HW 4 Math/Stat 563 Due Wednesday Oct. 16, 2019

1. Let f be a bounded measurable function on [0,1] that is continuous at 1/2. Evaluate

$$\lim_{n\to\infty}\int_0^1\int_0^1\cdots\int_0^1f\Big(\frac{x_1+x_2+\cdots+x_n}{n}\Big)dx_1\cdots dx_n.$$

- 2. (Durrett 2.5.7) Let $\{X_n\}$ be independent r.v.'s. Suppose $\sum_{n=1}^{\infty} E|X_n|^{p(n)} < \infty$ where $0 < p(n) \le 2$ for all $n \ge 1$, and $EX_n = 0$ when p(n) > 1. Show that $\sum_{n=1}^{\infty} X_n$ converges a.s.
- 3. Let $\{X_n\}$ be i.i.d with common distribution $F(x) = 1 x^{-\alpha}$ for $x \ge 1$ and $\alpha > 0$. Let $M_n = \max_{m \le n} X_n$. Then show that M_n/n^{γ} converges weakly as $n \uparrow \infty$ for some parameter γ . Identify γ and the limit distribution.