1. On Orthogonality

The notion of orthogonal, or perpendicular, vectors in an inner-product space is quite useful. Here we introduce some simple consequences.

Definition 1.1. Let \mathcal{H} be a pre-Hilbert space. (Thus \mathcal{H} is a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ equipped with an inner-product $\langle \cdot, \cdot \rangle$. The use of the pre-fix pre indicates that this inner-product space need not be complete.) Two vectors $f, g \in \mathcal{H}$ are said to be orthogonal if $\langle f, g \rangle = 0$. We may write this as $f \perp g$.

Note that if \mathcal{H} is a pre-Hilbert space and $f, g \in \mathcal{H}$ are orthogonal, i.e. $f \perp g$, then
\[
\|f + g\|^2 = \langle f + g, f + g \rangle = \|f\|^2 + \|g\|^2
\]
and this formula is often called the **Pythagorean Theorem** for obvious reasons.

Let us now fix a pre-Hilbert space \mathcal{H}. A vector $f \in \mathcal{H}$ is said to be orthogonal to a subset $U \subset \mathcal{H}$ if $\langle f, g \rangle = 0$ for all $g \in U$. This may be written as $f \perp U$. Two subsets $U, V \subset \mathcal{H}$ are said to be orthogonal, written $U \perp V$, if $\langle f, g \rangle = 0$ for all $f \in U$ and $g \in V$. If $U \subset \mathcal{H}$, then the set
\[
U^\perp = \{f \in \mathcal{H} : f \perp U\}
\]
is called the **orthogonal complement** of U.

The following proposition, see page 29 of the text, summarizes several useful properties associated with this notion of orthogonality.

Proposition 1.2. Let \mathcal{H} be a pre-Hilbert space.

1. One can check that $\{0\}^\perp = \mathcal{H}$ and $\mathcal{H}^\perp = \{0\}$. In words, this shows that 0 is the only vector orthogonal to every element of \mathcal{H}.
2. For every $U \subset \mathcal{H}$, U^\perp is a closed subspace of \mathcal{H}.
3. If $U \subset V \subset \mathcal{H}$, then $V^\perp \subset U^\perp$.
4. For every $U \subset \mathcal{H}$,
\[
U^\perp = \mathcal{L}(U)^\perp = \left(\mathcal{L}(U)\right)^\perp.
\]

Note: In the above, for any $U \subset \mathcal{H}$, $\mathcal{L}(U) \subset \mathcal{H}$ is the set of all finite linear combinations of elements of U. As such, it is the smallest subspace of \mathcal{H} containing U. Thus by (2) above, we also know that $U^\perp = \mathcal{L}(U^\perp) = \mathcal{L}(U)^\perp$.

1.1. On internal and external direct sums. A direct sum is a special form of the sum of two subspaces.

1.1.1. On internal direct sums. Let \mathcal{H} be a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. For any two subspaces, $U_1, U_2 \subset \mathcal{H}$, the sum of these subspaces is given by
\[
U_1 + U_2 = \{f \in \mathcal{H} : f = g_1 + g_2 \text{ where } g_1 \in U_1 \text{ and } g_2 \in U_2\}
\]
One readily checks that $U_1 + U_2 \subset \mathcal{H}$ is a subspace.

In the special case that $U_1, U_2 \subset \mathcal{H}$ are subspaces with trivial intersection, i.e. $U_1 \cap U_2 = \{0\}$, then the sum of these subspaces is written as $U_1 + U_2$ and such a sum is called a direct sum.

Direct sums are particularly useful because one readily checks that: If $U_1 + U_2$ is the direct sum of subspaces in \mathcal{H}, then each $f \in U_1 + U_2$ has a unique representation as $f = g_1 + g_2$ with $g_1 \in U_1$ and $g_2 \in U_2$.

If \mathcal{H} is a pre-Hilbert space and $U_1, U_2 \subset \mathcal{H}$ are orthogonal subspaces, i.e. $U_1 \perp U_2$, then clearly $U_1 \cap U_2 = \{0\}$. In this case, the direct sum is written as $U_1 \oplus U_2$ and is called an **orthogonal sum**.

An important fact, which is a consequence of Theorem 3.3 c) on page 32, is the following. Let \mathcal{H} be a Hilbert space and $U \subset \mathcal{H}$ be a closed subspace. Then $\mathcal{H} = U \oplus U^\perp$.

The above described internal direct sums, i.e. sums of subspaces of a fixed vector space.
1.1.2. **On external direct sums.** In some cases, we want to add two vector spaces together. Special cases of this form external direct sums.

Let \mathcal{H}_1 and \mathcal{H}_2 be vector spaces over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. The Cartesian product of these spaces, i.e.

$$\mathcal{H}_1 \times \mathcal{H}_2 = \{(f, g) : f \in \mathcal{H}_1 \text{ and } g \in \mathcal{H}_2\}$$

is clearly a vector space over \mathbb{F} with the usual notions of *vector* addition and scalar multiplication.

If \mathcal{H}_1 and \mathcal{H}_2 are both pre-Hilbert spaces over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, then $\mathcal{H}_1 \times \mathcal{H}_2$ is a pre-Hilbert space as well, when equipped with

$$\langle (f_1, g_1), (f_2, g_2) \rangle = \langle f_1, f_2 \rangle_1 + \langle g_1, g_2 \rangle_2$$

One checks that $\mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2$ is a Hilbert space if and only if \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces.

The Hilbert space $\mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2$ is often written as $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, and called an external direct sum. This is because we can identify \mathcal{H}_1 with the subspace

$$U_1 = \{ (f, 0) : f \in \mathcal{H}_1 \} \subset \mathcal{H}$$

and similarly identify \mathcal{H}_2 with the subspace

$$U_2 = \{ (0, g) : g \in \mathcal{H}_2 \} \subset \mathcal{H}$$

Since $U_1 \perp U_2$, this external direct sum may be identified with an internal direct sum in \mathcal{H}.

For more on this, see Exercise 1.11 on page 14, Exercise 2.2 a) on page 21, and the comments starting with *If A is an arbitrary set* ... on page 33.