HW 1 Math 563 Due in class Wednesday, September 4, 2019.

1. Durrett (1.1.2). Let $\Omega = R, \mathcal{F} =$ all subsets so that A or A^c is countable. Suppose that P(A) = 0 in the first case, and = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.

2. Durrett (1.2.1) Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

3. Durrett (1.2.7) [Read (1.2.5) for a similar problem]. (i) Suppose X has a density function f. Compute the distribution function of X^2 and then differentiate to find its density function. (ii) Work out the answer when X has a standard Normal distribution to find the density of the chi-square distribution.

4. Durrett (1.6.3) (i) Show that Chebychev's inequality is sharp by showing that if $0 < b \leq a$ are fixed, there is an X with $EX^2 = b^2$ for which $P(|X| \geq a) = b^2/a^2$. (ii) Show that Chebychev's inequality is not sharp by showing that if X has $0 < EX^2 < \infty$, then

$$\lim_{a \to \infty} a^2 P(|X| \ge a) / EX^2 = 0.$$

5. Durrett (1.6.6). Let $Y \ge 0$ with $EY^2 < \infty$ and let a < EY. Apply the Cauchy-Schwarz inequality to $Y1_{(Y>a)}$ and conclude

$$P(Y > a) \ge (EY - a)^2 / EY^2.$$

This is a useful lowerbound, often applied with a = 0.