The foundation of analysis is the set of real numbers. We will denote by \(\mathbb{R} \) this set of real numbers, i.e.

\[
\mathbb{R} = \{ x \mid x \text{ is real} \}
\]

For real numbers there are two basic operations: addition and multiplication. A notation for these operations is introduced as follows:

To each pair of real numbers \(x \) and \(y \), there is a unique real number, which we denote by \(x + y \), and refer to as the sum of \(x \) and \(y \). This operation defines addition.

To each pair of real numbers \(x \) and \(y \), there is a unique real number, which we denote by \(xy \), and refer to as the product of \(x \) and \(y \). This operation defines multiplication.

The set of real numbers \(\mathbb{R} \) equipped with these two operations satisfy the field axioms. They are:

Axiom 1 (Field Axioms). Let \(\mathbb{R} \) be the set of real numbers.

- **Commutativity of Addition**: For any \(x, y \in \mathbb{R} \),

 \[
x + y = y + x.
 \]

- **Associativity of Addition**: For any \(x, y, z \in \mathbb{R} \),

 \[
 (x + y) + z = x + (y + z).
 \]

- **The Additive Identity**: There is a real number, denoted by \(0 \in \mathbb{R} \), for which

 \[
 0 + x = x + 0 = x \quad \text{for all } x \in \mathbb{R}.
 \]

- **The Additive Inverse**: For each real number \(x \in \mathbb{R} \) there is a real number \(y \in \mathbb{R} \) for which

 \[
 x + y = 0.
 \]

- **Commutativity of Multiplication**: For any \(x, y \in \mathbb{R} \),

 \[
 xy = yx.
 \]

- **Associativity of Multiplication**: For any \(x, y, z \in \mathbb{R} \),

 \[
 (xy)z = x(yz).
 \]
• **The Multiplicative Identity:** There is a real number, denoted by $1 \in \mathbb{R}$, for which

$$1x = x1 = x \quad \text{for all } x \in \mathbb{R}.$$

• **The Multiplicative Inverse:** For each real number $x \neq 0$, there is a real number $y \in \mathbb{R}$ for which

$$xy = 1.$$

• **The Distributive Property:** For any $x, y, z \in \mathbb{R}$,

$$x(y + z) = xy + xz.$$

• **Nontriviality:**

$$1 \neq 0.$$

Consequences of the Field Axioms:

- The additive identity, labeled 0 above, is unique.
- For any $x \in \mathbb{R}$,

$$0x = x0 = 0$$

- For any $x, y \in \mathbb{R}$, if $xy = 0$, then either $x = 0$ or $y = 0$ (both is allowed).
- For any $a \in \mathbb{R}$, there is a unique solution of the equation

$$a + x = 0$$

The solution, which we denote by $x = -a$, is the additive inverse of a.

- For any $x, y \in \mathbb{R}$, the difference of x and y, which we denote by $x - y$ is defined by

$$x - y = x + (-y)$$

This is how *subtraction* is defined.
- For any $a \in \mathbb{R}$, one has that

$$-(-a) = a$$

- The multiplicative identity, labeled 1 above, is unique.
- For any $a \in \mathbb{R} \setminus \{0\}$, there is a unique solution of the equation

$$ax = 1$$

The solution, which we denote by $x = a^{-1} = \frac{1}{a}$, is the multiplicative inverse of a (also called the reciprocal of a).
- For any $x, y \in \mathbb{R}$ with $y \neq 0$, the quotient of x and y, which we denote by x/y (or $\frac{x}{y}$) is defined by

$$\frac{x}{y} = xy^{-1}$$
This is how division is defined.

- For any $a \in \mathbb{R} \setminus \{0\}$, one has that
 \[(a^{-1})^{-1} = a\]

- For any $a \in \mathbb{R} \setminus \{0\}$, one has that
 \[(-a)^{-1} = -a^{-1}\]

- By induction, one can prove: Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. For any $x_1, x_2, \cdots, x_n \in \mathbb{R}$,
 \[a \sum_{k=1}^{n} x_k = \sum_{k=1}^{n} ax_k\]

Axiom 2 (Positivity Axioms). There is a subset of \mathbb{R}, denoted by \mathcal{P}, called the set of positive numbers for which:

- If x and y are positive, then $x + y$ and xy are both positive.
- For each $x \in \mathbb{R}$, exactly one of the following 3 alternatives is true:
 1. $x \in \mathcal{P}$,
 2. $-x \in \mathcal{P}$,
 3. $x = 0$.

Consequences of the Positivity Axioms:

- Let $x, y \in \mathbb{R}$. We write $x > y$ if and only if $x - y$ is positive. If $x > y$ we say that x is strictly greater than y. We write $x \geq y$ if and only if $x > y$ or $x = y$. If $x \geq y$ we say that x is greater than or equal to y.

- Let $x, y \in \mathbb{R}$. We write $x < y$ if and only if $y > x$. If $x < y$ we say x is strictly less than y. We write $x \leq y$ if and only if $x < y$ or $x = y$. If $x \leq y$ we say that x is less that or equal to y.

- For any $a \in \mathbb{R} \setminus \{0\}$, one has that
 \[a^2 > 0\]
 Since $1 \neq 0$, an application of this to $a = 1$ shows that $1 > 0$.

- For any $a > 0$, one has that
 \[a^{-1} > 0\]

- Let $x, y \in \mathbb{R}$ with $x \leq y$. For any $c \in \mathbb{R}$,
 \[x + c \leq y + c\]
 If the assumed inequality is strict, the resulting inequality is strict as well.
• Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$ with $x_1 \leq y_1$ and $x_2 \leq y_2$. Then,

$$x_1 + x_2 \leq y_1 + y_2.$$

If either of the assumed inequalities is strict, then the resulting inequality is strict as well.

An immediate consequence of the above is the following.

• Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$ with $x_1 \leq y_1$ and $x_2 \geq y_2$. Then,

$$x_1 - x_2 \leq y_1 - y_2.$$

If either of the assumed inequalities is strict, then the resulting inequality is strict as well.

• If $x > y$, then

$$xc > yc \quad \text{if } c > 0$$

and

$$xc < yc \quad \text{if } c < 0$$

• By induction, one can prove: For any $n \in \mathbb{N}$, let x_1, x_2, \cdots, x_n be non-negative numbers, i.e. $x_k \geq 0$ for all $k \in \{1, \cdots, n\}$.

One has that the sum of non-negative numbers is non-negative, i.e.

$$\sum_{k=1}^{n} x_k \geq 0$$

and moreover,

$$\sum_{k=1}^{n} x_k = 0 \quad \text{if and only if} \quad x_1 = x_2 = \cdots = x_n = 0.$$

One has that the product of non-negative numbers is non-negative, i.e.

$$x_1 x_2 \cdots x_n \geq 0$$

and moreover,

$$x_1 x_2 \cdots x_n = 0 \quad \text{if and only if} \quad \text{there is some } k \in \{1, \cdots, n\} \text{ for which } x_k = 0.$$

Chains of Inequalities:

It is sometimes useful to make statements involving multiple inequalities. A valid chain of inequalities (with two links) is a statement of the form:

Let $x, y, z \in \mathbb{R}$.

We write

$$x \leq y \leq z \quad \text{if and only if} \quad x \leq y \quad \text{and} \quad y \leq z$$

In the case above, one checks that $x \leq z$.

We write

$$x \leq y < z \quad \text{if and only if} \quad x \leq y \quad \text{and} \quad y < z$$

In the case above, one checks that $x < z$.
We write
\[x < y \leq z \quad \text{if and only if} \quad x < y \quad \text{and} \quad y \leq z \]

In the case above, one checks that \(x < z \).

More valid chains of inequalities are:
\[x \geq y \geq z, \quad x \geq y > z, \quad \text{and} \quad x > y \geq z. \]

They are defined and have consequences similar to the above statements. These are the only valid chains of inequalities with two links. No other combination has a logical interpretation.

One can extend this notion to chains of inequalities with more than two links. The only valid chains are those for which:
\begin{itemize}
 \item all linking inequalities are either \(\geq \) or \(> \).
 \item all linking inequalities are either \(\leq \) or \(< \).
\end{itemize}

No other combinations have a logical interpretation.