systems, 160

fundamental solution matrix, 166, 168, 181

normalized, 196

Fundamental Stability Theorem, 291

Fundamental Theorem of Stability, 257, 265

general solution

first order equations, 2

linear equation, 35, 37, 41

linear homogeneous systems, 167

linear systems, 161, 162

matrix form, 175

geometric test, 86

glucose/insulin regulation, 202

half life, 63

Hartman-Grobman Theorem, 267

harvesting, 46, 58, 63

heteroclinic orbit, 278

Heun’s Algorithm, 139

higher order equations, xii

HIV/AIDS, 100, 256

homeomorphism, 118

Hopf bifurcation, 279, 285, 292

hyperbolic, 56, 87, 269

implicit algorithm, 20

improper node, 221

Improved Euler Algorithm, 139

independent solution pairs, 165

initial value problem, 1, 133

isocline, 12

Jacobian matrix, 262

Legendre equation, 148, 250

limit cycle, 273

limit set of an orbit, 274

limiting velocity, 42, 58

linear equations, xiv, 33

autonomous, 56

general solution, 45

homogeneous, 34

hyperbolic, 56

nonhomogeneous, 34

non-hyperbolic, 56

particular solution, 45

superposition principle, 53

variation of constants formula, 45

Linear second order equation

Homogeneous, 168

Linear systems

Extended Fundamental Existence and Unique-

ness Theorem, 160

linear systems, 157

autonomous, 193

coefficient matrix, 159

coefficients of, 157

fundamental solution matrix, 166

general solution, 162, 167

particular solution, 174

simple, 210

linearization, 89, 262, 290

Linearization Principle, 89, 257, 269, 291

local attractor, 223

locally asymptotically stable, 223

logistic equation, 12, 76, 86, 89, 92, 103

Lorenz system, 257, 288, 294

equilibria of, 260

Lotka-Volterra competition equations, 152, 256
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Lotka-Volterra predator-prey equations, 152

Lyapunov stable, 223

Method of Undetermined Coefficients, 35, 47,

175, 180

Modified Euler Algorithm, 20, 139

neutrally stable, 223

Newton’s Law of Cooling, 44, 63, 119

node

stable, 214, 268

unstable, 214

unstable, 268

saddle, 268

stable and unstable manifolds, 269

non-autonomous, 13, 76

non-autonomous, 34

non-hyperbolic, 56

nonhomogeneous term, 157

nonlinear equations, 75

autonomous, 76

separable, 99, 101

normalized fundamental solution matrix, 196

nullcline, 144

orbit structure, 91

orbits, 84, 142, 257

heteroclinic, 278

limit cycle, 273

limit set, 274

orientation of, 142, 257

periodic or cycle or closed loop, 273

order of an equation, xii

order of convergence, 16, 21

parameters, x

perturbation method, 106, 108

pesticide, 239

phase line portrait, 59, 83

qualitative equivalence, 91

stable, 93

structure of, 91

phase plane portrait, 142, 210

(tr,det)-map, 225

center, 219

focus or spiral, 219

saddle node, 215

stable manifold, 214

stable node, 214

unstable manifold, 214

unstable node, 214

phytoplankton, 207

pine-oak forest, 235

pitchfork bifurcation, 94, 281

plane autonomous systems, 255

cycle chain, 278

Dulac Criterion, 302

equilibrium equations, 258

hyperbolic equilibrium, 269

initial value problem, 257

Jacobian matrix, 262

limit cycle, 273

linearization at an equilibrium, 262

Linearization Principle, 265, 269

saddle, 268

spiral or focus, 268

stable and unstable manifolds, 269

stable and unstable nodes, 268

Poincaré-Bendixson Theorem

Version 1, 274

Version 2, 278

population dynamics

exponential growth, 62

periodic environment, 7

segregation, 190

world population, 5

predator-prey, 256

predictor-corrector algorithm, 20

Putzer Algorithm, 195, 196

qualitative equivalence, 91, 118

qualitative methods, 75

radioactive decay, 38

radioactive tracer in blood cells, 239

Rayleigh equation, 150

repellor, 85

rest point, 77, 142

Roessler system, 306

rotating pendulum equation, 304

Runge-Kutta algorithm, 21
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saddle, 268

saddle node, 215

saddle-node bifurcation, 93, 281

sensitivity to initial conditions, 295

separable equations, 99, 101

Separation of Variables Method, 101

shunt, 85

simple harmonic oscillator, 158, 170

sink, 85

slope field, 10

grid method, 10

solution

chaotic, 294

definition of, 2

dependent, 165

equilibrium, 57

general, 2

independent, 165

interval of existence, x

numerical approximation of, 14, 136

pair, 131

particular solution, 45

solution set, 2

system, xi

solution matrix, 164

solution pair, 131

source, 85

spiral, 219, 268

spruce budworm equation, 90, 98

stability, 88

stable manifold, 214, 269

stable phase line portrait, 93

star point, 221

step size, 15, 137

strange attractor, 294

Superposition Principle, 53, 162

Taylor polynomial, 106

Trace-Determinant Map, 225

transcritical bifurcation, 96, 281

truncation error, 15

unstable, 223

unstable manifold, 214, 269

van der Pol equation, 134, 152, 256, 263, 272,

299

variable

dependent, x

independent, x

Variation of Constants Formula, 37

variation of constants formula, 45

general solution, 175

vector field, 143

zooplankton, 207
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Appendix A

Answers to Exercises

A.1 Preliminaries

EXERCISE 0.1. The equation is first order. This is because the first order derivative 0

appears in the equation and no higher order derivative appears in the equation.

EXERCISE 0.3. The equation is first order. This is because the first order derivative 0

appears in the equation and no higher order derivative appears in the equation.

EXERCISE 0.5. The equation is second order. This is because the second order derivative

00 appears in the equation and no higher order derivative appears in the equation.
EXERCISE 0.7. The equation is first order. This is because the first order derivative 0

appears in the equation and no higher order derivative appears in the equation.

EXERCISE 0.9. The equation is first order. This is because the first order derivative 0

appears in the equation and no higher order derivative appears in the equation.

EXERCISE 0.11. The equation is first order. This is because the first order derivative

0 appears in the equation and no higher order derivative appears in the equation.
EXERCISE 0.13. The equation is third order. This is because the third order derivative

000 appears in the equation and no higher order derivative appears in the equation.
EXERCISE 0.15.  () = −3 is a solution because

0 + 3 = −3−3 + 3−3 = 0
EXERCISE 0.17.  () = −−3 is a solution because

0 + 3 = −3 ¡−−3¢+ 3 ¡−−3¢ = 0
EXERCISE 0.19.  () = 2 is not a solution because

0 − 2 = 22 − 22 = 2(1− )2 6= 0
EXERCISE 0.21.  () = −72 is a solution because

0 − 2 = −72 (2)− 2
³
−72

´
= 0

EXERCISE 0.23.  () = −32 is a solution because

20 + 353 = 2
µ
−3
2
−52

¶
+ 3

¡
−32

¢53
= −3−52 + 3−52 = 0

315
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EXERCISE 0.25.  () = (− 1)−32 is a solution because

20 + 353 = 2
µ
−3
2

¶
(− 1)−52 + 3

³
(− 1)−32

´53
= 0

EXERCISE 0.27.  () = 32 is not a solution because

20 + 353 = 2
µ
3

2

¶
12 + 3

¡
32
¢53 6= 0

EXERCISE 0.29.  () = (− 2)−23 is not a solution because

20 + 353 = 2
µ
−2
3

¶
(− 2)−53 + 3

³
(− 2)−23

´53
= −4 (− 2)−53 + 3 (− 2)−109 6= 0

EXERCISE 0.31.  () = −2 is not a solution because

00 − 50 + 6 = 4−2 − 5(−2)−2 + 6−2 = 20−2 6= 0
EXERCISE 0.33.  () = 3 is a solution because

00 − 50 + 6 = 93 − 5(3)3 + 63 = 0
EXERCISE 0.35.  () = 52 is a solution because

00 − 50 + 6 = 202 − 5 ¡102¢+ 6 ¡52¢ = 0
EXERCISE 0.37.  () = 2 + 3 is a solution because

00 − 50 + 6 = ¡42 + 93¢− 5 ¡22 + 33¢+ 6 ¡2 + 3
¢
= 0

EXERCISE 0.39.

(a)  () = −5 is a solution because

0 + 5 = −5−5 + 5−5 = 0
(b)  () = 3−5 is a solution because

0 + 5 = −15−5 + 5 ¡3−5¢ = 0
(c)  () = 5−3 is not a solution because

0 + 5 = −15−3 + 5 ¡5−3¢ = 10−3 6= 0
EXERCISE 0.41.

(a)  () = −1 is a solution because

0 + 2 = − 1
2
+

µ
1



¶2
= 0
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(b)  () = 2−1 is not a solution because

0 + 2 = − 2
2
+

µ
2



¶2
=
2

2
6= 0

(c)  () = (− 2)−1 is a solution because

0 + 2 = − 1

(− 2)2 +
µ

1

− 2
¶2
= 0

EXERCISE 0.43.

(a)  () = ln  is a solution because

00 + 0 = 

µ
− 1
2

¶
+

µ
1



¶
= 0

(b)  () = 1 is a solution because

00 + 0 =  (0) + (0) = 0

(c)  () =  is not a solution because

00 + 0 =  (0) + (1) = 1 6= 0
EXERCISE 0.44.  () = 4 is a solution because

000 − 400 − 40 + 16 = 644 − 4 ¡164¢− 4 ¡44¢+ 164 = 0
EXERCISE 0.46.  () = 4 is a solution for any constant  because

000 − 400 − 40 + 16 = 644 − 4 ¡164¢− 4 ¡44¢+ 16 ¡4¢ = 0
EXERCISE 0.48.  () = 1

2
−2 is a solution because

000 − 400 − 40 + 16 = −4−2 − 4 ¡2−2¢− 4 ¡−−2¢+ 16µ1
2
−2

¶
= 0

EXERCISE 0.50.  () = 6 is not a solution because

000 − 400 − 40 + 16 = 2166 − 4 ¡366¢− 4 ¡66¢+ 16 ¡6¢
= 646 6= 0

EXERCISE 0.51.  () =  is a solution because

00 + 0 − 2 =  +  − 2 = 0
EXERCISE 0.53.  () = −2 = − is not a solution because

00 + 0 − 2 = − +
¡−−¢− 2− = −2− 6= 0
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EXERCISE 0.55. Yes, because

0 = 44 = 2
¡
4
¢− ¡−2−4¢ = 2− 

0 = −84 = −64 + ¡−24¢ = −6+ 

EXERCISE 0.57. Is a solution pair because

0 =  = 4
¡

¢
+ 3

¡−¢ = 4+ 3
0 = − = −2 ¡¢− ¡−¢ = −2− 

EXERCISE 0.59. Is not a solution pair because

0 =  6= 4 ¡¢+ 3 ¡¢ = 4+ 3
0 =  6= −2 ¡¢− ¡¢ = −2− 

EXERCISE 0.61. Is a solution pair because

0 = 62 = 4
¡
32

¢
+ 3

¡−22¢ = 4+ 3
0 = −42 = −2 ¡32¢− ¡−22¢ = −2− 

EXERCISE 0.63. Is a solution pair because

0 =  + 62

= 4
¡
 + 32

¢
+ 3

¡− − 22¢ = 4+ 3
0 = − − 42
= −2 ¡ + 32¢− ¡− − 22¢ = −2− 

EXERCISE 0.65. Is a solution pair for all 1 and 2 because

0 = 1
 + 62

2

= 4
¡
1

 + 32
2
¢
+ 3

¡−1 − 222¢ = 4+ 3
0 = −1 − 422
= −2 ¡1 + 322¢− ¡−1 − 222¢ = −2− 

EXERCISE 0.66.

Exercise 15. The exponential function  () = −3 is solution for all 
EXERCISE 0.67.

Exercise 21. The function  () = −72 is a solution for all .
Exercise 23. The function  () = −32 = 1

¡√

¢3
a solution for all   0

Exercise 25. The function  () = (−1)−32 = 1 ¡√− 1¢3 a solution for all   1
EXERCISE 0.68. Let  = 0. Then

0 = 00 = −0 + 3
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and

0 = 

0 = 3− 

EXERCISE 0.70. Let  = 0. Then

0 = 00 =
1

3

¡
1 + 60 − 122¢

and

0 = 

0 = −42 + 2 + 1
3

EXERCISE 0.72. Let  = 0 and  = 0. Then

0 = 000 =
1

2
(−3 + 600 − 40 − )

and

0 = 

0 = 

0 = −1
2
− 2 + 3 − 3

2

EXERCISE 0.74. Let  = 0. Then

0 = 00

= cos − 20 − 4
and

0 = 

0 = −4− 2 + cos 
EXERCISE 0.76. Let  = 0. Then

0 = 00 = −2
³
− (0)2 − cos

´
and

0 = 

0 = −−22 − −2 cos

EXERCISE 0.78. Let  = 0  = 0. Then

0 = 00 = −2 − + 

0 = 00 = − + 2− 
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and

0 = 

0 = −2 − + 

0 = 

0 = − + 2− 

EXERCISE 0.80. Let  = 0 and  = 0 Then

0 = 00 =
1

2
(0 − 20 − 4+ 8)

0 = 00 = sin − 20 + 0 + − 3

and

0 = 

0 = −2+ 1
2
 + 4 − 

0 = 

0 = − 2 − 3 +  + sin 

EXERCISE 0.82. The equation is linear because it has the form 0 = () + () with
() = 2 and () = 1.
EXERCISE 0.84. The equation is nonlinear (because of the 2 term).

EXERCISE 0.86. The equation is linear because it has the form 0 = () + () with
() = −2 and () = 0.
EXERCISE 0.88. The equation is nonlinear (because of the sin term).
EXERCISE 0.90. The equation is nonlinear (because of the 0 term).
EXERCISE 0.92. The equation is linear because it is linear in 00, 0 and  with coeffi-

cients 2  and 1.
EXERCISE 0.94. The equation is nonlinear (because of the (1− ) term).
EXERCISE 0.96. The equation is nonlinear (because of the − term).
EXERCISE 0.98. The system is linear because both equations are linear. The first

equation is linear in 0  and  and the second equation is linear in 0  and 

EXERCISE 0.100. The system is nonlinear (because of the  term)

EXERCISE 0.102. The equation is linear because it has the form 0 = ()+ () with
() = − and () = .

EXERCISE 0.104. The equation is nonlinear (because for the equation to be linear

() would have to be a constant and 2()2 would equal 0).
EXERCISE 0.106. The equation is nonlinear (because of the term sin).
EXERCISE 0.108. The equation is nonlinear (because of the term ln())
EXERCISE 0.110. The system is linear because both equations are linear. The first

equation is linear in 0  and  and the second equation is linear in 0  and 

EXERCISE 0.111. We can rewrite the equation as the linear equation 0 = (ln 2).
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A.2 Chapter 1: First Order Equations

EXERCISE 1.1.

 () =

Z ¡
1 + 2

¢
 = +

1

3
3 + 

EXERCISE 1.3.

 () =

Z
2 =

1

2
2 + 

EXERCISE 1.5.

 () =

Z
2 =

1

3
3 + 

(1) =
1

3
+  = 2 =⇒  =

5

3
=⇒  () =

1

3
3 +

5

3

EXERCISE 1.7.

 () =

Z
− = −− − − + 

(0) = −1 +  = 1 =⇒  = 2 =⇒  () = −− − − + 2

EXERCISE 1.10. Theorem 1.1does not apply since  ( ) = 22 is not defined (and

therefore cannot be continuous) at  = 0 = 0. No conclusion can be drawn from the

theorem.

EXERCISE 1.12. Theorem 1.1applies since

 ( ) = tan and
 ( )


= tan2 + 1

are continuous for  near 0 = 0 (and  near 0 = 0). There exists a unique solution on an
interval containing 0 = 0
EXERCISE 1.13. Theorem 1.1does not apply since  ( ) = tan is not defined (and
therefore cannot be continuous) at  = 0 = 2 No conclusion can be drawn from the

theorem.

EXERCISE 1.15. Theorem 1.1applies since

 ( ) =
1

sin
and

 ( )


= − cos

sin2 

are continuous for  near 0 = 0 and  near 0 = 2 (where sin 6= 0) There exists a unique
solution on an interval containing 0 = 0.
EXERCISE 1.17. From

 ( ) = || and
 ( )


=



||
we see that both of these functions are continuous for  near 0 = 10 and for all  Therefore
Theorem 1.1 applies and we conclude that there exists a unique solution on an interval

containing 0 = 0



322 APPENDIX A. ANSWERS TO EXERCISES

EXERCISE 1.19. If   0 then

 ( ) = ln (− ) and
 ( )


=

1

− 

are continuous for  near 0 = 0 and  near 0 = 0 (where  6= ). Thus, when   0
Theorem 1.1 implies there is a unique solution on an interval containing 0 = 0. For  ≤ 0,
 is not defined for all  near 0 = 0 (since −   0 for   0) and no conclusion can be
drawn from the theorem.

EXERCISE 1.21. If ||  2 then

 ( ) =
¡
2 − 2

¢12
and

 ( )


= − ¡2 − 2

¢−12
are continuous for  near 0 = 1 and  near 0 = 2. Thus, Theorem 1.1applies when ||  2
and there is a unique solution on an interval containing 0 = 1. For || ≤ 2 no conclusion
can be drawn from the theorem.

EXERCISE 1.23. The function  ( ) = ln(2 + 2) is continuous and differentiable if
 6= 0,  6= 0. Therefore, if 0 6= 0, 0 6= 0 then the initial value problem has a unique solution
on an interval containing 0. For 0 = 0 and 0 = 0 nothing can be concluded from Theorem
1.1.

EXERCISE 1.25. The function  ( ) = tan  is continuous and differentiable for all 
such that cos  6= 0. Therefore, if

0 6= 1

2
(2+ 1)

for all  = 0 ±1 ±2 ±3 · · ·  then the initial problem has a unique solution on an interval
containing 0. For any other 0 nothing can be concluded from Theorem 1.1.

EXERCISE 1.27 Since the cube root function is defined and continuous for all values of

its argument,  ( ) = 13+23 is defined and continuous for all values of  and . For this

same reason,  ( )  = 2−133 is defined and continuous except for  = 0. Therefore,
Theorem 1.1 applies to all initial value problems (0) = 0 with 0 6= 0 and we conclude,
for such initial problems, that there exists a unique solution on some interval containing 0.

If 0 = 0 we can conclude nothing about the initial value problem from Theorem 1.1.

EXERCISE 1.29 Since the cube root function is defined and continuous for all values of its

argument,  ( ) = (1− −1)43 is defined and continuous for all values of  and . For this
same reason,  ( )  = (43) (1− 2−1)13 (−22−1) is defined for all values of  and
. Therefore, Theorem 1.1 applies to all initial value problems (0) = 0 and we conclude

any initial value problem has a unique solution on some interval containing 0.EXERCISE

1.31. For any point such that 0 6= 0 because the function ( ) = ln |− | is continuous
and continuously differentiable in  for all  6=  From Theorem 1.1we conclude that this

initial value problem has a unique solution defined on an interval containing 0. Nothing can

be concluded from the theorem when 0 = 0

EXERCISE 1.33. ( ) = || and  = || are continuous for  6= 0. If 0 6= 0
then Theorem 1.1applies and we conclude that the initial value problem has a unique solution

on an interval containing 0
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EXERCISE 1.35. ( ) =
√
1−  is a composite function made from the two functions

1−  (which is continuously differentiable for all  and ) and the square root function
√


(which is continuous differentiable at any positive   0). Therefore, ( ) is continuously
differentiable for all  and all   1. Since 0 = 0  1 Theorem 1.1applies and we conclude

that this initial value problem has a unique solution on an interval containing 0 = 1
EXERCISE 1.37. Although  ( ) = (+ )13 is continuous at  = 0 and  = 0 (it is
the composite of two continuous functions), the derivative

 ( )


=
1

3
(+ )−23

is not continuous (not even defined) at  = 0 and  = 0. Therefore, the Fundamental
Exixtence and Uniqueness Theorem does not apply and no conclusion can be drawn from

that theorem.

EXERCISE 1.40. Polynomials in  and  are continuous and have continuous derivatives

(of all orders) for all  and . Therefore, Theorem 1.1applies to any initial value problem.

EXERCISE 1.44.

-2 -1 1 2 3 4 5

1

2

3

x

y

EXERCISE 1.46.

-2 -1 1 2

-2

-1

1

2

x

y

EXERCISE 1.48.

-8 -6 -4 -2 2 4 6 8

-4

-3

-2

-1

1

2

3

4

x

y
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EXERCISE 1.50.

-2 2

-6

-4

-2

2

4

6

x

y

EXERCISE 1.52.

-6 -4 -2 2 4 6

-2

-1

1

2

EXERCISE 1.54.

-6 -4 -2 2 4 6

-2

-1

1

2

EXERCISE 1.55.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

EXERCISE 1.57.

-2 -1 1 2

-2

-1

1

2
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EXERCISE 1.60. For   1 all solutions appear to decrease. For   1 there is a
horizontal region (lying between two parallel, horizontal straight lines) in the   plane in

which solutions increase and outside of which solutions decrease.

-1 1

-1

1

 t 

x

a = 2

-3 -2 -1 1 2 3

-1

1

2

3 a = -1

EXERCISE 1.62. The isoclines are horizontal straight lines of the form  = 1− where

, the associated slope, is any constant.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

EXERCISE 1.64. The isoclines are circles, centered at the origin, of the form 2 + 2 =
1
2 − 1 where  the associated slope, is any constant satisfying 0    1.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

EXERCISE 1.67. Solve  () = + for  = −  and choose ( ) = −  :

0 = − 

EXERCISE 1.69. Solve  () = +1 for  = 1(− ) and choose ( ) = 1(− ) :

0 =
1

− 

EXERCISE 1.71. Solve 22 + 32 = 13 for  = (22 + 32)
3
and choose ( ) =

(22 + 32)
3
:

0 =
¡
22 + 32

¢3
EXERCISE 1.80.

(a) (08) ≈ 16094571436, which has five correct significant digits
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(b)  = 01 and  = 01
(c)

Step size  (1) ≈ Absolute Error

Runge-Kutta

0.10000 1.6094571436 — 1.9232×10−5
0.05000 1.6094402828 — 2.371×10−6
0.02500 1.6094381088 — 1.97×10−7
0.01250 1.6094379264 — 1.4×10−8
0.00625 1.6094379134 1.0×10−9

The error goes down by approximately a fraction of 116 = (12)4 at each step, as is to be
expected from the fourth order Runge-Kutta Algorithm.

EXERCISE 1.83.  = 0003125 because there is virtually no change in the graph from
 = 000625

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

 t 

x

EXERCISE 1.84.  = 00125 because there is visibly no change in the graph from  =
0025
EXERCISE 1.85.  = 0025 because there is visibly no change in the graph from  = 005

A.3 Chapter 2: Linear First Order Equations

EXERCISE 2.1. The equation is linear with () = 2 and () = 

EXERCISE 2.3. The equation is nonlinear because of the 2 term.

EXERCISE 2.5. The equation is nonlinear because of the sin term.
EXERCISE 2.7. The equation is nonlinear because of the 0 term.
EXERCISE 2.9. The equation is linear with

() =
1

5

¡
2 + sin 

¢
and () = −1

5

µ
cos 3+

1

2 + 1

¶


EXERCISE 2.11. The equation is linear nonhomogeneous with () = 2 and () = −1
EXERCISE 2.13. The equation is linear homogeneous with () = 2 and () = 0
EXERCISE 2.15. The equation is linear nonhomogeneous with () = 3− and () =
−−
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EXERCISE 2.18.

() = −3 =⇒  () =

Z
(−3) = −3

 () =  () = −3

EXERCISE 2.20.

() =
1


=⇒  () =

Z
1


 = ln ||

 () =  () = ln || = || for  6= 0

EXERCISE 2.22.

() = −3 =⇒  () =

Z
−3 = −1

3
−3

 () =  () =  exp

µ
−1
3
−3

¶
EXERCISE 2.24.

() =


1 + 2
=⇒  () =

Z


1 + 2
 =

1

2
ln
¡
1 + 2

¢
=⇒  () =  () = ln(1+

2)2 = 
√
1 + 2

EXERCISE 2.26.

() =  sin  =⇒  () =

Z
( sin )  = sin −  cos 

 () =  () =  exp (sin −  cos )

EXERCISE 2.28.

() =
1


=⇒  () =

Z
1


 =

1




 () =  () = 

EXERCISE 2.30.

() =  =⇒  () =

Z
 =

½
1

 if  6= 0
 if  = 0
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 () =  () =

½
 exp

¡
1


¢
if  6=0

 if  = 0

EXERCISE 2.32. Using  () = −2 (hence  () = −2) and  () = 12 in the Variation
of Constants formula we obtain

 () =  () +  ()
Z 

− () () 

= −2 + −2
Z 

212

= −2 + 6−22

= −2 + 6

EXERCISE 2.34. Using  () =  (hence  () = 22) and  () =  in the Variation of

Constants formula we obtain

 () =  () +  ()
Z 

− () () 

= 
22 + 

22

Z 

−
22

= 
22 − 

22−
22

= 
22 − 1

EXERCISE 2.36. Using  () =  (hence  () = ) and  () = cos  in the Variation
of Constants formula we obtain

 () =  () +  ()
Z 

− () () 

=  + 
Z 

− cos 

Now Z 

− cos  =
½

1
2+2

− ( sin −  cos ) if 2 + 2 6= 0
 if  =  = 0

and therefore

 () =

½
 + 1

2+2
( sin −  cos ) if 2 + 2 6= 0

+  if  =  = 0

EXERCISE 2.38. Using  () = −1 (hence  () = − ln ||) and  () = −23 in the
Variation of Constants formula we obtain

 () =  () +  ()
Z 

− () () 

= − ln|| + − ln||
Z 

ln||−23

=  ||−1 + ||−1
Z 

||−23



A.3. CHAPTER 2: LINEAR FIRST ORDER EQUATIONS 329

For   0 we have || =  andZ 

||−23 =
Z 

13 =
3

4
43

and

 () = 
1


+
1



3

4
43 = 

1


+
3

4
13

For   0 we have || = − andZ 

||−23 = −
Z 

13 = −3
4
43

and

EXERCISE 2.40. Using  () =  (hence  () = 22) and  () = −1 in the Variation of
Constants formula we obtain

 () =  () +  ()
Z 

− () () 

= 
22 + 

22

Z 

−
22 (−1) 

= 
22 − 

22

Z 

−
22

EXERCISE 2.43.

() =  =⇒ (1) =  = −2 =⇒  = −2−
() = −2−

EXERCISE 2.45.

() = tan
−1  =⇒ (1) = 4 =  =⇒  = 34

() = 34tan
−1 

EXERCISE 2.47.

() = −
1

cos  =⇒  (0) = −

1
 = 1 =⇒  = 

1


() = exp

µ
1− cos 



¶
EXERCISE 2.49. (a) From the Variation of Constants Formula we obtain the general

solution

() = 3 +
2

3


Then

 (0) = +
2

3
= 5 =⇒  =

13

3
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and the solution of the initial value problem is

() =
13

3
3 +

2

3


(b) Using  () = 3 (therefore  () =
R 
0
 ()  = 3) and  () = −2 in the Variation

of Constants Formula for initial value problems, we calculate

EXERCISE 2.51. (a) From the Variation of Constants Formula we obtain the general

solution (we take   0 because the initial condition 0 = 2 is positive)

() = +
1

3
4

Then

 (2) = 2+
16

3
= 0 =⇒  = −8

3

and the solution of the initial value problem is

() = −8
3
+

1

3
4

(b) For   0 we have, using  () = 1 and 0 = 2 (therefore  () =
R 
0
 ()  =

ln  − ln 2) and  () = 3 in the Variation of Constants Formula for initial value problems,

we calculate

() = 0
 () +  ()

Z 

0

− () () 

= (0) ln −ln 2 + ln −ln 2
Z 

2

− ln+ln 23

=
1

2


Z 

2

2


3 = 

µ
1

3
3
¶¯̄̄̄=

=2

= 

µ
1

3
3 − 1

3
23
¶

= −8
3
+

1

3
4

EXERCISE 2.53. (a) From the Variation of Constants Formula we obtain the general

solution

() = 
1

sin  − 

Then

 (0) = −  = 0 =⇒  = 

() = 
1

sin  − 
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(b) Using  () = cos  and 0 = 0 (therefore  () =
R 
0
 ()  = 1


sin ) and  () =

 cos  in the Variation of Constants Formula for initial value problems, we calculate

() = 0
 () +  ()

Z 

0

− () () 

= 0 ·  1 sin  + 
1

sin 

Z 

0

−
1

sin  cos 

= 
1

sin 

³
−− 1


sin 

´¯̄̄=
=0

= 
1

sin 

³
−− 1


sin  + 

´
= 

1

sin  − 

EXERCISE 2.55. (a) From the Variation of Constants Formula we obtain the general

solution


1


+
1


ln
¡
1 + 2

¢
(we take   0 because the initial condition 0 = 1 is positive). Then

 (1) = + ln 2 = ln 8 =⇒  = ln 4

and the solution of the initial value problem is

() =
1


ln 4 +

1


ln
¡
1 + 2

¢


(b) For   0 we have, using  () = −1 and 0 = 1 (therefore  () =
R 
0
 ()  =

− ln ) and  () = 2
1+2

in the Variation of Constants Formula for initial value problems, we

calculate

() = 0
 () +  ()

Z 

0

− () () 

= (ln 8) − ln  + − ln 
Z 

1

ln
2

1 + 2


=
1


ln 8 +

1



Z 

1

2

1 + 2
 =

1


ln 8 +

1



¡
ln
¡
1 + 2

¢¢¯̄=
=1

=
1


ln 8 +

1



¡
ln
¡
1 + 2

¢− ln 2¢
=

1


ln 4 +

1


ln
¡
1 + 2

¢


EXERCISE 2.57.

() = 0
(−0)

equals 20 when

− 0 =
1


ln 2
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which is independent of 0.

EXERCISE 2.62.

(a) The graphs of all solutions have a horizontal asymptote, i.e., the solutions all tend

to a finite limit as → +∞. Each solution tends to a different limit, however.
(b)

 () = 0 exp
¡
2− 2−05¢

and therefore the limit

lim
→+∞

() = 0
2

exists and depends on 0.

EXERCISE 2.65.

(a) The Runge-Kutta algorithm was used to obtain the following table of approximations.

 = step size (099) ≈
0010000 −0510402
0005000 −0503585
0002500 −0503295
0001250 −0503281
0000625 −0503280

(b) The graph is highly oscillatory (has a very short period, i.e. a high frequency) and

appears exactly periodic.

(c)

() = 
1
60

sin 60 − 100 =⇒ (0) = − 100 = 0 =⇒  = 100

so

() = 100
1
60

sin 60 − 100
and (099) ≈ −0503280.
(d) The solution in (c) is periodic with period

2

60
=
1

30
≈ 003333

and frequency 30.
EXERCISE 2.67.  () =  and  () =  () +  () so  () =  + 100

EXERCISE 2.69.  () = − and by the superposition principle  () = () + () =
2−3 +  Therefore  () = − + 2−3 + 

EXERCISE 2.71.  () =  and  () =  () + () = +10. The initial condition
implies  = −5 so  () = 5 + 10
EXERCISE 2.73.  () =  and  () =  () +  () =  + . The initial

condition implies  = − so  () = − + 

EXERCISE 2.79. The method is applicable (() has the form  with = 2  = −1).
EXERCISE 2.81. The method is not applicable (the coefficient () =  of 0 is not a
constant).

EXERCISE 2.83. The method is applicable (() is a constant multiple of  with  = 2).
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EXERCISE 2.85. The method is applicable (() is a constant multiple of  with
 = 1  = −2).
EXERCISE 2.87. The method is applicable (() is a constant multiple of  with
 = 1  = ).

EXERCISE 2.89. (a) The general solution of the associated homogeneous equation is

 () = 05 () is a multiple of 02which generates no new, independent functions upon
repeated differentiation. Since this function is not a solution of the associated homogeneous

equation we construct the “guess"  () = 02

(b) A substitution of  () in (a) into the differential equation yields

0202 = 0502 − 03−2
(−03 + 03) 02 = 0

−03 + 03 = 0
 = 1

and  () = 02

EXERCISE 2.91. (a) The general solution of the associated homogeneous equation is

 () = 3 () is a multiple of 3 ,which generates no new, independent functions upon
repeated differentiation. Since this function is a solution of the associated homogeneous

equation we construct the “guess"  () = 3

(b) A substitution of  () in (a) into the differential equation yields

33 + 3 = 33 − 153
( + 15) 3 = 0

 = −15
and  () = −153
EXERCISE 2.93. (a) The general solution of the associated homogeneous equation is

 () = −23 () is a multiple of − sin , which generates one new, independent function
upon repeated differentiation: − cos . Since neither of these functions is a solution of the
associated homogeneous equation, we construct the “guess"  () = 1

− cos + 2
− sin 

(b) A substitution of  () in (a) into the differential equation yields

1
− sin − 1

− cos + 2
− cos − 2

− sin 

= −2
3

¡
1

− cos + 2
− sin 

¢− 15
16

− sin µ
−1
3
1 − 2 +

15

16

¶
− cos +

µ
1 − 1

3
2

¶
− sin  = 0

and

−1
3
1 − 2 +

15

16
= 0 1 − 1

3
2 = 0

whose solution is 1 =
9
32
 2 =

27
32
 Thus,  () =

9
32
− cos + 27

32
− sin 

EXERCISE 2.95. (a) The general solution of the associated homogeneous equation is

 () = − () is a multiple of 4 cos 2, which upon repeated differentiation generates
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the new, independent functions: 3 cos 2 2 cos 2  cos 2 cos 2 4 sin 2, 3 sin 2, 2 sin 2
 sin 2 and sin 2. Since none of these functions is a solution of the associated homogeneous
equation, we construct the “guess"

 () = 1
4 cos 2+ 2

3 cos 2+ 3
2 cos 2

+ 4 cos 2+ 5 cos 2+ 6
4 sin 2+ 7

3 sin 2

+ 8
2 sin 2+ 9 sin 2+ 10 sin 2

(b) A substitution of  () in (a) into the differential equation yields

26
4 cos 2− 214 sin 2

+ (41 + 27) 
3 cos 2+ (−22 + 46) 3 sin 2

+ (32 + 28) 
2 cos 2+ (−23 + 37) 2 sin 2

+ (23 + 29)  cos 2+ (−24 + 28)  sin 2
+ (4 + 210) cos 2+ (−25 + 9) sin 2

= − ¡14 cos 2+ 2
3 cos 2+ 3

2 cos 2+ 4 cos 2+ 5 cos 2

+ 6
4 sin 2+ 7

3 sin 2+ 8
2 sin 2+ 9 sin 2+ 10 sin 2

¢
+ 54 cos 2

or

(26 + 1 − 5) 4 cos 2+ (−21 + 6) 
4 sin 2

+ (41 + 27 + 2) 
3 cos 2+ (−22 + 46 + 7) 

3 sin 2

+ (32 + 28 + 3) 
2 cos 2+ (−23 + 37 + 8) 

2 sin 2

+ (23 + 29 + 4)  cos 2+ (−24 + 28 + 9)  sin 2

+ (4 + 210 + 5) cos 2+ (−25 + 9 + 10) sin 2

= 0

and
26 + 1 − 5 = 0
−21 + 6 = 0

41 + 27 + 2 = 0
−22 + 46 + 7 = 0
32 + 28 + 3 = 0
−23 + 37 + 8 = 0
23 + 29 + 4 = 0
−24 + 28 + 9 = 0
4 + 210 + 5 = 0
−25 + 9 + 10 = 0

whose solution is:

1 = 1 2 =
12

5
 3 = −132

25
 4 =

168

125
 5 =

984

625

6 = 2 7 = −16
5
 8 = −24

25
 9 =

576

125
 10 = −912

625
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Thus,

 () = 4 cos 2+
12

5
3 cos 2− 132

25
2 cos 2

+
168

125
 cos 2+

984

625
cos 2+ 24 sin 2− 16

5
3 sin 2

− 24
25

2 sin 2+
576

125
 sin 2− 912

625
sin 2

≈ 4 cos 2+ 243 cos 2− 5282 cos 2
+ 1574 cos 2+ 1344 cos 2− 323 sin 2+ 24 sin 2
+ 4608 sin 2− 1459 sin 2− 0962 sin 2

EXERCISE 2.97. (a) The general solution of the associated homogeneous equation is

 () =  () is a multiple of 3 which upon repeated differentiation generates the
new, independent functions: 2  and  If  6=  then none of these functions is a

solution of the associated homogeneous equation and we construct the “guess"

 () = 1
3 + 2

2 + 3
 + 4



If  =  then the list contains a solution of the associated homogeneous equation and we

construct the “guess”

 () = 1
4 + 2

3 + 3
2 + 4



(b) If  6=  a substitution of  () in (a) into the differential equation yields

1
3 + 31

2 + 2
2 + 22

 + 3
 + 3

 + 4


= 
¡
1

3 + 2
2 + 3

 + 4

¢
+
1

3
3

or µ
(− )1 − 1

3

¶
3 + (31 + (− )2) 

2

+ (22 + (− 3)) 
 + (3 + (− )4) 



= 0

and
(− )1 − 1

3
= 0

31 + (− )2 = 0
22 + (− )3 = 0
3 + (− )4 = 0

whose solution is

1 = −1
3

1

− 
 2 = − 1

(− )2

3 = − 2

(− )3
 4 = − 2

(− )4
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Thus, if  6=  the solution is

 () = −1
3

1

− 
3 − 1

(− )2
2 − 2

(− )3
 − 2

(− )4


If  =  a substitution of  () in (a) into the differential equation yields

1
4 + (41 + 2) 

3 + (32 + 3) 
2 + (23 + 4) 

 + 4


= 
¡
1

4 + 2
3 + 3

2 + 4

¢
+
1

3
3

or µ
41 − 1

3

¶
3 + (32) 

2 + (23) 
 + 4

 = 0

and
41 − 1

3
= 0

32 = 0
23 = 0
4 = 0

whose solution is 1 = 112 2 = 3 = 4 = 0 Thus, the solution is  () = 412
EXERCISE 2.99. (a) The general solution of the associated homogeneous equation is

 () =  () is a multiple of cos 2, which upon repeated differentiation generates only
one new, independent function: sin 2. Since none of these functions is a solution of the
associated homogeneous equation, we construct the “guess"

 () = 1 cos 2+ 2 sin 2

(b) A substitution of  () in (a) into the differential equation yields

−21 sin 2+ 22 cos  = 1 cos 2+ 2 sin 2+ 2 cos 2

(−1 + 22 − 2) cos 2+ (−21 − 2) sin 2 = 0

and
−1 + 22 − 2 = 0
−21 − 2 = 0

whose solution is 1 = −25  2 =
4
5
 Thus, the solution is  () = −25 cos 2+ 4

5
sin 2

EXERCISE 2.102. Solve 0 = − +  for  () = 2 and 0 = − + sin  for  () =
(sin − cos ) 2 . Form the linear combination

 () = 2

µ
1

2

¶
− 3

µ
1

2
(sin − cos )

¶
=  +

3

2
cos − 3

2
sin 

EXERCISE 2.104. Solve 0 =  +  for  () =  and 0 =  + cos  for  () =
(sin − cos ) 2 Form the linear combination

 () = 3
¡

¢− 4µ1

2
(sin − cos )

¶
= 3 + 2 cos − 2 sin 
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EXERCISE 2.106. The equation is hyperbolic if  = sin  6= 0 or  6=   =
0±1±2±3     The equation is non-hyperbolic for all other values of  namely,  = 

 = 0±1±2±3    
EXERCISE 2.108. The equation is hyperbolic if  = 2 6= 0 or  6= 0 The equation is
non-hyperbolic if  = 0.

EXERCISE 2.110. Solve −5 − 7 = 0 for  = −75, which is an attractor because
 = −5  0
EXERCISE 2.112. Solve 2− 10 = 0 for  = 5 which is a repeller because  = 2  0
EXERCISE 2.114. Since  =  − 1 the equilibrium  = − = −2( − 1) is an
attractor if   1 and a repeller if   1. There is no equilibrium if  = 1 since 0 = 2  0
and all solutions increase.

EXERCISE 2.116. Since  = 0 the equation is non-hyperbolic. There is an equilibrium if
and only if 0 = sin  = 0 that is, if and only if  =  for some integer  = 0±1±2±3    
For each such value of  every solution is an equilibrium since the equation reduces to 0 = 0.
If  6=  for any integer  = 0±1±2±3     then there is no equilibrium solution since

0 = sin  6= 0. All solutions increase if  is such that sin   0 or decrease is  is such that
sin   0.

EXERCISE 2.118. The equation is hyperbolic and the equilibrium is an attractor if and

only if   0. From the general solution  () =  −  we see that all non-equilibrium

solutions are unbounded as  → −∞ From the general solution  () =  −  we see

that all non-equilibrium solutions tend to the equilibrium − as → −∞

EXERCISE 2.120. The equation is non-hyperbolic if and only if  = 0. If  6= 0 we see
from the general solution  () = + that all solutions are linearly unbounded as → −∞

EXERCISE 2.122. Since  = −  and  = −, the phase portraits are

−→ 

− 
←− for   

←− 

− 
−→ for   

There is a significant change in the asymptotic dynamics (from an attractor to a repeller) as

 passes through the bifurcation point 

EXERCISE 2.124. There is one bifurcation point located at the unique root of the equa-

tion  = − − = 0 which is  ≈ 056714 For  less than this root the equilibrium

 = − 1

− −

is an attractor and for  greater than this root  is a repeller.

EXERCISE 2.126.

 () =

Z
() =

Z
  =

1

2
2

 () =  () =  exp

µ
1

2
2
¶
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EXERCISE 2.128.

 () =

Z
() =

Z ³
−−22

´
 = exp

µ
−1
2
2
¶

 () =  () =  exp

µ
exp

µ
−1
2
2
¶¶

EXERCISE 2.130.

 () =

Z
() =

Z
 =






 () =  () =  exp
³


´

EXERCISE 2.132.

 () =

Z
() =

Z
(ln )  =  ln − 

 () =  () = −

EXERCISE 2.134.

 () =

Z
() =

Z
tan   = − ln (cos )

 () =  () = 
1

cos 

EXERCISE 2.136.

 () =

Z
(1)  = 

Using the variation of constants formula, we calculate as follows:

 () =  + 
Z

− cos  

=  +
1

2
(sin − cos ) 

EXERCISE 2.138. If  6= 0 then  () =
R
(cos)  = 1


sin Using the variation of

constants formula, we calculate as follows:

 () = 
1

sin + 

1

sin

Z

− 1

sin cos   = 

1

sin − 1

If  = 0 then  () =
R
(1)  =  Using the variation of constants formula, we calculate

as follows:  () =  + 
R
−  =  − 1

EXERCISE 2.140.

 () =

Z
(ln )  =  ln − 
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Using the variation of constants formula, we calculate as follows:

 () =  ln − +  ln −
Z

− ln +

=  ln − +  ln −
Z

−

= − + −
Z



= − + 

EXERCISE 2.142.

 () =

Z
(1)  = 

Using the variation of constants formula, we calculate as follows:

 () =  + 
Z

−

 () =

½
 + 1

−1
 if  6= 1

 +  if  = 1

EXERCISE 2.144.  () =  and we search for a particular solution of the form

 () = 1 sin 10+ 2 cos 10

Equating

0 = 101 cos 10− 102 sin 10
and

 () + sin 10 = (1 + 1) sin 10+ 2 cos 10

and algebraically rearranging the result, we obtain

(101 − 2) cos 10+ (−1 − 102 − 1) sin 10 = 0
Setting the coefficients of cos 10 and sin 10 equal to 0 we solve the resulting algebraic
equations

101 − 2 = 0 −1 − 102 − 1 = 0
for 1 = − 1

101
 2 = − 10

101
Thus,

 () =

µ
− 1

101

¶
sin 10+

µ
− 10
101

¶
cos 10

and

 () =  () +  () =  +

µ
− 1

101

¶
sin 10+

µ
− 10
101

¶
cos 10

EXERCISE 2.146.  () = −2 and we search for a particular solution of the form

 () = 1
2−2 + 2

−2
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Equating

0 = −212−2 + (21 − 22) −2 + 2
−2

with

−2 () + −2 = −212−2 + (−22 + 1) −2

and algebraically rearranging the result, we obtain

(21 − 1) −2 + 2
−2 = 0

Setting the coefficients of −2 and −2 equal to 0 we solve the resulting algebraic equations

21 − 1 = 0
2 = 0

for 1 = 12 2 = 0Thus,

 () =
1

2
2−2

and the general solution is

 () =  () +  () = −2 +
1

2
2−2

EXERCISE 2.148. The associated homogeneous equation 0 =  has general solution

 () =  Repeated differentiations of 3− cos 2 yields, up to linear combinations, the
functions

3− cos 2 2− cos 2 − cos 2 − cos 2

3− sin 2 2− sin 2 − sin 2 − sin 2

none of which solve the homogeneous equation. Therefore,

 () =
¡
1

3 + 2
2 + 3+ 4

¢
− cos 2

+
¡
5

3 + 6
2 + 7+ 8

¢
− sin 2

EXERCISE 2.150. A solution of the equation 0 = + sin 10 is

 () = − 10
101

cos 10− 1

101
sin 10

A solution of the equation 0 =  + cos  is  () = (sin − cos ) 2 By the superposition
principle a particular solution is a linear combination of these two solutions, namely,

 () = 2

µ
− 10
101

cos 10− 1

101
sin 10

¶
+ 3

µ
1

2
sin − 1

2
cos 

¶
=
3

2
sin − 3

2
cos − 20

101
cos 10− 2

101
sin 10
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Thus, the general solution is

 () =  () +  ()

=  +
3

2
sin − 3

2
cos − 20

101
cos 10− 2

101
sin 10

EXERCISE 2.152. A solution of the equation 0 = 3+ 1 is  () = −13 A solution of
the equation 0 = 3 +  is  () = −3 − 19 A solution of the equation 0 = 3 + 2 is

 () = −23− 29− 227 A solution of the equation 0 = 3+ 3 is

 () = −1
3
2 − 1

3
3 − 2

9
− 2

27


By the superposition principle a particular solution is a linear combination of these solutions,

namely,

 () = 2

µ
−1
3

¶
+ 3

µ
−1
3
− 1

9

¶
−
µ
−1
3
2 − 2

9
− 2

27

¶
+ 6

µ
−1
3
2 − 1

3
3 − 2

9
− 2

27

¶
= −37

27
− 19
9
− 5

3
2 − 23

Thus, the general solution is

 () =  () +  () = 3 − 37
27
− 19
9
− 5

3
2 − 23

EXERCISE 2.154. A solution of the equation 0 = −+sin  is  () = 1
2
sin − 1

2
cos  A

solution of the equation 0 = −+sin 2 is  () = (sin 2− 2 cos 2) 5 By the superposition
principle a particular solution is a linear combination of these two equations, namely,

 () = 3

µ
1

2
sin − 1

2
cos 

¶
+ 2

µ
1

5
sin 2− 2

5
cos 2

¶
=
3

2
sin − 3

2
cos − 4

5
cos 2+

2

5
sin 2

Thus, the general solution is

 () =  () +  () = − +
3

2
sin − 3

2
cos − 4

5
cos 2+

2

5
sin 2

EXERCISE 2.156. Using the variation of constants formula, we calculate

 () =

Z 

5

 =
1

2
2 − 25

2

and

 () = 0
 () =  exp

µ
1

2
2 − 25

2

¶
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EXERCISE 2.158. Using the variation of constants formula, we calculate

 () =

Z 

0

 = 

and

 () = 0
 () +  ()

Z 

0

− ()()

= 0 + 
Z 

0

− sin 10

=
10

101
 − 10

101
cos 10− 1

101
sin 10

EXERCISE 2.160. Using the variation of constants formula, we calculate

 () =

Z
(−2) = −2

and

 () = 0
 () +  ()

Z 

0

− ()()

= 0
−2 + −2

Z 

0

22

 () =

µ
0 +

1

16

¶
−2 − 1

16
2 +

1

4
2

EXERCISE 2.162. Using the variation of constants formula, we calculate

 () =

Z 

0

− =


2

¡
1− (+ 1) −¢

and

 () = 0
 () = 0 exp

³ 
2

¡
1− (+ 1) −¢´ 

EXERCISE 2.164. Using the variation of constants formula, we calculate  () =
R 
0


1+



=  ln |+ 1| and
 () = 0

 () = 0 |1 + | 
EXERCISE 2.166. Using the variation of constants formula, we calculate

 () =

Z 

0



1 + 2
 =  arctan 

and

 () = 0
 () = 0 exp ( arctan ) 
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EXERCISE 2.169. () = − sin  means immigration and emigration alternate period-
ically (with period 2), but at an exponentially decreasing rate. We can solve the initial
value problem by means of the variation of constants formula with

 () =

Z 

0

 = 

to get

 () = 0
 + 

Z 

0

−
¡
− sin

¢


=

µ
1

( + 1)2
+ 0

¶
 − 1

( + 1)2
(cos + ( + 1) sin ) −

if  6= −1 and  () = (0 + 1− cos ) − if  = −1
EXERCISE 2.171. () = 1+2 cos means immigration/emigration oscillates periodically
with mean 1 and amplitude 2. Note that it periodically becomes negative at which times
emigration occurs. We can solve the initial value problem by means of the variation of

constants formula with

 () =

Z 

0

 = 

to get

 () = 0
 + 

Z 

0

− (1 + 2 cos) 

=

µ
0 +

32 + 1

 (2 + 1)

¶
 +

2

 (2 + 1)
(sin −  cos )− 1




EXERCISE 2.173. (a) From the fourth order Runge-Kutta algorithm we obtain the

following table of values.

step size  (23) ≈
00001 2980710
000005 2998502
0000025 2989610
0000013 2994057
0000006 2991833

It appears that a reasonable estimate is  ≈ 299 at  = 23.
(b) The graph lies above the -axis and appears to be periodic with a very short period

(i.e., high frequency).
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x
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(c) Using the variation of constants formula with

 () =

Z 

0

¡
100sin 40 cos 40

¢
 =

5

2
sin 40 − 5

2

we obtain the solution formula

() = 0
 () = exp

µ
5

2
sin 40 − 5

2

¶
and  ≈ 299257 at  = 23. The numerical solutions found in (a) give two decimals of
accuracy.

(d) sin 40 is periodic with period equal to 120 = 005 (or frequency 20) and hence
so is the solution in (c). The solution  is always positive and hence the graph always lies

above the -axis.

EXERCISE 2.175. Since  = −05  0 the equilibrium  = 2 is an attractor (nonequi-
librium solutions  ()→ 2 as → +∞) The phase line portrait is → 2← 

EXERCISE 2.177. Since  = −1  0 the equilibrium  = 2 is an attractor (nonequilib-
rium solutions  ()→ 2 as → +∞). The phase line portrait is → 2← 

EXERCISE 2.179. Since  = −  0 the equilibrium  = 7 is an attractor (nonequi-
librium solutions  ()→ 7 as → +∞). The phase line portrait is → 7 ←.
EXERCISE 2.181. Since  = 2 − 1 we have the following possibilities. If   12
then the equilibrium  = (1− 2)−1 is an attractor, i.e. nonequilibrium solutions  () →
(1− 2)−1 as → +∞. In this case, the phase line portrait is → (1− 2)−1 ←. If   12
then the equilibrium  = (1− 2)−1 is a repeller, i.e. are unbounded as  → +∞ and

 () → (1− 2)−1 as  → −∞. In this case, the phase line portrait is ← (1− 2)−1 →. If
 = 12 then the equation is non-hyperbolic and nonequilibrium solutions are unbounded.

In this case, the phase line portrait is → 12→.The point  = 12 is a bifurcation point
EXERCISE 2.183. Since  = 2 − 1 we have the following possibilities. If −1    1
then the equilibrium  = (1 + ) (1 − 2) is an attractor, i.e. nonequilibrium solutions

 () → (1 + ) (1 − 2) as  → +∞ The phase line portrait is →  ←. If ||  1
then the equilibrium (1 + ) (1 − 2) is a repeller, i.e., nonequilibrium solutions  () →
(1 + ) (1 − 2) as  → −∞ The phase line portrait is ←  →. If  = +1 then the
equation is non-hyperbolic and nonequilibrium solutions are unbounded The phase line

portrait is a shunt→  →. If  = −1 then all solutions are equilibrium points. Bifurcation
points are  = ±1.
EXERCISE 2.186. Use the Method of Undetermined Coefficients and the Superposition

Principle. A periodic solution is

 () = − 1

101
sin 10+

µ
− 10
101

¶
cos 10

All other solutions

() =  − 1

101
sin 10+

µ
− 10
101

¶
cos 10

are exponentially unbounded.
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EXERCISE 2.188. Use the Method of Undetermined Coefficients and the Superposition

Principle. A periodic solution is

 () =
1

101
sin 10+

µ
− 10
101

¶
cos 10+

1

2
sin +

1

2
cos 

All other solutions

() = − +
1

101
sin 10+

µ
− 10
101

¶
cos 10

+
1

2
sin +

1

2
cos 

tend to the periodic solution.

EXERCISE 2.190. The general solution of the associated homogeneous equation 0 =
 is  () = . The general solution is thus  () =  +  () where  () is any
particular solution of 0 = + 2 sin 2 A particular solution can be found by the Method
of Undetermined Coefficients by substituting  () = 1 sin 2+2 cos 2 into the equation
to determine the coefficients 1 and 2. This substitution leads to the two equations

1 + 22 = −2 21 − 2 = 0

whose solution is

1 = − 2

2 + 42
 2 = − 4

2 + 42


Thus,

() =  − 2

2 + 42
sin 2− 4

2 + 42
cos 2

A.4 Chapter 3: Nonlinear First Order Equations

EXERCISE 3.2. The roots of the equilibrium equation 2 + 2− 3 = 0 are  = 1 −3
EXERCISE 3.4. The root of the equilibrium equation ln 2

1+
= 0 or 2

1+
= 1 or 2 = 1+

is  = 1
EXERCISE 3.6. Use a computer or calculator to solve the equilibrium equation − 2−
− = 0 for  ≈ 212
EXERCISE 3.8. We can write the equilibrium equation as ln = 1

2+
 A sketch of the

graphs of ln and 1 (2 + ) shows there is one intersection point. Therefore, there is one
equilibrium (for each ).

EXERCISE 3.10. We can write the equilibrium equation as 2

1+2
= − A sketch of the

graphs of 2 (1 + 2) and −  for   1 shows there is one intersection point. Therefore,
there is one equilibrium (for each   1).
EXERCISE 3.12. Solutions are increasing when the sign of (1 − 4) is positive and
decreasing with the sign is negative. Thus, solutions are increasing if 0  −1 or 0  0  1
and decreasing if −1  0  0 or 1  

EXERCISE 3.14. Solutions are increasing when the sign of  − 2 is positive and de-

creasing with the sign is negative. Thus, solutions are increasing if −p  0 
p


and decreasing if 0  −
p
 or 0 

p
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EXERCISE 3.16. Solutions are increasing when the sign of 62 − 5+ 1 is positive and
decreasing with the sign is negative. Thus, solutions are increasing if 0  13 or 0  12
and decreasing if 13  0  12
EXERCISE 3.18. The equilibrium equation 3 − 1 = 0 has solution  = 1. Since the
graph of 3 − 1 increases through this point, it is a repeller.

-2 -1 1 2

-3

-2

-1

1

2

3

x

y

The graph of  = () = 3 − 1
EXERCISE 3.20. The equilibrium equation 3 − 2 = 0 has solutions  = 0 1. Since
the graph of 3 − 2 has a (local) maximum at 0 and increases through 1 , we find that 0 is
a (non-hyperbolic) shunt and 1 is a repeller.

-1 1

-1

1

x

y

The graph of  = () = 3 − 2

EXERCISE 3.22. Use a computer or a calculator to solve the equilibrium equation () =
−+ cos = 0 for  ≈ 073909. The derivative  = −1− sin evaluated at  equals
−1− sin (073909) = −1674  0 Therefore,  is a hyperbolic attractor.
EXERCISE 3.24. Solve the equilibrium equation () = ( + 1)( − 05)4 = 0 for
 = −1 0 05. The derivative  evaluated at these points equals −50625, 00625, and
0 respectively. The point 0 is non-hyperbolic and the derivative test fails. A sketch of the
graph of () shows it has a (local) minimum at 05. Therefore, −1 is a hyperbolic attractor,
0 is a hyperbolic repeller, 05 is a shunt.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

x

y

The graph of  = () = (+ 1)(− 05)4
EXERCISE 3.26. Solve the equilibrium equation () = (1 − 2)(1 − 1−) = 0 for
 = −1 and 1. The derivative  evaluated at these points equals −1278 and 0
respectively. The derivative test fails at 0. A sketch of the graph of () shows it has
a (local) maximum at 0. Therefore, −1 is a hyperbolic attractor and 1 is a non-hyperbolic
shunt.
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-2

-1

1

2

3

x

y

The graph of  = () = (1− 2)(1− 1−)

EXERCISE 3.28. The equilibrium equation () = −3 + (1 + )2 −  = 0 has roots

 =  0 and 1. The derivative ()


= −32 + 2(1 + ) −  evaluated at these equilibria

equals (1− ) − and − 1 respectively.
If   0 then , 0 and 1 are hyperbolic (attractor, repeller, and attractor respectively).
If 0    1 then  0 and 1 are hyperbolic (source, attractor, attractor respectively).
If   1 then  0 and 1 are hyperbolic (attractor, attractor, repeller respectively).
If  = 0 then 0 is non-hyperbolic. A graph of () = −3 + 2 shows it has a (local)

minimum at 0 Therefore, 0 is a shunt and 1 is a hyperbolic attractor.

-1 1

-1

1

x

y

The graph of  = () = −3 + 2

If  = 1 then 0 is non-hyperbolic. A graph of () = −3+22− shows it has a (local)

maximum at 1 Therefore, 1 is a shunt and 0 is a hyperbolic attractor.

–––––––––––––––––

The following are example answers only (based upon using polynomials). There are infi-

nitely many possible correct answers. Any function () with the specified roots and the
appropriate signs between the roots will work. The polynomial answers below are found by

multiplying factors determined as follows. If  is to be an attractor or a repeller we use

the factor  − . If  is to be a shunt we use the factor (− )
2
. After all factors are

multiplied together, a sign change might be necessary in order to get the orbit arrows to

point in the correct direction.

EXERCISE 3.32. 0 = (+ 3)(− 3)
EXERCISE 3.34. 0 = 2(2− )
EXERCISE 3.36. 0 = 2(− 1)2
EXERCISE 3.38. 0 = (− )(− )
EXERCISE 3.40. 0 = −(− 1)(− 2)(− 3)
EXERCISE 3.42. 0 = −(− )(− )(− )(− )2

EXERCISE 3.47. The roots of () = 3− are 0 and±1. The derivative  = 32−1
evaluated at these roots equals −1 and 2 respectively. The linearizations are 0 = − at
 = 0 and 0 = 2 at  = ±1.
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EXERCISE 3.49. The roots of () =  (1− ) are 0 and. The derivative  =
 − 2 evaluated at these roots equals  and − respectively. The linearizations are
0 =  at  = 0 and 0 = − at  = .

EXERCISE 3.51. The root of () = 3

1+2
is 0. The derivative

()


= 3

2

2 + 1
− 2 4

22 + 4 + 1

evaluated at 0 equals 0 and − respectively. The linearization at  = 0 is 0 = 0.
EXERCISE 3.53 The roots of () = (1−)− = 0 are 1

2
± 1

2

√
1− 4 The derivative

()


= 1 − 2 evaluated at these two roots equals ∓√1− 4 At  =
¡
1 +
√
1− 4¢ 2

the linearization is 0 = −√1− 4. At  =
¡
1−√1− 4¢ 2 the linearization is 0 =√

1− 4.
EXERCISE 3.57. The equations are qualitatively equivalent. Both have phase line por-

traits of the type

−→ ·←−
EXERCISE 3.59. The equations are qualitatively equivalent. Both have phase line por-

traits of the type

−→ ·←−
EXERCISE 3.61. The equations are not qualitatively equivalent.  = 0 is a repeller in
the first equation, but an attractor in the second equation.

EXERCISE 3.63. The equations are qualitatively equivalent. Both have phase line por-

traits of the type

←− ·←− · −→
EXERCISE 3.65. The equations are not qualitatively equivalent. The first equation has

two equilibria while the second has one.

EXERCISE 3.67. The equations are qualitatively equivalent. Both have phase line por-

traits of the type

←− · −→ ·←−
EXERCISE 3.69. The equations are qualitatively equivalent. Both have phase line por-

traits of the type

−→ ·←−
EXERCISE 3.71. The equations are not qualitatively equivalent. The first equation has

one equilibrium while the second has three.

EXERCISE 3.73. The equations are qualitatively equivalent. Both have phase line por-

traits of the type

−→
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EXERCISE 3.75. Solve the equilibrium equation 0 = −
2 for  = 2 and plot. Reflect the plot through the line

 =  to obtain the bifurcation diagram. From the diagram

we see there is one bifurcation and it is a blue-sky bifurcation

that occurs at the point ( ) = (0 0). For a fixed value of
  0 a plot of the parabola  =  ( ) =  − 2 shows, by

the Geometric Test criterion, that the positive equilibrium is stable (an attractor) and the

negative equilibrium is unstable (a repeller). For  = 0 the same plot shows that the one
and only equilibrium  = 0 is a shunt.

-2 -1 1

-1

1

p

x

unstable stable

unstable

unstable

EXERCISE 3.77. The equilibrium equation  (2 − 1− ) =
0 has root  = 0 which plots as the -axis in the bifur-

cation diagram. Other equilibria come from the equation

2 − 1 −  = 0 To place these in the bifurcation diagram,
plot  = 1− 2 and reflect the result through the line  = .

These two plots result in the bifurcation diagram shown, from

which we see that here is one bifurcation and it is a pitchfork

bifurcation that occurs at the point ( ) = (−1 0). To de-
termine the stability properties of the equilibria, you can plot

the cubic  =  ( ) =  (2 − 1− ) for values of   −1
and   −1 and apply the geometric test criterion. The result
is shown. Another way is to use the Derivative Test, which involves evaluating the derivative

 ( )  =  (2) + (2 − 1− ) at the equilibria. At  = 0 the value of the derivative
is −1 −  and the Derivative Test implies that  = 0 is stable when   −1 and unstable
when   −1. At the other equilibria, the value of the derivative is 22  0 and hence these
equilibria are unstable.

-1 1

-1

1

p

x

stable

unstable

stable

unstable

stable

EXERCISE 3.79. The equation (− 1) (− 2) = 0
has root  = 1 which plots as a horizontal straight
line in the bifurcation diagram. Other equilibria come

from the equation  − 2 = 0 To place these in the
bifurcation diagram, plot  = 2 and reflect the result

through the line  = . These two plots result in the

bifurcation diagram shown, from which we see that are

two bifurcations. A transcritical bifurcation occurs at

the point ( ) = (1 1) and a blue-sky bifurcation occurs
at the point ( ) = (0 0). To determine the stability
properties of the equilibria, we can use the Derivative

Test, which involves evaluating the derivative  ( )  = (− 1) (−2)+ (− 2) at the
equilibria. At  = 1 the derivative equals − 1 and therefore  = 1 is stable when   1
and unstable when   1 At the equilibrium  =

√
 the derivative equals (

√
−1)(−2√)

and therefore this equilibrium is unstable when   1 and stable when   1 Finally at the
equilibrium  = −√ the derivative equals (−√− 1)(2√) and therefore this equilibrium
is is stable for all   0 All this stability information is indicated in the bifurcation diagram.
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-15 -10 -5 5

-3
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-1

1
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8

p

x
stable

unstable

EXERCISE 3.81. Solve the equilibrium equation 2+(−
1)( − 4) = 0 for  = − (− 1) (− 4) 2 and plot. Reflect
the plot through the line  =  to obtain the bifurcation dia-

gram. From the diagram we see there is one bifurcation and it

is a blue-sky bifurcation that occurs at ( ) = (916 85) ≈
(05625 16). A plot of  =  ( ) = 2 + (− 1)(− 4) for
  916 and an application of the Geometric Test criterion
shows that the larger equilibrium is stable and the smaller is

unstable.

EXERCISE 3.83. From the equilibrium equation −  = 0 we see that the only equilib-
rium is  = ln  whose plot shows there are no bifurcations. The derivative  ( )  =
− evaluated at the equilibium  = ln  equals − which is negative for   0. The
Derivative Test criterion implies the equilibrium is stable.

2 4 6 8 10

-2

2

p

x

stable

-4 -2 2 4

-2

2

p

x

unstablestable

EXERCISE 3.85. The only equilibrium is  = 1 and the
bifurcation diagram is a horizontal straight line. First fix  

0. Then ( ) =  (− 1)3 is positive for   1 and negative
for   1 which implies the equilibrium  = 1 is unstable.
On the other hand, for   0 we have the opposite: ( ) =
 (− 1)3 is negative for   1 and positive for   1 which
implies the equilibrium  = 1 is stable. Thus, a bifurcation
occurs at ( ) = (0 1), but it is not of any of the three types
that we classified.

EXERCISE 3.87.

-5 -4 -3 -2 -1 1 2 3 4 5

-6

-4

-2

2

4

6

p

x
unstable

unstable

sta ble

Solve the equilibrium equation  − (1 − 1
27
2) = 0 for

 = (1− 1
27
2) and plot. Reflect the resulting graph through

the line  =  to obtain the bifurcation diagram shown. From

the diagram we see that there are two blue-sky bifurcations. To

determine the stability of the equilibria, we use the Geometric

Test by plotting  ( ) =  − (1 − 1
27
2). First draw a

graph of the cubic polynomial −(1 − 1
27
2) obtained when

 = 0. There are three roots and the phase line portrait is
←− −√27 −→ 0 ←− √27 −→. Adding   0 ( 0) to
−(1 − 1

27
2) results in a translation of the graph upward

(downward). For   2 there is only one (negative) root 1
and the phase line portrait is ←− 1 −→  For   −2 there is only one (positive) root 3
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and the phase line portrait is←− 3 −→  For −2    2 there are three roots 1  2  3
and the phase line portrait is←− 1 −→ 2 ←− 3 −→. Thus, the two blue-sky bifurcations
occur at  = −2 and  = 2.

EXERCISE 3.89.

-2 -1 1 2

-1

1

p

x
stable

unstable

Solve the equilibrium equation − 4 = 0 for  = 4 and

plot. Reflect the resulting graph through the line  =  to

obtain the bifurcation diagram shown. From the diagram we

see that a blue-sky bifurcation occurs at ( ) = (0 0). For
  0 there are two equilibria,  = − 4

√
 and + 4

√
. An

evaluation of the derivative ( ) = −43 at  = − 4
√


yields a positive answer so this equilibrium is unstable. An

evaluation of the derivative ( ) = −43 at  = 4
√


yields a negative answer so this equilibrium is stable.

EXERCISE 3.91.

-1 1 2

-2

-1

1

2

p

x

stable

unstable

shunt shunt

The equilibrium equation 2
³
− −

2
´
= 0 has root

 = 0 for all values of . Other equilibria are roots of

 − −
2
= 0 Solving for  = −

2
and plotting and reflect-

ing the graph through the line  =  yields the bifurcation

diagram shown. Note that the equilibrium  = 0 plots as
the -axis in this diagram. Therefore, there is a pitch-fork

bifurcation at ( ) = (1 0). For 0    1 there are three
equilibria:  = −

p
ln (1),  =

p
ln (1), and  = 0. For

  −pln (1) and for  
p
ln (1) we see that  ( ) =

2
³
− −

2
´
is positive. For −pln (1)   

p
ln (1)

we see that  ( ) = 2
³
− −

2
´
is negative, except at  = 0. Thus,  = −

p
ln (1)

is stable,  =
p
ln (1) is unstable and  = 0 is a shunt. For  ≥ 1 there is only one

equilibrium, namely,  = 0, and since  ( ) = 2
³
− −

2
´
 0 for all  (except  = 0)

in this case, it follows that  = 0 is a shunt for all   0.

EXERCISE 3.99.

Z
1

1 + 2
 =

Z


arctan = + 

Since 1 + 2 = 0 has no solution, there are no equilibria.

 () = tan (+ )   = arbitrary constant.
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EXERCISE 3.101.

Z
1

− 1


 =

Z
Z



2 − 1 = + 

1

2
ln
¯̄
2 − 1¯̄ = + ¯̄
2 − 1¯̄ = 22

2 − 1 = 2  = arbitrary nonzero constant

The equilibrium equation  − 1 = 0 yields two equilibria  = ±1 both of which can
be included in the (implicitly) formula above by allowing  to be 0. The implicit general
solution is

2 − 1 = 2  = arbitrary constant.

EXERCISE 3.103.

Z
1

cot
 =

Z


− ln (cos) = +   = arbitrary constant

together with the equilibria  = 2 ±   = 0±1±2 · · · describes (implicitly) the
general solution.

EXERCISE 3.105.

Z 

1

1

−4 =
Z 

1



1

33
− 1
3
= − 1

 () =

µ
1

3− 2
¶13

EXERCISE 3.107.

Z 

−1
 = −

Z 

0



 −  + 2−1 = −
(− 1) = −− 2−1
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EXERCISE 3.109. Z 

12

1

− 1


 =

Z 

0

Z 

1
2



2 − 1  = 

1

2
ln
¯̄
2 − 1¯̄− 1

2
ln

¯̄̄̄
−3
4

¯̄̄̄
= 

ln

¯̄̄̄
2 − 1
34

¯̄̄̄
= 2

 () =

µ
1− 3

4
2
¶12

EXERCISE 3.111. Z 

−12

1

− 1


 =

Z 

0

Z 

−12



2 − 1  = 

1

2
ln
¯̄
2 − 1¯̄− 1

2
ln

¯̄̄̄
−3
4

¯̄̄̄
= 

ln

¯̄̄̄
2 − 1
34

¯̄̄̄
= 2

 () = −
µ
1− 3

4
2
¶12

EXERCISE 3.116. Z 

0

1

2 − 
 =

Z 

0



ln

¯̄̄̄
− 1


¯̄̄̄
− ln

¯̄̄̄
0 − 1
0

¯̄̄̄
= ¯̄̄̄

− 1


¯̄̄̄
=

¯̄̄̄
0 − 1
0

¯̄̄̄


− 1


=
0 − 1
0



 () =
0

0 − (0 − 1) 

For 0  1 this solution the maximal interval of existence of this solution is −∞    

where

 = ln

µ
0

0 − 1
¶
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EXERCISE 3.118. Z
1


 =

Z
2

 || = 1

3
3 + 

 () =  exp

µ
1

3
3
¶

 = arbitrary constant. The only equilibrium  = 0 is included in this formula.

EXERCISE 3.120. Z
1

2
 =

Z
1

2


−1

= −1


− 

 = arbitrary constant. The only equilibrium is  = 0.

 () =

½


1+
  = arbitrary constant

0

EXERCISE 3.122. Z
1

1− 2
 =

Z
1




1

2
ln

¯̄̄̄
+ 1

− 1
¯̄̄̄
= ln ||+ 

¯̄̄̄
+ 1

− 1
¯̄̄̄
= 22

+ 1

− 1 = 2

where  = ±2 is an arbitrary, nonzero constant. There are two equilibria  = ±1 The
equilibrium −1 is contained in the formula if we allow  to equal 0. The general solution is

 () =

(
1+ exp(2)
−1+ exp(2)   = arbitrary constant

1
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EXERCISE 3.124. Z
1

2 − 3+ 2 =
Z

Z
1

(− 2)(− 1) =
Z



ln

¯̄̄̄
− 2
− 1

¯̄̄̄
=  + ¯̄̄̄

− 2
− 1

¯̄̄̄
=  exp()

− 2
− 1 = ±

 exp()

 =
2−  exp()

1−  exp()

where  = ± is an arbitrary, nonzero constant. The equilibria are the roots of 2− 3+2,
i.e.,  = 1 and 2. The equilibrium 2 is contained in the formula if we allow  to equal 0.

 () =

(
2− exp()
1− exp()   = arbitrary constant

1

EXERCISE 3.126. Z
1

2 − 2
 =

Z
cos Z

1

− 

1

+ 
 = sin + 

1

2
ln

¯̄̄̄
+ 

− 

¯̄̄̄
= sin + ¯̄̄̄

+ 

− 

¯̄̄̄
= 22 sin 

+ 

− 
= ±22 sin 

 = −1 +  exp(2 sin )

1−  exp(2 sin )

where  = ±2 is an arbitrary, nonzero constant. The equilibria are  = ±. The

equilibrium − is included in the formula if we allow  to equal 0. The general solution is

 () =

(
−1+ exp(2 sin )

1− exp(2 sin )   = arbitrary constant
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EXERCISE 3.128. Z 

1

1


 =

Z 

0

2

ln || = 1

3
3

 () = exp

µ
1

3
3
¶

EXERCISE 3.130. Z 

−1
4 =

Z 

0

(+ 1)

1

5
5 +

1

5
=
1

2
2 + 

5 + 1 =
5

2
2 + 5

EXERCISE 3.132. Z 



 =

Z 

1

2

If  6= −1 Z 



 =

Z 

1

2

1

+ 1
+1 − 1

+ 1
+1 = 2 − 1
+1 = (+ 1)(2 − 1) + +1

If  = −1 Z 



 =

Z 

1

2

ln ||− ln || = 2 − 1
|| = || exp(2 − 1)

 () =  exp(2 − 1)
EXERCISE 3.136. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = 0
0(0) = 2

and
01 = 1 + −0
1(0) = 0

The first initial value problem has solution 0 () = 2
 and the second initial value problem

becomes
01 = 1 + 2
1(0) = 0
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whose solution is 1 () = −2 + 2 Thus, 1() = 2 + (−2 + 2) 
EXERCISE 3.138. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = 20
0(0) = 1

and
01 = 21 − sin 
1(0) = 0

The solutions are 0 () = 2 and

1 () =
1

5
cos +

2

5
sin − 1

5
2

Thus,

1() = 2 +

µ
1

5
cos +

2

5
sin − 1

5
2
¶


EXERCISE 3.140. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = 0 − 20
0(0) = 1

and
01 = 1 − 201 + sin 
1(0) = 0

The first initial value problem has solution 0 () = 1 and the second initial value problem
becomes

01 = −1 + sin 
1(0) = 0

whose solution is

1 () =
1

2
− − 1

2
cos +

1

2
sin 

Thus,

1() = 1 +

µ
1

2
− − 1

2
cos +

1

2
sin 

¶


EXERCISE 3.142. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = 1
0(0) = 1

and
01 = 0 (1− 0)
1(0) = 0

The first initial value problem has solution 0 () = 1+ and the second initial value problem

becomes
01 = (1 + ) (−) = −− 2

1(0) = 0

whose solution is 1 () = −22− 33 Thus, 1() = 1 + + (−22− 33) 
EXERCISE 3.144. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = 0
0(1) = −1 and

01 = 0
1(1) = 0



358 APPENDIX A. ANSWERS TO EXERCISES

The first initial value problem has solution 0 () = −1 and the second initial value problem
becomes

01 = −1
1(1) = 0

whose solution is 1 () = 1−  Thus, 1() = −1 + (1− ) 
EXERCISE 3.146. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = −0 + 1
0(0) = 0

and
01 = −1 − 20
1(0) = 0

The first initial value problem has solution 0 () = −− + 1 and the second initial value
problem becomes

01 = −1 + 2− − −2 − 1
1(0) = 0

whose solution is 1 () = 2
− + −2 − 1 Thus, 1() = (−− + 1) + (2− + −2 − 1) 

EXERCISE 3.148. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = −0
0(0) = 2

and
01 = −1 + 30
1(0) = 0

The first initial value problem has solution 0 () = 2
− and the second initial value problem

becomes
01 = −1 + 8−2
1(0) = 0

whose solution is 1 () = 8
− − 8−2 Thus, 1() = (2−) + (8− − 8−2) 

EXERCISE 3.150. The initial value problems for the coefficients 0() and 1() in the
first order perturbation expansion 1() = 0() + 1() are

00 = 0
0(0) = 3

and
01 = 2 +

1+3

1+0

1(0) = 0

The first initial value problem has solution 0 () = 3
 and the second initial value problem

becomes
01 = 2 + 1
1(0) = 0

whose solution is 1 () =  − 1 Thus, 1() = (3) + ( − 1) 
EXERCISE 3.153. ⎧⎨⎩ 00 = −0 0(0) = 0

01 = −1 − 0 sin  1(0) = 0
02 = −2 − 1 sin  2(0) = 0

The first (linear homogeneous) initial value problem has solution 0 () = 0
−(−0) Us-

ing this solution in the second (linear nonhomogeneous) initial value problem, we solve for
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1 () = 0 (cos − cos 0) −(−0) Finally, solving the last (linear nonhomogeneous) initial
value problem we obtain

2 () =
1

2
0
¡
cos2 − 2 cos  cos 0 + cos2 0

¢
−(−0)

These solutions yield the perturbation approximation.

2() = 0
−(−0) + 0 (cos − cos 0) −(−0)
+
1

2
0
¡
cos2 − 2 cos  cos 0 + cos2 0

¢
−(−0)2

EXERCISE 3.160. () = 1 − − is positive for   0 and negative for   0 and
therefore solutions increase for 0  0 and decrease for 0  0
EXERCISE 3.162. The roots of () = cos2  are  = 2+,  = 0±1±2 · · · . The
graph of () has local minima at each of these equilibrium and there they are non-hyperbolic
shunts.

· · · −→ −3
2
 −→ −1

2
 −→ 1

2
 −→ 3

2
 −→ 5

2
 −→ · · ·

EXERCISE 3.164. If   0 there are no equilibria.
If   0 there are two equilibria:  = ±√. The derivative  = −2− 1 evaluated

at either equilibrium equals −1 − 1  0 and we find that both equilibria are hyperbolic
attractors.

If  = 0 then the unique equilibrium  = 0 is an attractor (the equation reduces to
0 = −).

  0 implies −→ 0←−
 = 0 implies −→ 0←−
  0 implies −→ −√←− 0 −→ √←−

Note: 0 is not an equilibrium when  6= 0.
EXERCISE 3.166. The derivative of () = 2(1−) is  = 2−32 The lineariza-
tion at the equilibrium 0 is 0 = 0 since  evaluated at 0 equals 0 The linearization at
the equilibrium 1 is 0 = − since  evaluated at 1 equals −1.
EXERCISE 3.168. The derivative of () = − − is  = − The linearization
at the equilibrium − (ln )  is 0 =  since  evaluated at − (ln )  equals .
EXERCISE 3.170. (a) The equilibria are  = 0

√
2 and −√2 The phase line portrait

is:

−→ −√2←− 0 −→ √2←− 

(b)  = 0 is a repeller.  = ±
√
2 are both attractors.

(c) Let

() = 3
2− 2

1 + 2


The derivative  evaluated at 0 equals 0 and  = 0 is non-hyperbolic. The derivative
 evaluated at ±√2 equals −83 is nonzero, both  = ±

√
2 are hyperbolic.
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(d) The linearization at  = 0 is 0 = 0 which is non-hyperbolic. The linearizations at
 = ±

√
2 are both 0 = −8

3
 which has a hyperbolic attractor.

(e) The linearization theorem does not apply for the non-hyperbolic equilibrium  = 0.
It does apply for the equilibria  = ±

√
2 and it asserts both are attractors.

EXERCISE 3.172.

(a) There are no equilibria if   0. If  = 0 the only equilibrium is  = 0. If   0
there are two equilibria:  = ±(−)14 The phase line portrait depends on  as follows:

−→ for   0
−→ 0 −→ for  = 0
−→ −(−)14 ←− (−)14 −→ for   0

(b) When  = 0  = 0 is a shunt. When   0  = −(−)14 is an attractor and
 = (−)14 is a repeller.
(c) Let () =  + 4. The derivative  evaluated at 0 equals 0 and therefore 0 is

non-hyperbolic. The derivative  evaluated at 1 equals4 and 1 is hyperbolic.
(d) The linearization at  = 0 is 0 = 0 which is non-hyperbolic. The linearization at

 = 1 is 
0 = 4 which is a hyperbolic repeller.

(e)When  = 0 the linearization theorem does not apply for the non-hyperbolic equilib-
rium  = 0. When   0 the theorem does apply for the equilibria  = ±(−)14. It asserts
 = −(−)14 is an attractor and  = (−)14 is a repeller.

__________________________________

The following are example answers only (based upon using polynomials). There are in-

finitely many possible correct answers. Any function () with the specified roots and the
appropriate signs between the roots will work. The polynomial answers below are found by

multiplying factors determined as follows. If  is to be an attractor or a repeller we use

the factor  − . If  is to be a shunt we use the factor (− )
2
. After all factors are

multiplied together, a sign change might be necessary in order to get the orbit arrows to point

in the correct direction.

EXERCISE 3.174. 0 = 2(− 1)2(2− )
EXERCISE 3.176. 0 = (− )

__________________________________

EXERCISE 3.178. The equations are qualitatively equivalent. They have phase line

portraits of the form

←− • −→ •←−
EXERCISE 3.180. The equations are not qualitatively equivalent. The first equation

has a repeller at  = −1 and the second equation has an attractor at  = 0.
EXERCISE 3.182. ⎧⎨⎩ −→ 0←−  −→ for   0

−→ 0 −→ for  = 0
−→ ←− 0 −→ for   0
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A transcritical bifurcation (with an exchange of stability) occurs at  = 0Two saddle-node
bifurcations occur at  = 0 and another saddle-node bifurcation occurs at  = −1
EXERCISE 3.184. ⎧⎪⎪⎨⎪⎪⎩

−→ for  ≥ 0
←− • −→ •←− for − 1    0
←− •←− for  = −1
←− for   −1

A saddle-node bifurcation occurs at  = −1.
EXERCISE 3.186.⎧⎨⎩ −→ for   1

−→ 1 −→ for  = 1
−→ ¡

1−√− 1¢←− ¡1 +√− 1¢ −→ for   1

A saddle node bifurcation occurs at  = 1.

A.5 Chapter 4: Systems and Higher Order Equations

EXERCISE 4.1. Is a solution pair:

0 = −6−6 = −2+ 2
0 = 12−6 = 2− 5

EXERCISE 4.3. Is not a solution pair:

0 = −4− − 24−6 6= −4− + 8−6 = −2+ 2
EXERCISE 4.5. Is a solution pair:

0 = −2 sin  = 

0 = −2 cos  = −
EXERCISE 4.7. Is not a solution pair:

0 = 2 cos 2 6= 

EXERCISE 4.9. Is a solution pair:

0 = − sin + cos  = 

0 = − cos − sin  = −
EXERCISE 4.11. Is a solution pair:

0 =  cos  = 

0 = − sin  = −
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EXERCISE 4.14.

 (  ) = (1− )− 

1 + 

and its derivatives and  (  ) = −+ 

1+
and its derivatives are continuous for all 0and

0 and all 0 6= −1. For these initial conditions there exists a unique solution pair on
an interval containing 0. For 0 = −1the fundamental theorem does not apply and no

conclusions can be drawn.

EXERCISE 4.16.  (  ) = +  and its derivatives and  (  ) = +  and its

derivatives are continuous for all 0 0 and 0 Thus, for all initial conditions there exists a

unique solution pair on an interval containing 0.

EXERCISE 4.18.  (  ) = (1 − 
2+sin 

) −  and its derivatives and  (  ) =
−+ and its derivatives are continuous for all 0 0 and 0 Thus, for all initial conditions

there exists a unique solution pair on an interval containing 0.

EXERCISE 4.20.  (  ) =   (  ) = − + sin  and all their derivatives with
respect to  and  are continuous for all 0 0 and 0 Thus, for all initial conditions there

exists a unique solution pair on an interval containing 0

EXERCISE 4.22.  (  ) = ,  (  ) = −−2− −1 and all their derivatives with
respect to  and  are continuous for all 0and 0 and all 0 6= 0. For these initial conditions
there exists a unique solution pair on an interval containing 0. For 0 = 0 the fundamental
theorem does not apply and no conclusions can be drawn.

EXERCISE 4.24.  (  ) = ,  (  ) = − − (2 − 1) +  sin  and all their
derivatives with respect to  and  are continuous for all 0 0 and 0 Thus, for all initial

conditions there exists a unique solution pair on an interval containing 0.

EXERCISE 4.32.

-2 -1 1 2

-2

-1

1

2

x

y

EXERCISE 4.34.

-1 1

-1

1

x

y
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EXERCISE 4.36.

-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

x

y

EXERCISE 4.38. (a) and (6), (b) and (2), (c) and (1), (d) and (3), (e) and (5), (f) and

(4)

EXERCISE 4.39. The -nullcline is given by the equation − = 0, i.e., is the -axis. The
-nullcline is given by the equation  = 0, i.e., is the -axis.

-2 -1 1 2

-2

-1

1

2

x

y

EXERCISE 4.41. The -nullcline is given by the equation −+ = 0, i.e., is the straight
line  =  The -nullcline is given by the equation + = 0, i.e., is the straight line  = −.

-2 -1 1 2

-2

-1

1

2

x

y

EXERCISE 4.43. The -nullcline is given by the equation (1 − ) = 0, i.e.,  = 0
(the -axis) and  = 1 (a horizontal straight line). The -nullcline is given by the equation
(1− ) = 0, i.e.,  = 0 (the -axis) and  = 1 (a vertical straight line).

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

x

y
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EXERCISE 4.49.
0 = −− = −2− + − = −2+ 

0 = −− = − − 2− = − 2
EXERCISE 4.51.

0 = −− − 3−3 = −2 (− + −3) + (− − −3) = −2+ 

0 = −− + 3−3 = (− + −3)− 2 (− − −3) = − 2
EXERCISE 4.53.

0 = −6−3 = 4 (2−3)− 2 (7−3) = 4− 2
0 = −21−3 = 7 (2−3)− 5 (7−3) = 7− 5

EXERCISE 4.55.

0 = −6−3 − 22 = 4 (2−3 − 2)− 2 (7−3 − 2) = 4− 2
0 = −21−3 − 22 = 7 (2−3 − 2)− 5 (7−3 − 2) = 7− 5

EXERCISE 4.57.

0 = −2 sin − 2 cos  = 

0 = −2 cos + 2 sin  = − (3 + 2 cos − 2 sin ) + 3 = −+ 3

EXERCISE 4.59.  (  ) = sin( + ),  (  ) = sin( − ) are continuous and
continuously differentiable functions for all  , and . The fundamental existence and

uniqueness theorem applies to any initial value problem, in particular for the case (0) = 1
(0) = 0. We conclude that there exists a unique solution on an interval containing 0 = 0.
EXERCISE 4.61.

 (  ) =
1 + 

1− 
  (  ) =

1 + 

1− 

are continuous and have continuous derivatives wherever their denominators do not vanish.

Thus, we must avoid  = 1 and  = 1 in initial value problems if the fundamental existence
and uniqueness theorem is to be applied. Since (0) = 1 we can conclude nothing from the

theorem.

EXERCISE 4.63.

(  ) =
1 + 

1− 
 (  ) =

1 + 

1− 

are continuous and have continuous derivatives where ever their denominators do not vanish.

Thus, for 0 6= 1 and 0 6= 1 the fundamental existence and uniqueness theorem applies

and for any such initial value problem we conclude there exists a unique solution on an

interval containing 0. For all other initial value problems the theorem does not apply and

no conclusions.

EXERCISE 4.65. (  ) =
√
− − , (  ) =

√
+ +  are continuous and

have continuous derivatives at all points for which  −  −   0 and  +  +   0. For
any initial conditions satisfying these inequalities the fundamental existence and uniqueness
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theorem applies. We conclude that if 0− 0− 0  0, 0+ 0+ 0  0 then the initial value
problem will have a unique solution on some interval containing 0 For all other initial value

problems the theorem does not apply and no conclusion can be drawn.

EXERCISE 4.67. Since () = cos  () = −2 () = 2 () = −3 sin  and 1() =
2() = 0 are all continuous for all  there exists a unique solution for any initial value
problem and it exists for all .

EXERCISE 4.69.  (  ) = 2+ and  (  ) = − are continuous for all   and

 so all initial value problems have a unique solution defined on an interval containing 0.

EXERCISE 4.71. Since () = 0, () = 1, () = − () = 0 and 1() = 2() = 0
in the equivalent first order system are continuous for all , all initial value problems have

unique solutions that exist for all 

EXERCISE 4.73. Since () = 0, () = 1, () = −−2 () = −−1 and 1() = 2() =
0 in the equivalent first order system, any initial value problem for with 0 6= 0 will have a
unique solution. For 0  0 the solution exists for   0 and for 0  0 the solution exists for
  0.
EXERCISE 4.82. For Euler’s Algorithm:

 (1) (1)

010000
005000
002500
001250
000625

2908672
3007559
3061206
3089191
3103490

1185711
1224857
1246410
1257730
1263533

The digit 3 for (1) and 12 for (1) appear to have stabilized.

A.6 Chapter 5: Linear Systems of First Order Equa-

tions

EXERCISE 5.1. linear homogeneous

EXERCISE 5.3. nonlinear (because of the term 2)

EXERCISE 5.5. linear nonhomogeneous

EXERCISE 5.7. linear homogeneous

EXERCISE 5.9.

 () =

µ
5 −5
−1 −1

¶
 ̃() =

µ
0
−7

¶
µ





¶0
=

µ
5 −5
−1 −1

¶µ




¶
+

µ
0
−7

¶
EXERCISE 5.11.

 () =

µ
− 4 3
−1 − 1

¶
 ̃() =

µ
2

−
¶

µ




¶0
=

µ
− 4 3
−1 − 1

¶µ




¶
+

µ
2

−
¶
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EXERCISE 5.13. The coefficient matrix  () and the nonhomogeneous term ̃ () are
continuous on −∞    +∞ and therefore the (unique) solution exists on −∞    +∞.
EXERCISE 5.15. The coefficient matrix  () is continuous on each of the intervals −∞ 

  −1−1    1 and 1    +∞ Since 0 = 0 lies in the interval −1    1, it is only
this interval that is relevant. The nonhomogeneous term ̃ () is continuous on this interval
as well and therefore the (unique) solution exists on −1    1.
EXERCISE 5.17. The coefficient matrix  () is continuous on each of the intervals 0 
 
√
2 and

√
2    +∞. Since 0 = 1 lies in the interval 0   

√
2, it is only this

interval that is relevant. The nonhomogeneous term ̃ () is also continuous on this interval
(because its only singularities are at  = 0 and −1). Therefore the (unique) solution exists
on 0   

√
2.

EXERCISE 5.20. (a) First solution:

̃01 () =
µ
1
0

¶
=

µ
3
2
−1
2− 1

22
1
2

¶µ


1

¶
=  () ̃1 ()

Second solution:

̃02 () =
µ
2
−1

¶
=

µ
3
2
−1
2− 1

22
1
2

¶µ
2

−
¶
=  () ̃1 ()

(b) The two solutions ̃1 () and ̃2 () are independent on the interval   0 because the
determinant

det

µ
 2

1 −
¶
= −22 6= 0

is nonzero on the interval   0. They can therefore be used to construct a fundamental
solution matrix

Φ () =

µ
 2

1 −
¶

and the general solution formula

̃() = Φ () ̃ =

µ
 2

1 −
¶µ

1
2

¶
=

µ
1+ 2

2

1 − 2

¶


(c) Using

Φ−1 () =
µ
− 1

22

¶µ − −2
−1 

¶
we have that

̃() = Φ ()Φ−1 (1) ̃0

=

µ
 2

1 −
¶µ

 2

1 −
¶−1µ

2
0

¶
=

µ
 2

1 −
¶µ
−1
2

¶µ −1 −1
−1 1

¶µ
2
0

¶
=

µ
2 + 

1− 

¶
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EXERCISE 5.22.

(a) On the interval −∞    +∞ we have

̃01 () =
µ
44

84

¶
=

µ −2 3
2 3

¶µ
4

24

¶
=  () ̃1 ()

̃02 () =
µ

9−3

−3−3
¶
=

µ −2 3
2 3

¶µ −3−3
−3

¶
=  () ̃2 ()

(b) The solutions in (a) are independent because the determinant

det

µ
4 −3−3
24 −3

¶
= 7 6= 0

is nonzero on the interval −∞    +∞. They can therefore be used to construct a
fundamental solution matrix

Φ () =

µ
4 −3−3
24 −3

¶
and obtain the formula

̃ () = Φ () ̃ =

µ
4 −3−3
24 −3

¶µ
1
2

¶
=

µ
1

4 − 32−3
21

4 + 2
−3

¶
for the general solution.

(c)

̃0 () =
µ
84 − 9−3
164 + 3−3

¶
=

µ −2 3
2 3

¶µ
24 + 3−3

44 − −3

¶
=  () ̃ ()

(d) We need to find ̃ so that Φ () ̃ = ̃ (), i.e.

̃ = Φ−1 () ̃ () =
µ

4 −3−3
24 −3

¶−1µ
24 + 3−3

44 − −3

¶
=

1

7

µ
−4 3−4

−23 3

¶µ
24 + 3−3

44 − −3

¶
=

µ
2
−1

¶


Thus

̃ () = Φ () ̃ =

µ
4 −3−3
24 −3

¶µ
2
−1

¶
= 2̃1 ()− ̃2 () 

EXERCISE 5.24.

(a) A fundamental solution matrix is

Φ () =

µ −2−5 5

−5 25

¶
Using

Φ−1 () =
1

5

µ −25 5

−5 2−5

¶
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we have

̃ () = Φ ()Φ−1 (0) ̃ (0)

=

µ −2−5 5

−5 25

¶
1

5

µ −2 1
1 2

¶µ −1
2

¶
=

µ
3
5
5 − 8

5
−5

4
5
−5 + 6

5
5

¶


(b) A fundamental solution matrix is

Φ () =

µ −2−5 5

−5 25

¶
Using

Φ−1 () =
1

5

µ −25 5

−5 2−5

¶
we have

̃ () = Φ ()Φ−1 (0) ̃ (0)

=

µ −2−5 5

−5 25

¶
1

5

µ −2 1
1 2

¶µ
3
1

¶
=

µ
2−5 + 5

25 − −5

¶


EXERCISE 5.29. From Example 5.3 we have the fundamental solution matrix

Φ () =

µ
2− −6

− −2−6
¶


(a)

̃() = Φ()Φ−1(0)̃0

=
1

5

µ
4− + −6 2− − 2−6
2− − 2−6 − + 4−6

¶µ
1
1

¶
=

µ
6
5
− − 1

5
−6

3
5
− + 2

5
−6

¶
(c)

̃() = Φ()Φ−1(0)̃0

=
1

5

µ
4− + −6 2− − 2−6
2− − 2−6 − + 4−6

¶µ
10
−5

¶
=

µ
6− + 4−6

3− − 8−6
¶
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EXERCISE 5.30. The coefficient matrix of the equivalent linear homogeneous system is

 () =

µ
0 1
−1 0

¶


From Example 5.4 we have the fundamental solution matrix and its inverse:

Φ () =

µ
cos  sin 
− sin  cos 

¶
, Φ−1 () =

µ
cos  − sin 
sin  cos 

¶


To find solution formulas for each initial value problemwe use the formula ̃() = Φ()Φ−1(0)̃ (0) 
(a)

̃() = Φ()Φ−1(0)̃ (0) =
µ

cos  sin 
− sin  cos 

¶µ
cos 0 − sin 0
sin 0 cos 0

¶µ −1
1

¶
=

µ − cos + sin 
sin + cos 

¶


(c)

̃() = Φ()Φ−1()̃ ()

=

µ
cos  sin 
− sin  cos 

¶µ
cos − sin
sin cos

¶µ −1
1

¶
=

µ
cos − sin 
− cos − sin 

¶


EXERCISE 5.31. (a) A fundamental matrix is

Φ() =

µ
cos  sin 
− sin  cos 

¶


So

Φ−1() =
µ
cos  − sin 
sin  cos 

¶
and Z

Φ−1()̃() =
Z µ

cos  − sin 
sin  cos 

¶µ
1
−1

¶


=

µ
sin − cos 
− cos − sin 

¶


Thus,

Φ()

Z
Φ−1()̃() =

µ
cos  sin 
− sin  cos 

¶µ
sin − cos 
− cos − sin 

¶
=

µ −1
−1

¶
and the general solution

̃ () = Φ()̃+ Φ()

Z
Φ−1()̃()
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is

̃ () =

µ
cos  sin 
− sin  cos 

¶µ
1
2

¶
+

µ −1
−1

¶
=

µ
1 cos + 2 sin − 1
−1 sin + 2 cos − 1

¶


(b)

̃ () = Φ()Φ−1(0)̃0 + Φ()

Z 

0

Φ−1()̃()

=

µ
cos  sin 
− sin  cos 

¶µ
1 0
0 1

¶−1µ
0
0

¶
+

µ
cos  sin 
− sin  cos 

¶Z 

0

µ
cos  − sin 
sin  cos 

¶µ
1
−1

¶


=

µ
0
0

¶
+

µ
cos  sin 
− sin  cos 

¶µ − cos + sin + 1
− cos − sin + 1

¶
=

µ
cos + sin − 1
− sin + cos − 1

¶


EXERCISE 5.33. (a)

̃ () = Φ()̃+ Φ()

Z 

Φ−1()̃()

=

µ
 23

 33

¶µ
1
2

¶
+

µ
 23

 33

¶Z 
µ

 23

 33

¶−1µ
−

1

¶


=

µ
 23

 33

¶µ
1
2

¶
+

µ
 23

 33

¶Z 
µ
3− −2−
−−3 −3

¶µ
−

1

¶


=

µ
1

 + 22
3

1
 + 32

3

¶
+

µ
 23

 33

¶Z 
µ
3−2 − 2−
−3 − −4

¶


=

µ
1

 + 22
3

1
 + 32

3

¶
+

µ
 23

 33

¶µ −3
2
−2 + 2−

1
4
−4 − 1

3
−3

¶
=

µ
1

 + 22
3 + 4

3
− −

1
 + 32

3 + 1− 3
4
−

¶
(b)

̃ () = Φ()Φ−1 (0) ̃0 + Φ()

Z 

0

Φ−1()̃()

= 0̃ +

µ
 23

 33

¶Z 

0

µ
 23

 33

¶−1µ
−

1

¶
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=

µ
 23

 33

¶µ −3
2
−2 + 2− − 1

2
1
4
−4 − 1

3
−3 + 1

12

¶
=

µ −1
2
 + 1

6
3 + 4

3
− −

−1
2
 + 1

4
3 + 1− 3

4
−

¶
(c)

̃ () = Φ()Φ−1 (0) ̃0 + Φ()

Z 

0

Φ−1()̃()

=

µ
 23

 33

¶µ
3 −2
−1 1

¶µ
2
1

¶
+

µ −1
2
 + 1

6
3 + 4

3
− −

−1
2
 + 1

4
3 + 1− 3

4
−

¶
=

µ
3 − 23 23 − 2
3 − 33 33 − 2

¶µ
2
1

¶
+

µ −1
2
 + 1

6
3 + 4

3
− −

−1
2
 + 1

4
3 + 1− 3

4
−

¶

=

µ
4 − 23
4 − 33

¶
+

µ −1
2
 + 1

6
3 + 4

3
− −

−1
2
 + 1

4
3 + 1− 3

4
−

¶
=

µ
7
2
 − 11

6
3 + 4

3
− −

7
2
 − 11

4
3 + 1− 3

4
−

¶
EXERCISE 5.36. (a) The second order equation is equivalent to the system

0 = 

0 = −+ tan 
From

Φ() =

µ
sin  cos 
cos  − sin 

¶
 Φ−1() =

µ
sin  cos 
cos  − sin 

¶
we calculateZ

Φ−1()̃() =
Z µ

sin  cos 
cos  − sin 

¶µ
0
tan 

¶
 =

Z µ
sin 

− sin2 
cos 

¶


=

Z µ
sin 
cos2 −1
cos 

¶
 =

Z µ
sin 

cos − sec 
¶
 =

µ − cos 
sin + 1

2
ln
¯̄
1−sin 
1+sin 

¯̄ ¶ 

Thus,

Φ()

Z
Φ−1()̃() =

µ
sin  cos 
cos  − sin 

¶µ − cos 
sin + 1

2
ln
¯̄
1−sin 
1+sin 

¯̄ ¶
=

µ − sin  cos + cos  sin + 1
2
(cos ) ln

¯̄
1−sin 
1+sin 

¯̄
− cos2 − sin2 + 1

2
(− sin ) ln ¯̄1−sin 

1+sin 

¯̄ ¶
=

µ
1
2
(cos ) ln

¯̄
1−sin 
1+sin 

¯̄
−1− 1

2
(sin ) ln

¯̄
1−sin 
1+sin 

¯̄ ¶
and the general solution

̃ = Φ()̃+ Φ()

Z
Φ−1()̃()
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is µ
 ()
 ()

¶
=

µ
sin  cos 
cos  − sin 

¶µ
1
2

¶
+

µ
1
2
(cos ) ln

¯̄
1−sin 
1+sin 

¯̄
−1− 1

2
(sin ) ln

¯̄
1−sin 
1+sin 

¯̄ ¶
=

µ
1 sin + 2 cos +

1
2
(cos ) ln

¯̄
1−sin 
1+sin 

¯̄
1 cos − 2 sin − 1− 1

2
(sin ) ln

¯̄
1−sin 
1+sin 

¯̄ ¶ 

The general solution of the second order differential equations is the first component

 () = 1 sin + 2 cos +
1

2
(cos ) ln

¯̄̄̄
1− sin 
1 + sin 

¯̄̄̄


(b) The solution formula calculated in Exercise 5.36. The initial conditions yield 2 =
0 1 − 1 = 0 or 1 = 1 2 = 0 which yield the solution formula

 () = sin +
1

2
(cos ) ln

¯̄̄̄
1− sin 
1 + sin 

¯̄̄̄


(c) The solution formula calculated in Exercise 5.36, together with the initial conditions,

yield 2 = 1 1 − 1 = 0 or 1 = 1 2 = 1 which yields the solution formula

 = sin + cos +
1

2
(cos ) ln

¯̄̄̄
1− sin 
1 + sin 

¯̄̄̄


EXERCISE 5.37.

(a)

Φ−1() =
µ

2
1
2
 − 12 

−− 1
2
 −

1
2


¶
and Z

Φ−1()̃() =
Z µ

2
1
2
 − 12 

−−1
2
 −

1
2


¶µ −1
2

1

¶
 =

µ −4 12 
−3−1

2


¶
so that

Φ()

Z
Φ−1()̃() =

µ
−

1
2
 

1
2


−
1
2
 2

1
2


¶µ −4 12 
−3−1

2


¶
=

µ −7
−10

¶


The general solution ̃ = Φ()̃+ Φ()
R
Φ−1()̃() is

̃() =

µ
−

1
2
 

1
2


−
1
2
 2

1
2


¶µ
1
2

¶
+

µ −7
−10

¶
=

µ
1

− 1
2
 + 2

1
2
 − 7

1
− 1
2
 + 22

1
2
 − 10

¶
or

 () = 1
− 1
2
 + 2

1
2
 − 7

 () = 1
− 1
2
 + 22

1
2
 − 10
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(c)

Φ−1() =
µ − sin  −1

2
cos − 3

2
sin 

cos  3
2
cos − 1

2
sin 

¶
and Z

Φ−1()̃() =
Z µ − sin  −1

2
cos − 3

2
sin 

cos  3
2
cos − 1

2
sin 

¶µ −2
1

¶


=

µ −1
2
cos − 1

2
sin 

1
2
cos − 1

2
sin 

¶
so that

Φ()

Z
Φ−1()̃() =µ

3 cos − sin  cos + 3 sin 
−2 cos  −2 sin 

¶µ −1
2
cos − 1

2
sin 

1
2
cos − 1

2
sin 

¶
=

µ −1
1

¶


The general solution

̃ = Φ()̃+ Φ()

Z
Φ−1()̃()

is

̃() =

µ
3 cos − sin  cos + 3 sin 
−2 cos  −2 sin 

¶µ
1
2

¶
+

µ −1
1

¶
=

µ
1 (3 cos − sin ) + 2 (cos + 3 sin )− 1

−21 cos − 22 sin + 1
¶

or

 () = 1 (3 cos − sin ) + 2 (cos + 3 sin )− 1
 () = −21 cos − 22 sin + 1

(e)

Φ−1() =
µ −1

2
 −

3
2
− 2−

¶
and Z

Φ−1()̃() =
Z µ −1

2
 −

3
2
− 2−

¶µ


0

¶
 =

µ −1
2


−3
2
−

¶
so that

Φ()

Z
Φ−1()̃() =

µ
4− 2

−3− −
¶µ −1

2


−3
2
−

¶
=

µ −5
3

¶


The general solution

̃ = Φ()̃+ Φ()

Z
Φ−1()̃()
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is

̃() =

µ
4− 2

−3− −
¶µ

1
2

¶
+

µ −5
3

¶
=

µ
41

− + 22 − 5
−31− − 2

 + 3

¶
or

 () = 41
− + 22 − 5

 () = −31− − 2
 + 3

EXERCISE 5.38. To solve the initial value problems, use the general solutions calculated

in Exercises 5.37.

(a) The initial conditions yield the equations

1 + 2 − 7 = 1
1 + 22 − 10 = −1

to be solved for

1 = 7 2 = 1

A substitution of these into the general solution gives the solution formulas

 = 7−
1
2
 + 

1
2
 − 7

 = 7−
1
2
 + 2

1
2
 − 10

(c). The initial conditions yield the equations

31 + 2 − 1 = 1
−21 + 1 = −1

to be solved for

1 = 1 2 = −1
A substitution of these into the general solution gives the solution formulas

 () = 2 cos − 4 sin − 1
 () = −2 cos + 2 sin + 1

(e) The initial conditions yield the equations

41 + 22 − 5 = 1
−31 − 2 + 3 = −1

to be solved for

1 =
1

2
(1− ) 2 = −1

2
(3 + 1)
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A substitution of these into the general solution gives the solution formulas

 () = 2(1− )− − (3 + 1) + 5
 () =

3

2
( − 1) − + 1

2
(3 + 1) − 3

EXERCISE 5.39. (a) The army with the smallest initial strength loses.

0.5 1.0 1.5 2.0
-2

2

4

 t 

x

0.5 1.0 1.5 2.0
-2

2

4

 t 

y

 =  = 1
(0) = 4 3 2 and (0) = 3 2 1 respectively

0.5 1.0 1.5 2.0
-2

2

4

 t 

x

0.5 1.0 1.5 2.0
-2

2

4

 t 

y

 =  = 1
(0) = 3 2 1 and (0) = 4 3 2 respectively

(b) Using

Φ−1 () =
1

2

µ
− −−
 

¶
and the Variation of Constants Formula for initial value problems (5.21), we calculate

̃ () = Φ()Φ−1(0)̃0 + Φ()

Z 

0

Φ−1()̃()

̃ () =

µ
 −

− −

¶
1

2

µ
1 −1
1 1

¶µ
0
0

¶
+

µ
 −

− −

¶Z 

0

1

2

µ
− −−
 

¶µ
−

−

¶


=

µ
 −

− −

¶
1

2

µ
0 − 0
0 + 0

¶
+
1

2

µ
 −

− −

¶Z 

0

µ
0

2(1−)

¶


=
1

2

µ
(0 − 0) 

 + (0 + 0) 
−

− (0 − 0) 
 + (0 + 0) 

−

¶
+
1

2

µ
 −

− −

¶µ
0

2
1−

(1−) − 2
1−

¶
=
1

2

µ
(0 − 0) 

 + (0 + 0) 
−

− (0 − 0) 
 + (0 + 0) 

−

¶
+

1

1− 

µ
− − −

− − −

¶
or, component-wise

 () =
1

2
(0 − 0) 

 +
1

2
(0 + 0) 

− +
1

1− 

¡
− − −

¢
 () =

1

2
(−0 + 0) 

 +
1

2
(0 + 0) 

− +
1

1− 

¡
− − −

¢
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This formula works if  6= 1. If  = 1 then the integral is different:Z 

0

µ
0

2(1−)

¶
 =

Z 

0

µ
0
2

¶
 =

µ
0
2

¶
and solution becomes

̃ () =

µ
 −

− −

¶
1

2

µ
0 − 0
0 + 0

¶
+
1

2

µ
 −

− −

¶µ
0
2

¶
=

µ
 −

− −

¶
1

2

µ
0 − 0
0 + 0

¶
+

µ
−

−

¶
or, component-wise

 () =  () +  () =
1

2
(0 − 0) 

 +
1

2
(0 + 0) 

− + −

 () =  () +  () = −1
2
(0 − 0) 

 +
1

2
(0 + 0) 

− + −

(c) If 0  0 then using the formulas from (b) we see that lim→+∞  () = +∞ and

lim→+∞  () = −∞. This means the -army drops to 0 (loses) in finite time. The reason
is that  () starts positive 0  0 at time  = 0 and the intermediate value theorem from

calculus implies  () must therefore equal 0 for some time   0. The situation is reversed
if 0  0, in which case the -army loses.

A.7 Chapter 6: Autonomous Linear Homogeneous Sys-

tems

EXERCISE 6.1.

(a) The eigenvalues of the coefficient matrix are 1 = 2 2 = −3 The Putzer Formula
(6.5) yields

Φ () =

µ
7
5
2 − 2

5
−3 2

5
−3 − 2

5
2

7
5
2 − 7

5
−3 7

5
−3 − 2

5
2

¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
7
5
2 − 2

5
−3 2

5
−3 − 2

5
2

7
5
2 − 7

5
−3 7

5
−3 − 2

5
2

¶µ
1
−1

¶
=

µ
9
5
2 − 4

5
−3

9
5
2 − 14

5
−3

¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
7
5
2 − 2

5
−3 2

5
−3 − 2

5
2

7
5
2 − 7

5
−3 7

5
−3 − 2

5
2

¶µ
2
3

¶
=

µ
8
5
2 + 2

5
−3

8
5
2 + 7

5
−3

¶
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EXERCISE 6.3.

(a) The eigenvalues of the coefficient matrix are  = 1
2
± 3

2
 The Putzer Formula (6.5)

yields

Φ () =

µ

1
2
 cos 3

2
 − 12  sin 3

2



1
2
 sin 3

2
 

1
2
 cos 3

2


¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ

1
2
 cos 3

2
 − 12  sin 3

2



1
2
 sin 3

2
 

1
2
 cos 3

2


¶µ
1
−1

¶
=

µ

1
2
 cos 3

2
+ 

1
2
 sin 3

2



1
2
 sin 3

2
− 

1
2
 cos 3

2


¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ

1
2
 cos 3

2
 − 12  sin 3

2



1
2
 sin 3

2
 

1
2
 cos 3

2


¶µ
2
3

¶
=

µ
2

1
2
 cos 3

2
− 3 12  sin 3

2


3
1
2
 cos 3

2
+ 2

1
2
 sin 3

2


¶


EXERCISE 6.5.

(a) The eigenvalues of the coefficient matrix are 1 = −277 2 = −039 The Putzer
Formula (6.5) yields

Φ () =

µ
1159 6−039 − 0159 6−277 0191 98−2 77 − 0191 98−039
0963 80−039 − 0963 80−277 1159 6−2 77 − 0159 6−039

¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
1159 6−039 − 0159 6−2 77 0191 98−2 77 − 0191 98−039
0963 80−039 − 0963 80−2 77 1159 6−277 − 0159 6−039

¶µ
1
−1

¶
=

µ
1351 6−039 − 0351 58−277
1123 4−039 − 2123 4−2 77

¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
1159 6−039 − 01596−277 019198−277 − 019198−039
096380−039 − 096380−277 11596−277 − 01596−039

¶µ
2
3

¶
=

µ
0256 74−2 77 + 1743 3−039

1551 2−2 77 + 1448 8−039

¶


EXERCISE 6.7.

(a) The coefficient matrix has complex eigenvalues 1 = 1± . The Putzer Formula (6.6)

yields

Φ () =

µ
 (cos + sin )  sin 
−2 sin   cos −  sin 

¶
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(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
 (cos + sin )  sin 
−2 sin   cos −  sin 

¶µ
1
−1

¶
=

µ
 cos 

− (cos + sin )
¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
 (cos + sin )  sin 
−2 sin   cos −  sin 

¶µ
2
3

¶
=

µ
2 cos + 5 sin 
3 cos − 7 sin 

¶


EXERCISE 6.9.

(a) The eigenvalues of the coefficient matrix are 1 = 3 2 = −2 The Putzer Formula
(6.5) yields

Φ () =

µ
4
5
−2 + 1

5
3 1

5
3 − 1

5
−2

4
5
3 − 4

5
−2 1

5
−2 + 4

5
3

¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
4
5
−2 + 1

5
3 1

5
3 − 1

5
−2

4
5
3 − 4

5
−2 1

5
−2 + 4

5
3

¶µ
1
−1

¶
=

µ
−2

−−2
¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
4
5
−2 + 1

5
3 1

5
3 − 1

5
−2

4
5
3 − 4

5
−2 1

5
−2 + 4

5
3

¶µ
2
3

¶
=

µ
−2 + 3

43 − −2

¶


EXERCISE 6.11.

(a) The eigenvalues of the coefficient matrix are 1 = −61 2 = −15 The Putzer
Formula (6.5) yields

Φ () =

µ
10101−61 − 00101−15 −0042736−61 + 0042736−15
023952−61 − 023952−15 10101−15 − 00101−61

¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
10101−61 − 00101−15 −0042736−61 + 0042736−15
023952−61 − 023952−15 10101−15 − 00101−61

¶µ
1
−1

¶
=

µ
1052 8−6 1 − 0052 8−1 5
0249 62−6 1 − 1249 6−1 5

¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) or
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µ
 ()
 ()

¶
=

µ
10101−61 − 00101−15 −0042736−61 + 0042736−15
023952−61 − 023952−15 10101−15 − 00101−61

¶µ
2
3

¶
=

µ
0108−15 + 1892−6 1

2551 3−15 + 0448 7−6 1

¶


EXERCISE 6.13.

(a) The eigenvalues of the coefficient matrix are  = ±5 The Putzer Formula (6.5)
yields

Φ () =

µ
cos 5+ 1

5
sin 5 13

5
sin 5

−2
5
sin 5 cos 5− 1

5
sin 5

¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
cos 5+ 1

5
sin 5 13

5
sin 5

−2
5
sin 5 cos 5− 1

5
sin 5

¶µ
1
−1

¶
=

µ
cos 5− 12

5
sin 5

− cos 5− 1
5
sin 5

¶


EXERCISE 6.15.

(a) The coefficient matrix has a double eigenvalue 1 = 1 The Putzer Formula (6.6)
yields

Φ () =

µ
 − 3

2
 3

4


−3  + 3
2


¶


(b) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem is ̃() = Φ () ̃(0) orµ

 ()
 ()

¶
=

µ
 − 3

2
 3

4


−3  + 3
2


¶µ
1
−1

¶
=

µ
 − 9

4


− − 9
2


¶


(c) Since the fundamental solution matrix Φ () in (a) is normalized at  = 0, the solution
of the initial value problem isµ

 ()
 ()

¶
=

µ
 − 3

2
 3

4


−3  + 3
2


¶µ
2
3

¶
=

µ
2 − 3

4


3 − 3
2


¶


EXERCISE 6.19. The eigen-pairs

1 = 2 ̃ =

µ
1
1

¶
and 2 = −3 ̃ =

µ
2
7

¶

of the coefficient matrix  =

µ
4 −2
7 −5

¶
produce two exponential solutions ̃ which for

the columns of the fundamental solution matrix

Φ () =

µ
2 2−3

2 7−3

¶
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EXERCISE 6.21. The complex eigen-pair

 =
1

2
+
3

2
 ̃ =

µ
1
−

¶
of the coefficient matrix

 =

µ
1
2
−3
2

3
2

1
2

¶
produce a complex exponential solution ̃ whose real and imaginary parts form the

columns of the fundamental solution matrix

Φ () =

µ

1
2
 cos 3

2
 

1
2
 sin 3

2



1
2
 sin 3

2
 − 12  cos 3

2


¶


EXERCISE 6.23. The eigen-pairs

1 = −27736 ̃ =

µ
045
2761 6

¶
and 2 = −0388 41 ̃ =

µ
045
0376 41

¶
of the coefficient matrix

 =

µ −0012 −045
231 −315

¶
produce two exponential solutions ̃ which for the columns of the fundamental solution

matrix

Φ () =

µ
045−27736 045−0388 41

2761 6−27736 0376 41−0388 41

¶


EXERCISE 6.25 The complex eigen-pair

1 = 1 +  ̃ =

µ
1 + 

−2
¶

of the coefficient matrix

 =

µ
2 1
−2 0

¶
produces a complex exponential solution ̃ whose real and imaginary parts form the

columns of the fundamental solution matrix

Φ () =

µ
 cos −  sin   cos +  sin 
−2 cos  −2 sin 

¶


EXERCISE 6.27. The eigen-pairs

1 = −2 ̃ =

µ
1
−1

¶
and 2 = 3 ̃ =

µ
1
4

¶
of the coefficient matrix

 =

µ −1 1
4 2

¶
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produce two exponential solutions ̃ which for the columns of the fundamental solution

matrix

Φ () =

µ
−2 3

−−2 43

¶


EXERCISE 6.29. The eigen-pairs

1 = −15483 ̃ =

µ
02

−45517
¶

and 2 = −60517 ̃ =

µ
02

−00483
¶

of the coefficient matrix

 =

µ −61 02
−11 −15

¶
produce two exponential solutions ̃ which for the columns of the fundamental solution

matrix

Φ () =

µ
02−15483 02−60517

−45517−15483 −00483−60517
¶


EXERCISE 6.31. The complex eigen-pair

 = 5 ̃ =

µ
1 + 5
−2

¶
of the coefficient matrix

 =

µ
1 13
−2 −1

¶
produce a complex exponential solution ̃ whose real and imaginary parts form the

columns of the fundamental solution matrix

Φ () =

µ
cos 5− 5 sin 5 5 cos 5+ sin 5
−2 cos 5 −2 sin 5

¶


x

y

     












w v

EXERCISE 6.33. The eigenvalues and some associated

eigenvectors of the coefficient matrix

 =

µ
4 −2
7 −5

¶
are

1 = 2 ̂ =

µ
1
1

¶
2 = −3 ̂ =

µ
2
7

¶


The phase portrait is a saddle (since one eigenvalue is positive

and the other is negative) and orbits are asymptotic to ̂ as → +∞ and to ̂ as → −∞.
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x

y

     













EXERCISE 6.35. The eigenvalues  = 1
2
± 3

2
 of the coef-

ficient matrix

 =

µ
1
2
−3
2

3
2

1
2

¶
are complex with a positive real part  = 12 and therefore
the phase plane portrait is an unstable spiral. To determine

the orientation of the spiral orbits we calculate that at the

point ( ) = (1 0) the direction field points in the direction
of (0 0) =

¡
1
2
 3
2

¢
and therefore the orientation is counter clockwise.

x

y

     












vw

EXERCISE 6.37. The eigenvalues and some associated

eigenvectors of the coefficient matrix

 =

µ −0012 −0450
2310 −3150

¶
are (to three decimals accuracy)

1 = −0388 ̂ =

µ
045
0376

¶
2 = −2774 ̂ =

µ
045
2762

¶


The phase plane portrait is a stable node and orbits approach

the origin tangentially to ̂ as → +∞.
EXERCISE 6.39. The eigenvalues  = 1±  of the coeffi-

cient matrix

 =

µ
2 1
−2 0

¶
are complex with positive real part 1.

The phase plane portrait is an unstable spiral. At the test

point ( ) = (1 0) in the phase plane, the direction field ar-
row col (2−2) points to the SE and therefore the sprial rotates
clockwise.

x

y

     











w v
EXERCISE 6.41. The eigenvalues and some associated

eigenvectors of the coefficient matrix

 =

µ −1 1
4 2

¶
are

1 = 3 ̂ =

µ
1
4

¶
2 = −2 ̂ =

µ −1
1

¶


The phase portrait is a saddle (since one eigenvalue is positive

and the other is negative) and orbits are asymptotic to ̂ as → +∞ and to ̂ as → −∞.
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x

y

     













w

v
EXERCISE 6.43. The eigenvalues and some associated

eigenvectors of the coefficient matrix

 =

µ −61 02
−11 −15

¶
are

1 = −1548 ̂ =

µ
02
4552

¶
2 = −6052 ̂ =

µ
02

0048 3

¶


The phase plane portrait is a stable node and orbits approach the origin tangentially to ̂

as → +∞.

x

y

     













EXERCISE 6.45. The eigenvalues  = ±5 of the coeffi-
cient matrix

 =

µ
1 13
−2 −1

¶
,

are complex with zero real part  = 0 and therefore the phase
plane portrait is center. To determine the orientation of the

orbits we calculate that at the point ( ) = (1 0) the di-
rection field points in the direction of (0 0) = (1−2) and
therefore the orientation is clockwise.

x

y

     













EXERCISE 6.47. The eigenvalues  = −3
2
±

√
5
2
 of the

coefficient matrix

 =

µ −1
2

3
4−3 −5
2

¶
are complex with a negative real part  = −32 and therefore
the phase plane portrait is a stable spiral. To determine the

orientation of the spiral orbits we calculate that at the point

( ) = (1 0) the direction field points in the direction of
(0 0) = (−12−3) and therefore the orientation is clockwise.

x

y

     













EXERCISE 6.49. The roots  = −1
2
±

√
3
2
 of the char-

acteristic polynomial 2 +  + 1 are complex with a negative
real part  = −1

2
and therefore the phase plane portrait is a

stable spiral. To determine the orientation of the spiral orbits

we calculate that at the point ( ) = (1 0) the direction field
points in the direction of (0 0) = (−− ) = (0−1) and
therefore the orientation is clockwise.
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x

y

     













w

vEXERCISE 6.51. The roots  = ±
√
2
2
of the characteristic

polynomial 22−1 imply the phase plane portrait is a saddle.
Eigenvectors of the coefficient matrix for the equivalent linear

system

 =

µ
0 1
1
2
0

¶
associated with these eigenvalues are

1 =
√
2
2
 ̂ =

µ
1√
2
2

¶
and 2 = −

√
2
2
 ̂ =

µ
1

−
√
2
2

¶


Orbits are asymptotic to ̂ as → +∞ and to ̂ as → −∞.

x

y

     











 v
w

EXERCISE 6.53. The roots  = 1 4 of the characteristic
polynomial 2 − 5 + 4 imply the phase plane portrait is an
unstable node. Eigenvectors of the coefficient matrix for the

equivalent linear system

 =

µ
0 1
−4 5

¶
associated with these eigenvalues are

1 = 1 ̂ =

µ
1
1

¶
and 2 = 4 ̂ =

µ
1
4

¶


Orbits are asymptotic to ̂ as → +∞.

x

y

     













EXERCISE 6.56. The roots  = ±√5 of the characteris-
tic polynomial 2+5 imply the phase plane portrait is a center
(hence neutrally stable). To determine the orientation of the

orbits we calculate that at the point ( ) = (1 0) the direc-
tion field points in the direction of (0 0) = (−5) = (0−5)
and therefore the orientation is clockwise.

EXERCISE 6.57. The roots  = −15 −23 of the char-
acteristic polynomial 2 + 38 + 345 imply the phase plane
portrait is a stable node. Eigenvectors of the coefficient matrix

for the equivalent linear system

 =

µ
0 1

−345 −38
¶

x

y

     













w v

associated with these eigenvalues are

1 = −15 ̂ =
µ

1
−15

¶
and 2 = −23 ̂ =

µ
1

−23
¶


Orbits approach the origin tangentially to ̂ as → +∞.
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EXERCISE 6.64. The matrix

 =

⎛⎝ 3 −6 −2
2 3 2
−2 6 3

⎞⎠
has eigen-pairs

1 = 3 ̃ =

⎛⎝ 3
1
−3

⎞⎠ ; 2 = 1 ̃ =

⎛⎝ 1
1
−2

⎞⎠ ; 3 = 5 ̃ =

⎛⎝ −10
1

⎞⎠
which yield the fundamental solution matrix

Φ() =

⎛⎝ 33  −5
3  0

−33 −2 5

⎞⎠ 

EXERCISE 6.66. The matrix

 =

⎛⎝ 7 4 6
−5 −3 −4
−5 −2 −5

⎞⎠
has eigenvalues and eigenvectors

1 = −1 ̃ =

⎛⎝ −21
2

⎞⎠ ; 2 =  ̃ =

⎛⎝ −7− 

5
5

⎞⎠
which yield the fundamental solution matrix

Φ() =

⎛⎝ −2− 7 cos − sin  cos + 7 sin 
− −5 cos  −5 sin 
2− −5 cos  −5 sin 

⎞⎠ 

EXERCISE 6.68. The matrix

 =

⎛⎜⎜⎝
−5 6 −3 −2
−5 6 −1 −2
1 −1 2 0
−5 5 0 −1

⎞⎟⎟⎠
has eigenvalues and eigenvectors

1 = 1 ̃ =

⎛⎜⎜⎝
1
1
0
0

⎞⎟⎟⎠ ; 2 = −1 ̃ =

⎛⎜⎜⎝
1
1
0
1

⎞⎟⎟⎠ ;  = 1 +  ̃ =

⎛⎜⎜⎝
−
1− 2
1

1− 3

⎞⎟⎟⎠
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which yield the fundamental solution matrix

Φ() =

⎛⎜⎜⎝
 −  sin  − cos 
 −  cos + 2 sin  −2 cos +  sin 
0 0  cos   sin 
0 −  cos + 3 sin  −3 cos +  sin 

⎞⎟⎟⎠ 

EXERCISE 6.70. For each initial value problem the solution is

e() = Φ()Φ(0)−1

⎛⎝ 1
0
−1

⎞⎠ 

Use the fundamental solution matrix Φ() from Exercises 6.64-6.67.

Exercise 6.64

e() =
⎛⎝ 5

0
−5

⎞⎠
Exercise 6.66

e() =
⎛⎝ − cos + 3 sin + 2−−2 sin − − + cos 
−2 sin − 2− + cos 

⎞⎠
EXERCISE 6.71. For each initial value problem the solution is

e() = Φ()Φ(0)−1

⎛⎜⎜⎝
1
2
−2
−1

⎞⎟⎟⎠ 

Use the fundamental solution matrix Φ() from Exercises 6.68 and 6.69.

Exercise6.68

e() =
⎛⎜⎜⎝
6 − 8− + 3 cos − 2 sin 
6 − 8− + 4 cos − 7 sin 

−3 sin − 2 cos 
−8− + 7 cos − 9 sin 

⎞⎟⎟⎠
EXERCISE 6.73. A calculation shows tr = −1 and det = 4 By Theorem 6.3(a) the

phase plane portrait is stable. Since phase plane portrait lies in the 2nd (NW) quadrant of

the map and det = 4  1
4
= 1

4
(tr)2, it follows that the phase plane portrait is a stable

spiral.

EXERCISE 6.75. A calculation shows tr = 137 and det = 207 By Theorem 6.3(c)

the phase plane portrait is unstable. Since the phase plane portrait lies in the 1st (NE)

quadrant of the map and det = 207  169196 = (tr)2 4, it follows that the phase
plane portrait is an unstable spiral.

EXERCISE 6.77. A calculation shows tr = 112 and det = −110. By Theorem
6.3(b) the phase plane portrait is unstable. Since the phase plane portrait lies in the lower

half plane of the map, it follows that the phase plane portrait is a saddle.
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EXERCISE 6.79. A calculation shows tr = −7 and det = 12 By Theorem 6.3(a) the

phase plane portrait is stable. Since the phase plane portrait lies in the 2nd (NW) quadrant

of the map and det = 12  494 = (tr)2 4, it follows that the phase plane portrait is an
stable node.

EXERCISE 6.81. A calculation shows tr  = −1 and det = −27 By Theorem 6.3(b)

the phase plane portrait is unstable. Since the phase plane portrait lies in the lower half

plane of the map, it follows that the phase plane portrait is a saddle.

EXERCISE 6.83. A calculation shows tr  =  − 1 and det = −2. If   0 then tr
  0 and det  0 and the phase portrait is stable by Theorem 6.3(a). If  = 0 then
det = 0 and Theorem 6.3 is inapplicable. If 0   then det  0 and the phase portrait
is unstable by Theorem 6.3(b).

EXERCISE 6.85. A calculation shows tr  = 2 (1 + ) and det = 1 + 2. If   −1
then tr   0 and det  0 and the phase portrait is stable by Theorem 6.3(a). If  = −1
then tr  = 0 and Theorem 6.3 is inapplicable. If −1   then tr   0 and det  0 the
phase portrait is unstable by Theorem 6.3(c).

EXERCISE 6.87. A calculation shows tr  = 22 − 11 and det = −112. If  6= 0 then
det  0 and the phase portrait is unstable by Theorem 6.3(b). If  = 0 then det = 0
and Theorem 6.3 is inapplicable.

EXERCISE 6.89. A calculation shows tr  = −1 and det = 24 For  = 0 det = 0
and the phase plane portrait is unclassified. For  6= 0, det  0 and the portrait lies in the
upper half plane of the tr-det map. The portrait lies below the parabola det = (tr)2 4
and is therefore a node if 24  14 or 2  1 or −1    1. It is a stable node because
tr  = −1 On the other hand, if 2  1 then the portrait lies above the parabola and is
therefore a spiral (stable because tr  = −1). Thus, the portrait is a stable spiral if   −1
or if   1. Finally, if  = ±1 the portrait lies on the parabola and is a stable degenerate
node.

EXERCISE 6.91. A calculation shows tr  = 2 and det = 

If   0, then det  0 and the phase portrait lies in the lower half plane of the map
and is therefore a saddle.

If   0 then det  0 and tr   0 and the phase portrait is in the first (NE)
quadrant of the map. We need to determine when the point (det) lies above or below
the parabola det = (tr)2 4. The point lies above the parabola if   (2)2 4 = 2 or

0    1. In this case the phase portrait is an unstable spiral. The point lies below the
parabola if   (2)2 4 = 2 or in other words if 1   In this case the phase portrait is an

unstable node

Finally, suppose  = 0 the phase plane portrait lies on the parabola and is therefore an
unstable degenerate node.

If  = 0 det = 0 and the phase plane portrait is unclassified.

EXERCISE 6.92. Each equation can be solved independently.

 () = 1
−5

 () = 2
−5

EXERCISE 6.94. The coefficient matrix has a complex eigenvalue root  = −1 + 
√
3
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with an eigenvector

̃ =

µ
1

−2−√3
¶


From a linear combination of the real and imaginary parts of the resulting complex solution

̃ we obtain a fundamental solution matrix from which we in turn get the general solution

formula:
 () = 1

− cos
√
3+ 2

− sin
√
3

 () = 1
− ¡−2 cos√3+√3 sin√3¢

−2−
¡√
3 cos

√
3+ 2 sin

√
3
¢

EXERCISE 6.96. The coefficient matrix has a complex eigenvalue  = 598 with an
eigenvector

̃ =

µ −059− 041


¶


From a linear combination of the real and imaginary parts of the resulting complex solution

̃ we obtain a fundamental solution matrix from which we in turn get the general solution

formula:
 () = 1 (−059 cos 598+ 041 sin 598)

+2 (−041 cos 598− 059 sin 598)
 () = −1 sin 598+ 2 cos 598

EXERCISE 6.98. The coefficient matrix has a complex eigenvalue  = −039 + 153
with an eigenvector

̃ =

µ −031 + 008


¶


From a linear combination of the real and imaginary parts of the resulting complex solution

̃ we obtain a fundamental solution matrix from which we in turn get the general solution

formula:
 () = 1

−039 (−031 cos 153− 008 sin 153)
+2

−039 (008 cos 153− 031 sin 153)
 () = −1−039 sin 153+ 2

−039 cos 153

EXERCISE 6.100. The coefficient matrix has a double eigenvalue  = −. From the

Putzer Formula (6.6) we obtain the fundamental solution matrix

Φ () =

µ
 + 2 2

3−2
 −2 2

3−2


2 
3−2

  − 2 
3−2



¶
and, in turn, the general solution

 () = 1
 + 2 (1 − 2)

2

3− 2


 () = 2
 + 2 (1 − 2)



3− 2


EXERCISE 6.102. The coefficient matrix has a complex eigenvalue  = −071 + 279
with an eigenvector

̃ =

µ
085

−018 + 049
¶
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From a linear combination of the real and imaginary parts of the resulting complex solution

we obtain the general solution formula:

 () = 0851
−071 cos 279+ 0852−071 sin 279

 () = 1
¡−018−071 cos 279− 049−071 sin 279¢
+ 2

¡
049−071 cos 279− 018−071 sin 279¢

EXERCISE 6.104. These exercises use the general solutions calculated in Exercises 6.92-

6.103. The given initial conditions yield two linear algebraic equations for the arbitrary

constants 1 and 2 Numerical values for these constants are found by solving these algebraic

equations.

Exercise 6.92
 () = −5

 () = −−5
Exercise 6.94

 () = − cos
√
3−

√
3
3
− sin

√
3

 () = −− cos√3+ 5
√
3
3
− sin

√
3

Exercise 6.96
 () = cos 598+ 018 sin 598
 () = − cos 598− sin 598

Exercise 6.98
 () = −039 cos 153+ 059−039 sin 153
 () = −−039 cos 153+ 348−039 sin 153

Exercise 6.100
 () = 2 + 2 (2− 3)
 () = 3 + 2 (2− 3) 

Exercise 6.102

 () = −147 cos 279− 1504−147 sin 279
 () = −030−147 sin 279− −147 cos 279

EXERCISE 6.105. These exercises use the general solutions calculated in Exercises 6.92-

6.103. The given initial conditions yield two linear algebraic equations for the arbitrary

constants 1 and 2 Numerical values for these constants are found by solving these algebraic

equations.

Exercise 6.92
 () = 2−5

 () = 3−5

Exercise 6.94
 () = 2− cos

√
3− 7

3
−
√
3 sin

√
3

 () = 20
3
−
√
3 sin

√
3+ 3− cos

√
3

Exercise 6.96
 ≈ −398 sin 598+ 2cos 598
 ≈ 3 cos 598+ 544 sin 598
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Exercise 6.98
 () = 2−039 cos 153− 047−039 sin 153
 () = 3−039 cos 153+ 576−039 sin 153

Exercise 6.100

 () = 2 + 2 (2− 3)
 () = 3 + 2 (2− 3) 

Exercise 6.102

 () = 589−071 sin 279+ 2−071 cos 279
 () = −242−071 sin 279+ 3−071 cos 279

EXERCISE 6.106.

(a) The characteristic polynomial 2 ++ 1 has roots

1 =
³
− +√22 − 4

´
2

2 =
³
− −√22 − 4

´
2

and the general solution is

 () = 1
1 + 2

2

Both eigenvalues are negative so the phase plane portrait is a stable node.

EXERCISE 6.110. Using the eigenvalue-eigenvector method, we calculate a fundamental

solution matrix

Φ() =

⎛⎝ − − 22

− 2 0
−  2

⎞⎠
of the associated homogeneous system. Then

Φ−1() =

⎛⎝ 2 3 −4
−− −− 2−

−−2 −2−2 3−2

⎞⎠
and Z

Φ−1()e() = Z
⎛⎝ 2 3 −4
−− −− 2−

−−2 −2−2 3−2

⎞⎠⎛⎝ 1
0
1

⎞⎠  =

⎛⎝ −2
−−
−−2

⎞⎠
so that

Φ()

Z
Φ−1()e() =

⎛⎝ − − 22

− 2 0
−  2

⎞⎠⎛⎝ −2
−−
−−2

⎞⎠ =

⎛⎝ −3−4
−4

⎞⎠ 

the general solution

̃ = Φ()̃+ Φ()

Z
Φ−1()e()

is

e() =
⎛⎝ − − 22

− 2 0
−  2

⎞⎠⎛⎝ 1
2
3

⎞⎠+
⎛⎝ −3−4
−4

⎞⎠ =

⎛⎝ 1
− − 2

 + 23
2 − 3

1
− + 22 − 4

1
− + 2

 + 3
2 − 4

⎞⎠ 



A.8. CHAPTER 7: 2ND ORDER LINEAR DIFFERENTIAL EQUATIONS 391

A.8 Chapter 7: 2nd Order Linear Differential Equa-

tions

EXERCISE 7.1 The coefficients 2 () = 1 1 () = 0 and 0 () = 1 and the nonhomoge-
neous term  () = sin  are continuous for all values of  and the leading coefficient 2 () = 1
is never equal to 0 for all values of  Therefore, Theorem 7.1 applies for any initial conditions
0 0 and 0 and, as a result, any initial value problem has a unique solution that exists for

all .

EXERCISE 7.3 The coefficients 2 () = 2 1 () =  and 0 () = 1 and the nonhomo-
geneous term  () = 0 are continuous for all values of . The leading coefficient 2 () = 2

equals 0 only at  = 0 Therefore, Theorem 7.1 applies for any initial conditions 0 6= 0 0
and 0. If 0  0 then the initial value problem has a unique solution that exists for all   0.
If 0  0 then the initial value problem has a unique solution that exists for all   0.
EXERCISE 7.5 The coefficients 2 () = 1 1 () =  and 0 () = 1 and the nonhomo-
geneous term  () =  sin  are continuous for all values of  and the leading coefficient
2 () = 1 is never equal to 0 for all values of  Therefore, Theorem 7.1 applies for any initial
conditions 0 0 and 0 and, as a result, any initial value problem has a unique solution that

exists for all .

EXERCISE 7.7. The roots of the characteristic polynomial 2++1 are  =
¡−1±√3¢ 2

By Table 8.1 the general solution is

 () = −
1
2


Ã
1 cos

√
3

2
+ 2 sin

√
3

2


!


EXERCISE 7.9. The roots of the characteristic polynomial 22 − 1 are  = ±√22 By
Table 8.1 the general solution is

 () = 1
√
22 + 2

−√22

EXERCISE 7.11. The roots of the characteristic polynomial 2 + 3− 4 are 1 = 1 and
2 = −4 By Table 8.1 the general solution is

 () = 1
 + 2

−4

EXERCISE 7.13. The roots of the characteristic polynomial 2 + 5 are  = ±√5 By
Table 8.1 the general solution is

 () = 1 cos
√
5+ 2 sin

√
5

EXERCISE 7.15. The roots of the characteristic polynomial 2−6+9 are 1 = 2 = 3
By Table 8.1 the general solution is

 = 1
3 + 2

3

EXERCISE 7.21. A substitution of  =  into the differential equations yields

(− 1) − 2 + 2 = 0
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or (− 1) (− 2)  = 0 Thus,  = 1 or  = 2 and we obtain the two independent
solutions 1 () =  and 2 () = 2

EXERCISE 7.25. Since the nonhomogeneous term is a multiple of − sin  we look for
a solution of the form  () = 1

− cos  + 2
− sin . A substitution into the differential

equation yields 1 = 25 2 = 15 and

 () =
2

5
− cos +

1

5
− sin 

EXERCISE 7.27. Since the nonhomogeneous term is a multiple of  we would normally

look for a solution of the form  () = . However  is a solution of the associated

homogeneous equation and therefore we look for a solution of the form  () =  A

substitution into the differential equation yields  = 12 and

 () =
1

2


EXERCISE 7.29.

Exercise 7.25. The general solution of the associated homogeneous equation is  () =
1 sin + 2 cos  Therefore, the general solution is

 () =  () +  ()

= 1 sin + 2 cos +
2

5
− cos +

1

5
− sin 

The initial conditions yield the equations

2 +
2

5
= 0 1 − 1

5
= 0

to solve for 1 = 15 2 = −25 These yield the solution formula

 () =
1

5
sin − 2

5
cos +

2

5
− cos +

1

5
− sin 

Exercise 7.27. The general solution of the associated homogeneous equation is  () =
1

− + 2
 Therefore, the general solution is

 () =  () +  () = 1
− + 2

 +
1

2


The initial conditions yield the equations

1 + 2 = 0 −1 + 2 +
1

2
= 0

to solve for 1 = 14 2 = −14 These yield the solution formula

 () =
1

4
− − 1

4
 +

1

2
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EXERCISE 7.33. The equilibrium solution is  () = 0 = 10
−50 The roots of the

characteristic polynomial are 1 = −500 and 2 = −2000 Therefore, the general solution of
the associated homogeneous equation is  () = 1

−500 + 2
−2000 and a formula for the

general solution is

 () =  () +  () = 1
−500 + 2

−2000 + 10−50

The initial conditions yield the equations

1 + 2 + 10
−50 = 0

−5001 − 20002 = 0
to be solved for

1 = − 1
75
× 10−3 2 =

1

3
× 10−5

which give the solution formula

 () = −
µ
1

75
× 10−3

¶
0

−500 +
µ
1

3
× 10−5

¶
0

−2000 + 10−50

EXERCISE 7.35. The equilibrium solution is  () = 0 = 10
−50 The roots of the

characteristic polynomial are  = ±1000 Therefore, the general solution of the associated
homogeneous equation is  () = 1 cos 1000 + 2 sin 1000 and a formula for the general
solution is

 () =  () +  () = 1 cos 1000+ 2 sin 1000+ 10
−50

The initial conditions yield the equations

1 + 10
−50 = 0
10002 = 0

to be solved for 1 = −10−50 2 = 0which give the solution formula  () = −10−50 cos 1000+
10−50
In Exercises 7.37-7.40 the associated homogeneous equation has general solution  () =
1

−+ 2
− This is because the characteristic polynomial 2+2+1 has a repeated root

 = −1.
EXERCISE 7.37. Using the Method of Undetermined Coefficients we look for a solution

of the form  () = 1 sin  + 2 cos  A substitution into the nonhomogeneous equation

yields 1 = 0 2 = −12 and  () = −12 cos  A formula for the general solution is

 () =  () +  () = 1
− + 2

− − 1
2
cos 

The initial conditions yield the equations

1 − 1
2
= 0

−1 + 2 = 0



394 APPENDIX A. ANSWERS TO EXERCISES

to be solved for 1 =
1
2
 2 =

1
2
which yield the solution formula  () = 1

2
−+ 1

2
−− 1

2
cos 

EXERCISE 7.39. Using the Method of Undetermined Coefficients we would look for a

solution of the form  () = − However, − and − are solutions of the associated
homogeneous equation and therefore we look for a solution of the form  () = 2−.
A substitution into the nonhomogeneous equation yields  = 12 and  () = 2−2 A
formula for the general solution is

 () =  () +  () = 1
− + 2

− +
1

2
2−

The initial conditions yield the equations

1 = 0 −1 + 2 = 0

to be solved for 1 = 0 2 = 0 which yield the solution formula  () = 2−2
EXERCISE 7.41. For the equivalent first order system of the equation we have

Φ () =

µ
 −

 −−
¶
 ̃ () =

µ
0


¶
and using the Variation of Constants formula

̃ () = Φ ()

Z 

Φ−1 () ̃ () 

we have µ
 ()
 ()

¶
=

µ
 −

 −−
¶Z 

µ
 −

 −−
¶−1µ

0


¶


=

µ
 −

 −−
¶Z  1

2

µ
− −

 −
¶µ

0


¶


=

µ
 −

 −−
¶Z  1

2

µ
1
−2

¶


=

µ
 −

 −−
¶
1

2

µ


−1
2
2

¶
=

µ
1
2
 − 1

4


1
4
 + 1

2


¶


Hence  () =
1
2
− 1

4
 and  () = 1

+2
−+ 1

2
− 1

4
More concisely, we can combine

the two  terms and re-label 1 − 14 as 1 to get

 () = 1
 + 2

− +
1

2


EXERCISE 7.43. Using the formula

 () = 1
 + 2

− +
1

2
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from Exercise 7.41 and the initial conditions, we obtain the equations

1 + 2 = 2 and 1 − 2 +
1

2
= −2

to be solved for 1 = −14 2 = 94, which yield the solution formula

 () = −1
4
 +

9

4
− +

1

2


EXERCISE 7.45. This autonomous equation has the equilibrium solution  () = −2
Since the general solution of the associated homogeneous equation is  () = 1

−3 + 2


we have the general solution

 () = 1
−3 + 2

 − 2
EXERCISE 7.47. Using the Method of Undetermined Coefficients, find a solution in the

form  () = 1 sin + 2 cos  The results is

 () =

µ
−2
5

¶
sin +

µ
−1
5

¶
cos 

Since the general solution of the associated homogeneous equation is  () = 1
−3 + 2



we have the general solution

 () = 1
−3 + 2

 +

µ
−2
5

¶
sin +

µ
−1
5

¶
cos 

EXERCISE 7.49. Using the Method of Undetermined Coefficients, find a solution in the

form  () = 1 + 2 The results is

 () = −2
9
 − 1

3


Since the general solution of the associated homogeneous equation is  () = 1
−3 + 2



we have the general solution

 () = 1
−3 + 2

 − 2
9
 − 1

3


EXERCISE 7.51 The characteristic polynomial 2+2+2 has roots  = −1± . By Table

8.1 the  () = 1
− cos  + 2

− sin . By the Method of Undetermined Coefficients we
guess () = 1 cos + 2 sin  which when substituted into the differential equation, gives

(1 + 22) cos + (−21 + 2) sin  = cos 

and hence the equations 1 + 22 = 1 −21 + 2 = 0 Thus 1 = 15 2 = 25 and

() =
1

5
cos +

2

5
sin 
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which gives the general solution

 () =  () +  () = 1
− cos + 2

− sin +
1

5
cos +

2

5
sin 

EXERCISE 7.53 The characteristic polynomial 2 + 2 + 2 has roots  = −1 ± . By

Table 8.1 the  () = 1
− cos + 2

− sin . By the Method of Undetermined Coefficients
we guess () = 1 cos  + 2 sin  + 3

− cos  + 4
− sin  which when substituted into

the differential equation, gives

(1 + 22) cos + (−21 + 2) sin + 24
− cos − 23− sin  = 2 cos − − sin 

and hence the equations 1 + 22 = 2 −21 + 2 = 0 24 = 0 −23 = −1 Thus 1 = 25
2 = 45 3 = 12 4 = 0 and

 () =
2

5
cos +

4

5
sin +

1

2
− cos 

which gives the general solution

 () =  () +  () = 1
− cos + 2

− sin +
2

6
cos +

4

5
sin +

1

2
− cos 

EXERCISE 7.55 The characteristic polynomial 2 + 6 + 5 = (+ 5) (+ 1) has roots
1 = −1 and 2 = −5. By Table 8.1 the  () = 1

− + 2
−5. By the Method of

Undetermined Coefficients we guess

() =

½
 if  6= −1 or − 5
 if  = −1 or − 5

which when substituted into the differential equation, gives

 (+ 5) (+ 1)  =  if  6= −1 or − 5
2 (+ 3)  =  if  = −1 or − 5

and hence
 = 1

(+5)(+1)
if  6= −1 or − 5

 = 1
2(+3)

if  = −1 or − 5

() =

(
1

(+5)(+1)
 if  6= −1 or − 5

1
2(+3)

 if  = −1 or − 5
which gives the general solution

 () =  () +  ()

=

(
1

− + 2
−5 + 1

(+5)(+1)
 if  6= −1 or − 5

1
− + 2

−5 + 1
2(+3)

 if  = −1 or − 5

EXERCISE 7.57 The characteristic polynomial 2 + 4 + 4 = (+ 2)2 has double root
 = −2. By Table 8.1 the  () = 1

−2 + 2
−2. By the Method of Undetermined
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Coefficients we guess () = 1 + 2 which when substituted into the differential equation,

gives

(41 + 42) + 42 = 

and hence 41 + 42 = 0 and 42 = 1 Thus 1 = −14 2 = 14 and

() = −1
4
+
1

4


which gives the general solution

 () =  () +  () = 1
−2 + 2

−2 − 1
4
+
1

4


EXERCISE 7.59 The characteristic polynomial 2 + 4 + 4 = (+ 2)2 has double root
 = −2. By Table 8.1 the  () = 1

−2 + 2
−2. By the Method of Undetermined

Coefficients we guess () = 1 + 2 + 3
− + 4

2−2 which when substituted into the
differential equation, gives

(41 + 42) + 42+ 3
− + 24−2 = 3− − + 2−2

and hence 41+42 = 0, 42 = 3 3 = −1 and 24 = 2 Thus 1 = −34 2 = 34 3 = −1,
4 = 1 and

() = −3
4
+
3

4
− − + 2−2

which gives the general solution

 () =  () +  () = 1
−2 + 2

−2 − 3
4
+
3

4
− − + 2−2

EXERCISE 7.61 The characteristic polynomial 2 + 2 has roots  = ±. By Table 8.1
the  () = 1 cos + 2 sin . By the Method of Undetermined Coefficients we guess

() =

½
1 sin + 2 cos  if  6= 1
1 sin + 2 cos  if  = 1

which when substituted into the differential equation, gives

1 (
2 − 1) sin + 2 (

2 − 1) cos  = sin  if  6= 1
−22 sin + 21 cos  = sin  if  = 1

and hence
1 = 1 (

2 − 1)  2 = 0 if  6= 1
1 = 0 2 = −12 if  = 1

() =

½
1

2−1 cos  if  6= 1
−1
2
 cos  if  = 1

which gives the general solution

 () =  () +  ()

=

½
1 cos + 2 sin +

1
2−1 sin  if  6= 1

1 cos + 2 sin +−12 cos  if  = 1
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A.9 Chapter 8: Nonlinear Systems

EXERCISE 8.1.

(a) From the second of the two equilibrium equations

− − = 0

−  = 0

we have  =  which when used in the first equilibrium equation yields the equation −− =
0 for  Using a computer or calculator we obtain the solution  () =  ≈ 05671 Thus,
the only equilibrium point is ̃ ≈ col(05671 05671)
(c) From the second of the two equilibrium equations

ln

µ
1

1 + 22

¶
−  = 0

−3− 4 = 0
we have  = −34 and hence from the first equilibrium equation we get the equation

ln

µ
1

1 + 22

¶
+
3

4
 = 0

for . One roots is  () = 0. A plot of the left hand side indicates there are two other roots,
which we find from a computer to be  ≈ 04452 and 54848 Thus, the equilibria are

̃ = col(0 0)

̃ ≈ col (04452−03339) and col (54848−41136) 
(e) Using a computer or calculator to solve the equilibrium equation − = 14 we find

 ≈ 03574 and 21533
EXERCISE 8.2.

(a) The first equilibrium equation 2 + 2 − 2 = 0 is a circle of radius  centered at the
origin. The second equilibrium equation (− 3)2+ 2− 4 = 0 is a circle of radius 2 centered
at the point ( ) = (3 0) These two circles intersect at two points if 1    5 and at one
point if  = 1 or  = 5. They do not intersect for other values of . Therefore, there are no
equilibria if   1 or   5, one equilibrium if  = 1 or 5, and two equilibria if 1    5.
(c) The first equilibrium equation −  = 0 is a straight line with slope   0 passing

through the origin. The second equilibrium equation 6 +  − 82 + 23 = 0 or  =
−2 (− 1) (− 3)  is a cubic polynomial passing through the origin. Graphs of the cubic
and the line show, besides the intersection point at the origin, two additional intersection

points if   2 and no other intersection point if   2 Therefore, there are three equilibria
if   2 and one equilibrium if   2 When  = 2 the line is tangent to the cubic and there
are exactly two equilibria.

Another approach is to solve the first equilibrium equation for  =  and substitute this

answer into the second equilibrium equation. The result is the polynomial equation

6+ − 82 + 23 = 0

¡
6 +  − 8+ 22¢ = 0
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whose roots are = 0 and  = 2±√2√2− 2
(e) The equilibrium equation is − =  From a graph of − (whose maximum −1

occurs at  = 1) we see that if   −1 there are no equilibria, if   −1 there are two
equilibria (one less than  = 1 and the other greater than  = 1) and if  = −1 there is
exactly one equilibrium ( = 1).
EXERCISE 8.4.

(a) The equilibrium equations are

− 2 = 0

−  = 0

The second equation implies  =  which, when substituted into the first equation, yields

− 2 = 0 Thus,  = 0 and  = 1. The equilibria are

̃ = col(0 0) and col(1 1)

(b) The Jacobian

( ) =

µ
1 −2
1 −1

¶
evaluated at the equilibria gives

(0 0) =

µ
1 0
1 −1

¶
 (1 1) =

µ
1 −2
1 −1

¶


(c) One of the eigenvalues 1 and −1 of  (0 0) is positive and therefore the equilibrium
̃ = col(0 0) is unstable. The eigenvalues of  (1 1) are ± Theorem 8.1 does not apply

and no conclusion can be drawn from it.

(d) tr (0 0) = 0 and tr (1 1) = 0. Therefore Theorem 8.2 does not apply to either

equilibrium and no conclusion can be drawn from it.

EXERCISE 8.6.

(a) The equilibrium equations are

 (1− − ) = 0

 (2− − 4) = 0

Consider the first equation. There are two alternatives:  = 0 or 1 −  −  = 0 which we
consider one at a time.

If  = 0 the second equation becomes

 (2− 4) = 0

which has two solutions  = 0 and  = 12 Thus, the first alternative  = 0 yields two
equilibria ̃ = col (0 0) and col (0 12).
The second alternative is 1− −  = 0 or  = 1− . Using this in the second equation,

we obtain

 (1− 3) = 0
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which has two solutions  = 0 and  = 13. The first gives  = 1 and the second gives
 = 23 Thus, the second alternative 1 −  −  = 0 yields two equilibrium ̃ = col (1 0)
and col (23 13).
In summary, we have equilibria

̃ = col (0 0)  col

µ
0
1

2

¶
 col (1 0)  col

µ
2

3

1

3

¶


(b) The Jacobian

( ) =

µ
1− 2−  −
− 2− 8 − 

¶
evaluated at these equilibria gives

(0 0) =

µ
1 0
0 2

¶
 

µ
0
1

2

¶
=

µ
1
2

0
−1
2
−2

¶

(1 0) =

µ −1 −1
0 1

¶
 

µ
2

3

1

3

¶
=

µ −2
3
−2
3−1

3
−4
3

¶


(c) The eigenvalues 1 and 2   (0 0) are positive and therefore the equilibrium ̃ =
col(0 0) is unstable. One of the eigenvalues 12 and −2 of  (0 12) is positive and therefore
the equilibrium ̃ = col(0 12) is unstable. One of the eigenvalues −1 and 1 of  (1 0) is
positive and therefore the equilibrium ̃ = col(1 0) is unstable. Both eigenvalues −1±

√
33

of  (23 13) are negative and therefore the equilibrium ̃ = col (23 13) is stable.
(d) tr(0 0) = 3  0 and det (0 0) = 2  0 imply the equilibrium ̃ = col (0 0)

is unstable. tr(0 12) = −23  0 and det (0 12) = −1  0 imply the equilibrium
̃ = col (0 12) is unstable. tr(1 0) = 0 and det (1 0) = −1  0 imply Theorem
8.2 is not applicable and nothing about the equilibrium ̃ = col (1 0) can be drawn from
it. tr (23 13) = −2  0 and det (23 13) = 23  0 imply the equilibrium ̃ =
col (23 13) is stable.
EXERCISE 8.8

(a) The equilibrium equations are

1− 2 − 2 = 0

−  = 0

The second equation implies  =  which, when substituted into the first equation, yields

1− 22 = 0
or  = ±√22. The equilibria are

̃ = col

Ã√
2

2


√
2

2

!
and col

Ã
−
√
2

2
−
√
2

2

!


(b) The Jacobian

( ) =

µ −2 −2
1 −1

¶
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evaluated at these equilibria gives



Ã√
2

2


√
2

2

!
=

µ −√2 −√2
1 −1

¶



Ã
−
√
2

2
−
√
2

2

!
=

µ √
2
√
2

1 −1
¶


(c) The eigenvalues −12071 ± 1171 of  ¡√22√22¢ have negative real parts and
therefore the equilibrium ̃ = col

¡√
22
√
22
¢
is stable. One of the eigenvalues 19016 and

−14874 of  ¡−√22−√22¢ is positive and therefore the equilibrium ̃ = col
¡−√22−√22¢

is unstable.

(d) tr
¡√
22
√
22
¢
= −1 − √2  0 and det

¡√
22
√
22
¢
= 2
√
2  0 imply the

equilibrium ̃ = col
¡√
22
√
22
¢
is stable. tr

¡−√22−√22¢ = √2 − 1  0 and

det
¡−√22−√22¢ = −2√2  0 imply the equilibrium ̃ = col

¡−√22−√22¢ is
unstable.

EXERCISE 8.10.

(a) An equilibrium is a constant solution whose derivatives are zero. The equilibrium

equation is, therefore, sin = 0 and there are infinitely many equilibria  =   =
0±1±2±3 · · · 
(b) The Jacobian of the equivalent system

0 = 

0 = − sin− 

is

 ( ) =

µ
0 1

− cos −1
¶


(c) The Jacobian evaluated at an equilibrium ̃ = col ( 0) is (note that cos =
(−1))

 ( 0) =

⎧⎪⎪⎨⎪⎪⎩
µ

0 1
−1 −1

¶
if  is evenµ

0 1
1 −1

¶
if  is odd

The eigenvalues are

 =

½ −1
2
± 1

2

√
3 if  is even

−1
2
± 1

2

√
5 if  is odd

Thus, ̃ = col ( 0) is stable if  is even and unstable if  is odd.
(d)

tr ( 0) = −1

det  ( 0) =

½
1 if  is even
−1 if  is odd

Therefore, ̃ = col ( 0) is stable if  is even and unstable if  is odd.
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EXERCISE 8.12

(a) An equilibrium is a constant solution whose derivatives are zero. The equilibrium

equation is, therefore, 3 = 0 and there is one equilibrium  = 0
(b) The Jacobian of the equivalent system

0 = 

0 = −3 − 

is

 ( ) =

µ
0 1

−32 −
¶


(c) The eigenvalue  = 0 of

 (0 0) =

µ
0 1
0 0

¶
is a double eigenvalue. Theorem 8.1 does not apply and no conclusion about the equilibrium

̃ = col (0 0) can be drawn from it.

(d) tr (0 0) = 0 and det (0 0) = −1  0 and therefore Theorem 8.2 does not apply

and no conclusion can be about the equilibrium ̃ = col (0 0) drawn from it.

EXERCISE 8.14.

(a) The equilibrium equations areµ
3

2
− − 2

¶
 = 0µ

−1
4
+ 

¶
 = 0

The second equation implies either  = 0 or  = 14 In the first case the first equation
implies  = 0 or  = 32. Thus, two equilibria are ( ) = (0 0) and (32 0). In the
second case the first equation implies  = 58. Thus, there are three equilibrium points:

( ) = (0 0) 

µ
3

2
 0

¶
and

µ
1

4

5

8

¶


(b) The Jacobian matrix is

( ) =

µ
3
2
− 2− 2 −2

 −1
4
+ 

¶


Thus,

(0 0) =

µ
3
2

0
0 −1

4

¶
 

µ
3

2
 0

¶
=

µ −3
2
−3

0 5
4

¶


µ
1

4

5

8

¶
=

µ −1
4
−1
2

5
8

0

¶


(c).The eigenvalues of  (0 0) are 1 = 32, 2 = −14 and ̃ = col(0 0) is unstable
since 1  0.
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The eigenvalues of  (32 0) are 1 = −32, 2 = 54 and ̃ = col (32 0) is unstable
since 2  0.
The eigenvalues of  (14 58) are  = −18± 

√
198 and ̃ = col (14 58) is stable

since the real part −18 of both roots is negative.
EXERCISE 8.18. The equilibria are ̃ = col(0 0) and col(1 1) (See Exercise 8.4) The
eigenvalues of the Jacobian

(0 0) =

µ
1 0
1 −1

¶
are  = ±1 and therefore (0 0) is an hyperbolic saddle.
The eigenvalues of the Jacobian

(1 1) =

µ
1 −2
1 −1

¶
are  = ± Therefore, (1 1) is non-hyperbolic and the Hartman-Grobman Theorem 8.3.is

not applicable.

EXERCISE 8.20. The equilibria are

( ) = col(0 0) col

µ
0
1

2

¶
 col(1 0) col

µ
2

3

1

3

¶


(See Exercise 8.6.) The eigenvalues of the Jacobian

(0 0) =

µ
1 0
0 2

¶
are  = 1 2 and therefore ̃ = col(0 0) is an hyperbolic, unstable node.
The eigenvalues of the Jacobian



µ
0
1

2

¶
=

µ
1
2

0
−1
2
−2

¶
are  = 12−2 and therefore ̃ = col

¡
0 1

2

¢
is an hyperbolic saddle.

The eigenvalues of the Jacobian

(1 0) =

µ −1 −1
0 1

¶
are  = −1 1 and therefore ̃ = col(1 0) is an hyperbolic saddle.
The eigenvalues of the Jacobian



µ
2

3

1

3

¶
=

µ −2
3
−2
3−1

3
−4
3

¶
are  = −1±√33  0 and therefore ̃ = col (23 13) is an hyperbolic stable node.
EXERCISE 8.22. The equilibria are

̃ = col

Ã√
2

2


√
2

2

!
and col

Ã
−
√
2

2
−
√
2

2

!
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(See Exercise 8.8.) The eigenvalues of the Jacobian



Ã√
2

2


√
2

2

!
=

µ −√2 −√2
1 −1

¶
are  ≈ −1207 1±1171 and therefore ̃ = col

¡√
22
√
22
¢
is an hyperbolic, stable spiral.

The eigenvalues of the Jacobian



Ã
−
√
2

2
−
√
2

2

!
=

µ √
2
√
2

1 −1
¶

are  ≈ 1902 and −1487 and therefore ̃ = col
¡−√22−√22¢ is an hyperbolic saddle.

EXERCISE 8.26. The equilibrium equations are

 − − 2

1 + 
 = 0µ

2

1 + 
− 1
¶
 = 0

For the second equation there are two choices:  = 0 which implies by the first equation
that  =  and

2

1 + 
− 1 = 0

or  = 1. In the later case, the first equation implies  =  − 1. The equilibria are
̃ = col ( 0) and col (1  − 1).

-1 1

-1

1

 x 

y

EXERCISE 8.28. The only equilibrium point is ̃ = col(0 0). A
sketch of the direction field shows that all orbits are bounded and that

no cycle can encircle the equilibrium. This rules out the existence of

a cycle.

The first version of the Poincaré-Bendixson Theorem implies the

forward (omega) limit set + (of every orbit) contains ̃ = col(0 0).
An application of the Linearization Principle shows ̃ = col(0 0)
is a stable node and therefore + consists solely of ̃ = col(0 0)
It follows that all orbits tend to the equilibrium ̃ = col(0 0) as
→ +∞

Alternatively, we can use the second version of the Poincaré-Bendixson Theorem. Since

there are no saddles, there can be no cycle chain. It follows that + is an equilibrium.

Since the origin is the only equilibrium, it follows that all orbits tend to the equilibrium

̃ = col(0 0) as → +∞

-1 1

-1

1

 x 

y

EXERCISE 8.30. The only equilibrium point is ̃ = col(0 0). A
sketch of the direction field shows that all orbits are bounded. An

application of the Linearization Principle shows ̃ = col(0 0) is an
unstable spiral and therefore cannot be in the forward (omega) limit

set + of any orbit. The first version of the Poincaré-Bendixson

Theorem implies each orbit approaches a limit cycle. The second

version of the Poincaré-Bendixson Theorem implies the same result,

since there can be no cycle chain (there are no saddles).
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-1 1 2

-1

1

x

y EXERCISE 8.32. The only equilibrium point is ̃ = col(1 0). A
sketch of the direction field shows that all orbits are bounded and

that no cycle can encircle ̃ = col(1 0). This rules out the existence
of a cycle.

The first version of the Poincaré-Bendixson Theorem implies that

the forward (omega) limit set + (of every orbit) contains the equi-

librium ̃ = col(1 0). An application of the Linearization Principle
shows ̃ = col(1 0) is a stable node and therefore 

+ consists solely

of ̃ = col(1 0) It follows that all orbits tend to the equilibrium
̃ = col(1 0) as → +∞

Alternatively, we can use the second version of the Poincaré-Bendixson Theorem. Since

there are no saddles, there can be no cycle chain. It follows that + is an equilibrium.

Since the origin is the only equilibrium, it follows that all orbits tend to the equilibrium

̃ = col(1 0) as → +∞

EXERCISE 8.38. The Jacobian is

( ) =

µ
2 2 − 1
1− 2 −2 − 9

10
2 + 3

10

¶


The eigenvalues of

(0 0) =

µ
0 −1
1 3

10

¶
are

 =
3

20
±
√
391

20
 ≈ 015± 099

and the origin is an hyperbolic, unstable spiral point.

Each of the Jacobians

(1 1) = (−1−1) =
µ
2 0
0 −13

5

¶

(−1 1) = (1−1) =
µ −2 0

0 7
5

¶
has a positive and a negative eigenvalue and therefore all of the corner equilibria are hyper-

bolic saddles.

The characteristic roots of the Jacobians



µ
1−10

3

¶
= 

µ
−1 10

3

¶
=

µ −20
3

0
−91

9
−91
30

¶
are  = −203 and −9130and these two equilibria are hyperbolic stable nodes.
There are no non-hyperbolic equilibria.

EXERCISE 8.39.

(a) ( ) + ( ) = −2 − 22 − 222  0 for   0 = 0
(c) ( ) + ( ) = − (2 + 2 − 1) (2 + 2)  0 for all   0 = 1.
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EXERCISE 8.40.

(a) Take  to be the first quadrant:   0   0. In , a calculation shows




() +




() = −1


− 1


 0

(c) Take  to be the inside of the circle 2 + 2  4. In  a calculation shows




+




= 4− 2 − 2  0

EXERCISE 8.41.

(a) With  = 1 calculate




() +




() = −3− 2 − 2  0

for all ( ).
(c) With  =  calculate




() +




() = 1 + 2 + 622  0

for all ( ).
(e) With  = 1 calculate




() +




() = 2 + 42  0

for all ( ). This is the desired contradiction.
EXERCISE 8.43. The second of the equilibrium equations

− 3 = 0

− = 0
implies  = 0 and the first equation implies  = 0 or ±√ (provided   0).
Thus, for  less than the critical value 0 = 0 there is one equilibrium, namely, ̃ =

col(0 0). (An application of the Linearization Principle shows that it is a stable node.)
For  greater than 0 = 0 there are three equilibria, ̃ = col((0 0) and col(±√ 0).

This is characteristic of a pitchfork bifurcation. (The Linearization Principle shows that the

equilibrium ̃ = col(0 0) is a saddle for   0 while both equilibria ̃ = col(±√ 0) are
stable nodes.)

EXERCISE 8.45. The equilibrium equations are

− 2 − 2 = 0

1− −  = 0

Solve the second equation for  = 1 −  and substitute this answer into the first equation.

The result equation

− 2 − (1− )2 = −22 + 2+ − 1 = 0
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has roots

 =
1

2

³
1±

p
2− 1

´


The equilibria are

̃ = col

µ
1

2

³
1 +

p
2− 1

´

1

2

³
1−

p
2− 1

´¶
̃ = col

µ
1

2

³
1−

p
2− 1

´

1

2

³
1 +

p
2− 1

´¶
provided  ≥ 0 = 12. A saddle node bifurcation occurs at 0 = 12.
EXERCISE 8.47. The equilibrium equations are¡

− 22 − 2
¢ £
(− 1)2 + 2

¤
= 0

(− 1) £(− 1)2 + 2
¤
= 0

Setting the square bracketed terms equal to 0 gives the solution  = 1  = 0. Otherwise,
the second equation implies  = 1 and the first equation − 2− 2 = 0 The equilibria are
̃ = col(1 0) and, if   0 = 2,

̃ = col
³
1
p
− 2

´
and col

³
1−

p
− 2

´


A pitchfork bifurcation occurs at 0 = 2.
EXERCISE 8.49. The equilibrium equations are

(− ) = 0

(− ) = 0

The second equation implies either  =  or  = 0. In the first case, the first equation implies
 = . In the second case, the first equation implies  = 0. The equilibria are ̃ = col(0 0)
and col( ) These coincide for  = 0. A transcritical bifurcation occurs at 0 = 0.
EXERCISE 8.51. The equilibrium equations are

 − ln = 0
−  = 0

From the second equation  =  which, when substituted into the first equation, yields the

equation  = ln for the  component. A plot of the right and left hand sides shows that
these two curves intersect in exactly two points if   0 were 0 is the value of  at which

the graphs of ln and the straight line  are tangent. The point of tangency occurs at
0 = −1. Thus, there are no equilibria for   0 and two equilibria for   0 and a saddle

node bifurcation occurs at 0.
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-1 1

-1

1

 x 

y
p = 0.5

EXERCISE 8.56. The Jacobian

( ) =

µ
−  − 1 −  − 2

1 −32 + 1
¶

at the equilibrium ̃ = col(0 0), namely,

(0 0) =

µ
− 1 − 2
1 1

¶
has eigenvalues  = 1

2
± 1

2

p
4− 2 and the Hopf bifurcation criteria

hold at 0 = 0 where  = 0  = 1 and  = 12 6= 0. For   0
the origin is a stable spiral. For   0 the origin is an unstable spiral. A computer sketch
of the phase portrait indicate a stable limit cycle exists for small values of   0. A Hopf
bifurcation occurs at 0 = 0. See the accompanying figure for an example when  = 05
EXERCISE 8.58. The Jacobian

( ) =

⎛⎜⎜⎜⎜⎝
+ 152 + 52 − 54
−4 − 622 − 4



10 − 43 − 43 + 1




10 − 43
−43 − 3

+ 52 + 152 − 4

−54 − 622 − 4

⎞⎟⎟⎟⎟⎠

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

 x 

y
p = 4.1

at the equilibrium ̃ = col(0 0), namely,

(0 0) =

µ
− 4 1
−3 − 4

¶
has eigenvalues  =  − 4 ± 

√
3 and the Hopf bifurcation criteria

hold at 0 = 4 where  = 0  =
√
3 and  = 1 6= 0. For

  4 the origin is a stable spiral and computer sketches of the phase
plane portrait show there is also an unstable limit cycle encircling

̃ = col(0 0). There is also a stable limit cycle encircling the unstable
limit cycle! For   4 the unstable cycle disappears (although the

stable cycle remains), and the origin becomes unstable. See figure for an example when

 = 41

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x 

y
p = - 1

EXERCISE 8.60. The Jacobian

( ) =

µ −32 1
−32 − 2 − 2 −− 2

¶
at the equilibrium ̃ = col(0 0), namely,

(0 0) =

µ
0 1
−2 −

¶
has eigenvalues  = −1

2
 ± 1

2

p
8− 2 and the Hopf bifurcation cri-

teria hold at 0 = 0 where  = 0  =
√
2 and  = −12 6= 0.
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For   0 the origin is a stable spiral. For   0 the origin is an unstable spiral. A computer
sketch of the phase portrait indicate a stable limit cycle exists for small values of   0. A
Hopf bifurcation of limit cycles occurs at 0 = 0. See figure for an example when  = −1.
EXERCISE 8.62.

(a) The Jacobian

(  ) =

⎛⎝ 1− 2−  −  − −
 −1 +  0
 0 −1 + 

⎞⎠
evaluated at the origin

(0 0 0) =

⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠
has eigenvalues  = 1 and −1 and the Linearization Principle implies the origin is unstable
(because 1 is positive).
(c) The Jacobian

(  ) =

⎛⎝ −2− 2 −  −2 −
− 1− − 2 − 2 −2
−2 − −1− 2 −  − 2

⎞⎠
evaluated at the origin

(0 0 0) =

⎛⎝ 0 0 0
0 1 0
0 0 −1

⎞⎠
has eigenvalues  = 0 1 and −1. The origin is non-hyperbolic (because of the eigenvalue 0)
and the Linearization Hartman-Grobman Theorem does not apply. The Fundamental The-

orem of Stability, however, implies the origin is unstable (because of the positive eigenvalue

1).
(e) The Jacobian

(  ) =

⎛⎝ −2−2 −2 0
0 0 −1
0 −2 −2−2

⎞⎠
evaluated at the origin

(0 0 0) =

⎛⎝ −2 1 0
0 0 −1
0 1 −2

⎞⎠
has eigenvalues  = −2 and −1 and the Linearization Principle implies the origin is (locally
asymptotically) stable (since all eigenvalues are negative).

EXERCISE 8.63.

(a) There are three equilibria: ̃ = col(0 0 0) col(1 2 1) and col(−5 5−5). The

Jacobian is

(  ) =

⎛⎝ 1−  − 2 1−  0
− −1−  4
1 0 −1

⎞⎠ 
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The eigenvalues of

(0 0 0) =

⎛⎝ 1 1 0
0 −1 4
1 0 −1

⎞⎠
are  ≈ 1594 3 and −1297 2± 1205 6. The Linearization Principle implies ̃ = col(0 0 0)
is unstable (because of the positive eigenvalue 15943).
The eigenvalues of

(1 2 1) =

⎛⎝ −3 0 0
−2 −2 4
1 0 −1

⎞⎠
are  = −1−2 and −3. The Linearization Principle implies ̃ = col(1 2 1) is stable (since
all eigenvalues are negative).

The eigenvalues of

(−5 5−5) =
⎛⎝ 6 6 0
−5 4 4
1 0 −1

⎞⎠
are  ≈ −0602 58 and 48013±51705. The Linearization Principle implies ̃ = col(−5 5−5)
is unstable (since the real part of the complex eigenvalues is positive).

EXERCISE 8.65. The characteristic roots of the Jacobian

(0 0 0) =

⎛⎝ 2 2 0
0 −1 
1
5

0 −1
5

⎞⎠
satisfy the equation

3 − 4
5
2 − 11

5
−

µ
2

5
+

2

5

¶
= 0

or

(− 2) (+ 1)
µ
+

1

5

¶
=
2

5


View the solving of this equation as finding the intersection points of the cubic polynomial

on the left hand side of the equation with the horizontal straight line located at level 25.
A sketch of the cubic shows that for all   0 there is an intersection point in the right half
plane, i.e., there is a positive characteristic root   0 for all   0.
EXERCISE 8.69.

(a) The equilibria are ̃ = col (0 0)  col (−1 0) and col (−1−1)  The Jacobian is

( ) =

µ
1 + 2 1 + 2

 1 + 

¶


The characteristic roots of the Jacobian

(0 0) =

µ
1 1
0 1

¶
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are both equal to 1 and therefore (0 0) is an unstable node. The eigenvalues of the Jacobian

(−1 0) =
µ −1 1

0 0

¶
are  = 0 and −1. and the Linearization Principle does not apply (because of the eigenvalue
0).
The eigenvalues of the Jacobian

(−1−1) =
µ −1 −1
−1 0

¶
are  = −1

2
± 1
2

√
5 and the equilibrium ̃ = col(−1−1) is a saddle (because one eigenvalues

is positive and one is negative).

(c) The equilibria are ̃ = col (0 0)  col (1−1) and col (−1−1)  The Jacobian is

( ) =

µ −2 −1
−1 + 2 2

¶


The eigenvalues of the Jacobian

(0 0) =

µ
0 −1
−1 0

¶
are  = 1 and −1 and the equilibrium (0 0) is a saddle (because one eigenvalue is positive
and one is negative).

The eigenvalues of the Jacobian

(1−1) =
µ −2 −1

0 −2
¶

are both equal to −2 and the equilibrium (1−1) is a stable node (since both eigenvalues are
negative).

The eigenvalues of the Jacobian

(−1−1) =
µ
2 −1
0 2

¶
are both equal to 2 and the equilibrium ̃ = col(−1−1) is an unstable node (since both
eigenvalues are positive).

(e) The equilibrium is ̃ = col (0 0)  The Jacobian is

( ) =

µ −1− 2 −2
1 −4

¶


The eigenvalues of the Jacobian

(0 0) =

µ −1 0
1 0

¶
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are  = −1 and 0 and the Linearization Principle does not apply.
EXERCISE 8.70.

(a) The equilibrium equations are

+  + 2 + 2 = 0

(1 + )  = 0

The second equation implies either  = 0 or  = −1. In the first case the first equation
implies  = 0 or −1. In the second case the first equation implies  = 0 or −. The equilibria
are

̃ = col (0 0)  col (−1 0)  col (−1−) 
There is a transcritical bifurcation at 0 = 0 where the second and third equilibria coincide.
(c) The equilibrium equations are


¡
1− 2

¢
= 0

+ − 22 = 0
The first equation implies  = 0 or  = ±1. In the first case, the second equation implies
 = ±√22 provided  ≥ 0 In the second case, the second equation implies  = 2 − .

There are four equilibria:

̃ = col (2−  1)  col (2− −1)  col

µ
0±1

2

p
2

¶


The is a saddle-node bifurcation at 0 = 0 where the last two equilibria come into existence.
There are two simultaneous transcritical bifurcations at 0 = 2 where the first two equilibria
coincide with one of the last equilibria.

(e) The equilibrium equations are

+  − 2 = 0

−  + 22 = 0

The first equation implies  = 2 −  which, when substituted into the second equation,

yields the equation

2 −  −  + 22 =
¡¡
1 + 2

¢
 − 2¢  = 0

whose solutions are  = 0 and  = 2 (2 + 1)  The equilibria are

̃ = col (0 0) and col

µ
2
1− 2

(2 + 1)2
 2

1

2 + 1

¶


Both equilibria exist for all  and are never equal to each other. There are no equilibrium

bifurcations.

(g) The equilibrium equations are

 (1− ) = 0

+ − 2 = 0
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The first equation implies  = 0 or  = 1. In the first case, the second equation implies
 = 2 In the second case, the second equation implies  = 2− . The equilibria are

̃ = col

µ
0
1

2


¶
 col (2−  1) 

There is a transcritical bifurcation at 0 = 2 where these two equilibria coincide.
EXERCISE 8.71.

(a) The Jacobian

(0 0) =

µ
 −2
1 0

¶
has eigenvalues  = 1

2
 ± 1

2

p
2 − 8 which are complex for −√8   

√
8. The real parts

2 vanish and have nonzero derivative with respect to  at 0 = 0. Therefore, criteria hold.
The figures below show that a Hopf bifurcation of a limit cycle occurs at 0 = 0.

-1 1

-1

1

 x 

y
p = -1

-1 1

-1

1

 x 

y
p = 1


