HW 2 Math 563 Due Friday, Sep 20, 2019

1. (Durrett 1.6.14) Let $X \ge 0$, but do NOT assume that $E[1/X] < \infty$. Show

$$\lim_{y \to \infty} y E[1/X; X > y] = 0 \text{ and } \lim_{y \to 0} y E[1/X; X > y] = 0.$$

2. (Durrett 2.1.3) Recall, two events A and B are independent when $P(A \cap B) = P(A)P(B)$. Show that if A, B independent then so are A^c and B, and also A^c and B^c .

3. (Durrett 2.1.4; see also problem 2.1.5 with respect to discrete r.v.'s) Suppose that (X_1, \ldots, X_n) has density $f(x_1, \ldots, x_n)$, that is

$$P((X_1, \dots, X_n) \in A) = \int_A f(x) dx \text{ for } A \in \mathbb{B}_{\mathbb{R}^n}.$$

If f can be written as $g_1(x_1) \dots g_n(x_n)$ where $g_i \ge 0$ measureable, then X_1, \dots, X_n are independent. Note, it's not assumed that the g_i are probability densities.

4. Consider the uniform probability space, $([0,1], \mathcal{B}_{[0,1]}, \lambda)$. Let $X(\omega) = \omega$ for $\omega \in [0,1]$, and define Y = X(1 - X). Construct a non-constant r.v. Z such that Z and Y are independent.