HW 3 Math 563 Due Wednesday, Oct 2, 2019

1. (Durrett 2.1.18) If we want an infinite sequence of coin tossings, we do not have to use Kolmogorov's theorem. Let Ω be the unit interval (0, 1) equipped with the Borel sets \mathcal{F} and Lebesgue measure P. Let $Y_n(\omega) = 1$ if $[2^n \omega]$ is odd and 0 if $[2^n \omega]$ is even. Show that Y_1, Y_2, \ldots are independent with $P(Y_k = 0) = P(Y_k = 1) = 1/2$.

2. (Durrett 2.2.3 I've modified the assumption on f here) "Monte Carlo Integration" Let f be a measurable function on [0, 1] with $\int_0^1 |f(x)|^2 dx < \infty$. Let U_1, U_2, \ldots be independent and uniformly distributed r.v.'s on [0, 1]. Let

$$I_n = \frac{1}{n} \sum_{i=1}^n f(U_i).$$

- (i) Show that $I_n \to I \equiv \int_0^1 f(x) dx$ in probability.
- (ii) Use Chebychev's inequality to estimate $P(|I_n I| > a/n^{1/2})$.
- 3. (Durrett 2.3.1) Prove that

 $P(\liminf A_n) \leq \liminf P(A_n) \leq \limsup P(A_n) \leq P(\limsup A_n).$

- 4. Let $\{X_n : n \ge 1\}$ be identically distributed.
- (i) Show that $X_n/n \to 0$ in probability.
- (ii) If $E|X_1| < \infty$, then $X_n/n \to 0$ a.s.
- (iii) If $\{X_n : n \ge 1\}$ are independent, and $X_n/n \to 0$ a.s., then $E|X_1| < \infty$.

Therefore, we conclude that when $\{X_n : n \ge 1\}$ are iid we have that

$$\frac{X_n}{n} \to 0 \text{ a.s.} \quad \Leftrightarrow \quad E|X_1| < \infty.$$

We may conclude further that if $\{X_n : n \ge 1\}$ are iid and $E|X_1| = \infty$, then we have an example that $X_n/n \to 0$ in probability but not almost surely.