Exam 2: MakeUp Key

1. Let \(f : (a, b) \to \mathbb{R} \) be differentiable and \(f' : (a, b) \to \mathbb{R} \) be continuous. Let \(c, d \in (a, b) \). Show that for each \(\varepsilon > 0 \), there is \(\delta > 0 \) such that

\[
|f(x) - f(y) - f'(y)(x-y)| < \varepsilon
\]

whenever \(x, y \in [c, d] \) satisfy

\[
|x-y| < \delta.
\]

Proof:
Since \(f : (a, b) \to \mathbb{R} \) is differentiable, \(f' : (a, b) \to \mathbb{R} \) is also continuous. In this case, for each \(c, d \in (a, b) \), \(f : [c, d] \to \mathbb{R} \) is continuous and also uniformly continuous. Thus for every \(\varepsilon' > 0 \), there is \(\delta > 0 \) for which

\[
|f(x) - f(y)| < \varepsilon'/2
\]

whenever \(x, y \in [c, d] \) satisfy

\[
|x-y| < \delta_1.
\]
Since \(f'(a,b) \to \mathbb{R} \) is continuous,
\(f': \mathbb{R}^2 \to \mathbb{R} \) is continuous as well.
Moreover, \(f': \mathbb{R}^2 \to \mathbb{R} \) is bounded.
Thus there is \(M > 0 \) for which
\[
|f'(x)| \leq M \quad \text{for all } x \in \mathbb{R}^2.
\]

Now let \(\varepsilon > 0 \). Take \(\delta_2 > 0 \) such that \(\delta_2 = \frac{\varepsilon}{2M} \)
with \(\delta = \min(\delta_1, \delta_2) > 0 \) and \(x, y \in \mathbb{R}^2 \)
\[
|x - y| < \delta \quad \text{means that}
\]
\[
|f(x) - f(y) - f'(y)(x - y)|
\]
\[
\leq |f(x) - f(y)| + |f'(y)| |x - y|
\]
\[
\leq \frac{\varepsilon}{2} + M \cdot \delta
\]
\[
\leq \frac{\varepsilon}{2} + M \cdot \delta_2
\]
\[
\leq \varepsilon
\]
a) Let \(f : \mathbb{R} \to \mathbb{R} \) be differentiable. Determine whether or not the limit
\[
\lim_{x \to 0} \frac{f(x^2) - f(0)}{x}
\]
deexists.

b) Let \(g : \mathbb{R} \to \mathbb{R} \) be given by
\[
g(x) = \begin{cases}
 x - x^2 & \text{if } x \in \mathbb{R} \\
 x + x^2 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q})
\end{cases}
\]
Find \(g'(0) \). Discuss behavior of \(g \) in a neighborhood of 0.

2a) Proof:
Set \(f : \mathbb{R} \to \mathbb{R} \) to be
\[
g(x) = x^2
\]
we know that \(g \) is differentiable and
\[
g'(x) = 2x
\]
In this case, \(h : \mathbb{R} \to \mathbb{R} \) defined by setting
\[
h(x) = (f \circ g)(x)
\]
is also differentiable by the chain rule.
In this case,

\[h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a} \exists \]

\[= \lim_{x \to 0} \frac{(f \circ g)(x) - (f \circ g)(0)}{x} \]

\[= \lim_{x \to 0} \frac{f(g(x)) - f(0)}{x} \]

By the chain rule, we also know that

\[h'(x) = (f \circ g)'(x) = f'(g(x)) \cdot g'(x) \]

\[= 2x \cdot f'(g(x)^2) \]

\[\Rightarrow h'(10) = 2 \cdot 10 \cdot f'(10^2) = 0. \]

b)

\[g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a} \]

Since \(a \in \mathbb{R}^2 \), \(g(a) = 0 - 0^2 = 0 \).

\[g(x) = \left\{ \begin{array}{ll}
\frac{x - x^2}{x} & \text{if } x \in \mathbb{Q} \\
\frac{x + x^2}{x} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}
\end{array} \right. \]

\[= \left\{ \begin{array}{ll}
1 - x & \text{if } x \in \mathbb{Q} \cup \{-\infty, 0, \infty\} \\
1 + x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}
\end{array} \right. \]
In this case,

\[\lim_{x \to 0} \frac{g(x)}{x} = 1 \quad \text{is} \quad g'(0) = 1 > 0. \]

From calculus, one might expect that there is a neighborhood at 0 on which \(f \) is increasing, but this is not the case.

Note that:

If \(x \in \mathbb{R} \setminus \{ 0 \} \) and \(y \in \mathbb{R} \), then

\[g(y) - g(x) = (y - y^2) - (x + x^2) \]

\[= (y - x) - (x^2 + y^2) \]

Let \(n \in \mathbb{N} \). Take \(y_n = \frac{1}{2n} \). Take \(x_n \in \left(\frac{1}{2n}, \frac{y_n}{2} \right) \) and

\[x_n < y_n. \]

Then

\[g(y_n) - g(x_n) = (y_n - x_n) - (x_n^2 + y_n^2) \]

\[\leq \left(\frac{1}{2n^2} - \frac{1}{2n} \right) \]

\[\leq \frac{1}{2n} - \left(x_n^2 + \frac{1}{2an} \right) \]

\[= -x_n^2 < 0 \]

Is decreasing along this sequence...
3a) Let \mathcal{R}_n be a sequence of partitions of $[a,b]$. We say that \mathcal{R}_n is a sequence of refinements of \mathcal{R}_m if: For each $n \geq m$, \mathcal{R}_n is a refinement of \mathcal{R}_m. Let $f: [a,b] \to \mathbb{R}$ be integrable. Let \mathcal{R}_n be an Archimedean sequence for f on $[a,b]$. Prove that every sequence of refinements \mathcal{R}_n of \mathcal{R}_m is also Archimedean for f on $[a,b]$.

b) Consider $f: [2,4] \to \mathbb{R}$ given by

$$f(x) = \begin{cases}
3x - 1 & \text{if } 2 \leq x \leq 3, \\
4 & \text{if } 3 < x \leq 4.
\end{cases}$$

Show that f is integrable and find the value of $\int_{2}^{4} f(x) \, dx$.

3b) Proof. Since \mathcal{R}_n is Archimedean for f on $[a,b]$, we know that

$$\lim_{n \to \infty} (U(f, \mathcal{R}_n) - L(f, \mathcal{R}_n)) = 0.$$

If \mathcal{R}_n is a sequence of refinements of \mathcal{R}_m, then...
For each $n \in \mathbb{N}$,

$$U(f, p_n) \leq L(f, \bar{p}_n) \quad \text{and} \quad U(f, \bar{p}_n) \leq L(f, p_n)$$

by the Riemann lemma.

In this case, for each $n \in \mathbb{N}$,

$$0 \leq U(f, \bar{p}_n) - L(f, p_n) \leq U(f, \bar{p}_n) - L(f, p_n)$$

Thus, by the Riemann lemma,

$$\lim_{n \to \infty} (U(f, \bar{p}_n) - L(f, p_n)) = 0$$

using (**) This proves that $\int_{a \, b}$ is Archimedean for f on $[a \, b]$.

b) For each $n \in \mathbb{N}$, let

- p_n be a regular partition of $[2, 3]$ and
- q_n be a regular partition of $[3, 4]$.

That

$$p_n = \frac{1}{n} \times \frac{3}{n} \quad \text{with} \quad y_j = 2 + \frac{j}{n} \quad \text{for} \quad 0 \leq j \leq n$$

and

$$q_n = \frac{1}{n} \times \frac{1}{n} \quad \text{with} \quad y_j = 3 + \frac{j}{n} \quad \text{for} \quad 0 \leq j \leq n$$

Take $\bar{p}_n = p_n \cup q_n$ which is a partition of $[2, 4]$.
Note that
\[U(t, \mathbf{p}_n) = U(t, \mathbf{p}_0) + U(t, \mathbf{q}_n) \]
and
\[U(t, \mathbf{p}_n) = U(t, \mathbf{p}_0) + U(t, \mathbf{q}_n) \]
We show the 1st, the 2nd is similar.

Let \(\mathbf{p}_n = \sum_{j=0}^{n} \mathbf{z}_j \) where \(\mathbf{z}_j = \sum_{y_j \in \mathcal{J}} \mathbf{y}_j \)
with \(\mathcal{J} = \{ x_1^2 \} \)

Then
\[U(t, \mathbf{p}_n) = \sum_{j=0}^{n} M_j(t) (\mathbf{x}_j - \mathbf{x}_{j-1}) \]
\[= \sum_{j=1}^{n} M_j(t) (\mathbf{x}_j - \mathbf{x}_{j-1}) \]
\[+ \sum_{j=0}^{n} M_j(t) (\mathbf{y}_j - \mathbf{y}_{j-1}) \]
\[= U(t, \mathbf{p}_0) + U(t, \mathbf{q}_n) \]
The rest follows similarly.

Then
\[0 \leq U(t, \mathbf{p}_n) - U(t, \mathbf{p}_0) \]
\[= \left(U(t, \mathbf{p}_n) - U(t, \mathbf{p}_0) \right) + \left(U(t, \mathbf{q}_n) - U(t, \mathbf{q}_0) \right) \]
\[u(t, q_0) - u(t, p_n) = \sum_{i=1}^{n} (M_i(t) - m_j(t)) (x_i - x_{i-1}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot 1 = \frac{1}{n} \cdot \sum_{i=1}^{n} 1 = \frac{1}{n} \cdot \sum_{i=1}^{n} 1 = \frac{1}{n} \]

and
\[u(t, q_n) - u(t, q_n) = \sum_{i=1}^{n} (M_i(t) - m_j(t)) (y_i - y_{i-1}) = (M_1(t) - m_1(t)) \cdot \frac{1}{n} + \sum_{i=2}^{n} \frac{1}{n} \]
\[= (4 - 2) \cdot \frac{1}{n} = \frac{2}{n}. \]

Thus
\[\lim_{n \to \infty} (u(t, q_0) - u(t, q_n)) = \lim_{n \to \infty} (u(t, p_n) - u(t, q_n)) \]
\[+ \lim_{n \to \infty} (u(t, q_n) - u(t, q_n)) \]
\[= \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n} \cdot 0 = 0 + 0 = 0. \]

Thus \(g \) is Archimedean for \(f \) on \(t \geq 1 \).

Moreover
\[\sum_{j=1}^{n} f = \lim_{n \to \infty} u(t, p_n) = \lim_{n \to \infty} (u(t, p_n) + u(t, q_n)) \]
\[= \lim_{n \to \infty} \left(\sum_{j=1}^{n} (x_j - x_{j-1}) + \sum_{j=1}^{n} y_j \right) = \frac{1}{n} \left(\sum_{j=1}^{n} (x_j - x_{j-1}) + 4 \sum_{j=1}^{n} y_j \right) = 5 \frac{1}{n} \]
\[\text{use that} \]
\[\sum_{j=1}^{n} y_j = n \frac{1}{2} \left(\sum_{j=1}^{n} (x_j - x_{j-1}) \right) + 4 \sum_{j=1}^{n} y_j = 5 \frac{1}{2} \]
4) Let \(f: \mathbb{R} \to \mathbb{R} \) be continuous.
Let \(a, b: \mathbb{R} \to \mathbb{R} \) be differentiable.
Define \(F: \mathbb{R} \to \mathbb{R} \) by setting:
\[
F(x) = \int_{a(x)}^{b(x)} f(t) \, dt.
\]

Show that \(F \) is differentiable and evaluate \(F'(x) \).

Proof: Since \(f: \mathbb{R} \to \mathbb{R} \) is continuous,
for each define \(G: \mathbb{R} \to \mathbb{R} \) by setting
\[
G(x) = \int_{c}^{x} f(t) \, dt.
\]

This is well defined since \(f: [a, x] \to \mathbb{R} \) is continuous for each \(x \geq 0 \) and \(f: [x, b] \to \mathbb{R} \) is continuous for each \(x \leq 0 \).

Now that,
\[
F(x) = \int_{a(x)}^{b(x)} f(t) \, dt = \int_{b(x)}^{c} f(t) \, dt + \int_{c}^{a(x)} f(t) \, dt
\]
\[
= G(b(x)) - G(a(x))
\]
By the Fundamental Theorem of calculus and the chain rule, both $g \circ a$ and $g \circ b$ are differentiable.

Moreover,

$$F'(x) = (g \circ b)'(x) - (g \circ a)'(x)$$

$$= G'(b(x)) \cdot b'(x) - G'(a(x)) \cdot a'(x)$$

$$= f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x).$$